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Abstract. This paper contributes to the theory of typed first-order
logic. We present a sound and complete axiomatization for a basic typed
logic lifting restrictions imposed by previous results. As a second contri-
bution, this paper provides complete axiomatizations for the type pred-
icates instanceT , exactInstanceT , and functions castT indispensable for
reasoning about object-oriented programming languages.

1 Introduction

Typed first-order logics with sophisticated type systems are by now a tried-and-
tested basis for program verification systems. The most common route to proof
support for these logics is by translation to simply sorted or unsorted logics for
which SMT solvers are available. Typical representatives of this approach are the
translation of the Boogie type system explained in [7] and the translation of the
type system used in the Why verification tool described in [3]. The alternative
approach to implement provers for such typed first-order logics directly is less
common, e.g., the prover integrated in the KeY system [1] and the Alt-Ergo SMT
solver [2].

In this paper we present a logical framework for a hierarchically typed first
order logic and a sound and complete calculus. This paper furthermore addresses
an issue with the coincidence lemma that is folklore knowledge in the community
though we could not find a published reference. Let T1 = {A,B} be an example
type hierarchy containing the two types A, B with A 6v B and B 6v A. Let x be a
variable of type A and y be a variable of type B. Then the formula ¬∃x.∃y.(x .=
y) is a tautology. If we extend T1 to the type hierarchy T2 = ({A,B,C},v)
with C v A and C v B, the very same formula is no longer a tautology in the
logic using T2. This phenomenon that universal validity of a formula depends
on symbols not occurring in it, is highly undesirable. We adapt the notion of
universal validity to exclude this deficiency in Definition 8 below.

There is a rich body of recent literature on the translation approach inves-
tigating various variations, optimizations, and tunings directly geared towards
program verification, see again [7,3] for references. Typed, or many-sorted, cal-
culi have a long tradition in mathematical logic, [8] may be counted among the
earliest contributions in this line. More recently there was a short-lived flurry on
order-sorted logic programming and resolution calculi, as witnessed e.g., by [10].
Despite this history there are not many recent papers on implemented calculi
of typed first-order logic, let alone contributions aimed at program verification.



This paper falls into this category. The contribution closest to ours is [6] that
presents a sound and complete sequent calculus under the restriction that the
type hierarchy is closed under greatest lower bounds. An extended version has
been published as [1, Chapter 2]. We improve on this by 1) lifting the restriction
on the type hierarchy and 2) reducing the logic to a minimal predefined vocab-
ulary, where equality .= is the only built-in predicate, and defining the desired
vocabulary axiomatically.

Plan of the paper: The main part of Section 2, after introducing the basic typed
logic, is taken up by the proof of the soundness and completeness theorem,
Theorem 1. In Section 3, an example of a theory in the basic typed logic is
presented axiomatizing instanceT , exactInstanceT , and castT culminating again
in a soundness and completeness proof, Theorem 3. Section 4 contains a few hints
how some Java-specific notions could be axiomatized. We close with concluding
remarks in Section 5.

We thank an anonymous reviewer for the thorough reading of the first version
of this paper and his or her expert and useful comments.

2 The Basic Typed Logic

2.1 Syntax

Definition 1. a type hierarchy T = (TSym,v) consists of

1. a non-empty set TSym of type symbols,
2. a partial order relation v on TSym called the subtype relation,
3. the designated symbols ⊥ ∈ TSym for the empty type and > ∈ TSym for the

universal type,
4. ⊥ v A v > for all A ∈ TSym.

We point out that no further restrictions are placed on type hierarchies in
contrast to other approaches requiring the existence of greatest lower bounds.
The empty type ⊥ only plays an ornamental role in this paper. We nevertheless
kept it in the hope that it may find its uses in future developments.

Definition 2. A signature Σ = (FSym,PSym,VSym) for a given type hierar-
chy T is made up of

1. a set FSym of typed function symbols,
by f : A1, . . . , An → A we declare the argument types of f ∈ FSym to be
A1, . . . , An in the given order and its result type to be A,

2. a set PSym of typed predicate symbols,
by p : A1, . . . , An we declare the argument types of p ∈ PSym to be A1, . . . , An
in the given order,

3. a set VSym of typed variable symbols,
by v : A for v ∈ VSym we declare v to be a variable of type A.

4. PSym contains the dedicated symbol .= : >,> for equality.



In the above all A, A1,. . . , An in TSym are required to be different from ⊥. We do
not allow overloading: The same symbol may not occur in FSym∪PSym∪VSym
with different typing.

The next two definitions define the syntactic categories of terms and formulas
of typed first-order logic, as usual.

Definition 3. Let T be a type hierarchy, and Σ a signature for T . The set
TrmA of terms of type A 6= ⊥ is inductively defined such that

1. v ∈ TrmA for each variable symbol v : A ∈ VSym of type A.
2. f(t1, . . . , tn) ∈ TrmA for each f : A1, . . . , An → A ∈ FSym, and terms

ti ∈ TrmBi
with Bi v Ai for all 1 ≤ i ≤ n.

If t ∈ TrmA, we say that t is of (static) type A and write σ(t) = A.

Definition 4. The set Fml is inductively defined as:

1. p(t1, . . . , tn) ∈ Fml
for p : A1, . . . , An ∈ PSym, and ti ∈ TrmBi with Bi v Ai for all 1 ≤ i ≤ n.
In particular t1

.= t2 ∈ Fml for arbitrary terms ti.
2. true, false ∈ Fml
3. ¬φ, φ ∧ ψ, φ ∨ ψ, φ→ ψ are in Fml for arbitrary φ, ψ ∈ Fml.
4. ∀v.φ, ∃v.φ are in Fml for φ ∈ Fml and v : A ∈ VSym.

If need arises, we will make dependence of these definitions on Σ and T explicit
by writing TrmA,Σ, FmlΣ or TrmA,T ,Σ, FmlT ,Σ. When convenient, we will also
use the redundant notation ∀ v:A.φ, ∃ v:A.φ for a variable v : A ∈ VSym.

Free and bound variables are defined as usual as well as typed substitutions that
allow one to replace a variable of type A by a term of type B if B v A.

2.2 Semantics

Definition 5. A universe or domain for a given type hierarchy T and signature
Σ consists of

1. a non-empty set D,
2. a typing function δ : D → TSym \ {⊥}.

The sets DA = {d ∈ D | δ(d) v A} for A ∈ TSym are called type universe or
type domain for A. We require that DA 6= ∅ for each A ∈ TSym with A 6= ⊥.

The typing function δ assigns to every element o ∈ D of the universe its
dynamic type δ(o) and the type domain DA of a type A contains all elements
of dynamic type A or of a dynamic type which is a subtype of A. Definition 5
implies that for different types A, B ∈ TSym \ {⊥}, there is o ∈ DA ∩DB only
if there exists C ∈ TSym, C 6= ⊥ with C v A and C v B.



Lemma 1. The type domains for a universe (D, δ) share the following proper-
ties:

1. D⊥ = ∅, D> = D,
2. DA ⊆ DB if A v B,
3. DC = DA ∩DB in case the greatest lower bound C of A and B exists.

Definition 6. A first-order structure M for a given type hierarchy T and sig-
nature Σ consists of a domain (D, δ) and an interpretation I such that

1. I(f) is a function from DA1 × . . . ×DAn into DA for f : A1, . . . , An → A
in FSym,

2. I(p) is a subset of DA1 × . . .×DAn for p : A1, . . . , An in PSym,
3. I( .=) = {(d, d) | d ∈ D}.

For a first-order structure M and variable assignment β the evaluation
valM,β(t) of a term t and the semantic truth relation (M, β) |= φ for formulas
φ are defined as usual.

2.3 Calculus

The following definition formalizes our concept of enlarging a type hierarchy:
new types and subtype relations between old and new types may be added
without adding new relations among the old types. This can be guaranteed by
the restriction that new types can only be declared to be subtypes of old types,
never supertypes.

Definition 7. A type hierarchy T2 = (TSym2,v2) is an extension of a type
hierarchy T1 = (TSym1,v1), in symbols T1 v T2, if

1. TSym1 ⊆ TSym2
2. v2 is the smallest subtype relation containing v1 ∪ ∆ where ∆ is a set of

relations (S, T ) with T ∈ TSym1 and S ∈ TSym2 \ TSym1.

Note, that this definitions entails , ⊥ v2 A v2 > for all new types A. For later
reference, we note the following lemma.

Lemma 2. Let T2 = (TSym2,v2) be an extension of T1 = (TSym1,v1) with v2
being the smallest subtype relation containing v1 ∪∆, for some ∆ ⊆ (TSym2 \
TSym1)×TSym1. Then for A,B ∈ TSym1, C ∈ TSym2 \TSym1, D ∈ TSym2 :

1. A v2 B ⇔ A v1 B
2. C v2 A⇔ T v1 A for some (C, T ) ∈ ∆
3. D v2 C ⇔ D = C or D = ⊥.

Proof. This follows easily from the fact that no supertype relations of the form
A v2 C for new type symbols C are stipulated. ut

The following adapted definition of universal validity resolves the undesirable
phenomenon, already referred to in the introduction, that validity of a formula
depends on symbols not occurring in it.



andLeft
Γ, φ, ψ =⇒ ∆

Γ, φ ∧ ψ =⇒ ∆
andRight

Γ =⇒ φ,∆ Γ =⇒ ψ,∆

Γ =⇒ φ ∧ ψ,∆

orRight
Γ =⇒ φ, ψ,∆

Γ =⇒ φ ∨ ψ,∆
orLeft

Γ, φ =⇒ ∆ Γ,ψ =⇒ ∆

Γ, φ ∨ ψ =⇒ ∆

impRight
Γ, φ =⇒ ψ,∆

Γ =⇒ φ → ψ,∆
impLeft

Γ =⇒ φ,∆ Γ, ψ =⇒ ∆

Γ, φ → ψ =⇒ ∆

notLeft
Γ =⇒ φ,∆

Γ,¬φ =⇒ ∆
notRight

Γ, φ =⇒ ∆

Γ =⇒ ¬φ,∆

allRight
Γ =⇒ [x/c](φ),∆
Γ =⇒ ∀x:A.φ,∆

c : → A a new constant

allLeft
Γ,∀x:A.φ, [x/t](φ) =⇒ ∆

Γ,∀x:A.φ =⇒ ∆
t ∈ TrmA′ ground, A′ v A

exLeft
Γ, [x/c](φ) =⇒ ∆

Γ, ∃x:A.φ =⇒ ∆
c : → A a new constant

exRight
Γ =⇒ ∃ x:A.φ, [x/t](φ),∆

Γ =⇒ ∃x:A.φ,∆
t ∈ TrmA′ ground, A′ v A

close
Γ, φ =⇒ φ,∆

closeFalse
Γ, false =⇒ ∆

closeTrue
Γ =⇒ true,∆

Fig. 1. First-order rules

Definition 8. Let T be a type hierarchy and Σ a signature, φ ∈ FmlT ,Σ a
formula without free variables, and Φ ⊆ FmlT ,Σ a set of formulas without free
variables.

1. φ is a logical consequence of Φ, in symbols Φ ` φ, if for all type hierarchies
T ′ with T v T ′, and all T ′-Σ-structuresM such thatM |= Φ alsoM |= φ
holds.

2. φ is universally valid if it is a logical consequence of the empty set, i.e. ∅ ` φ.
3. φ is satisfiable if there is a type hierarchy T ′, with T v T ′ and a T ′-Σ-

structureM withM |= φ.

The notion of logical consequence from Definition 8 may be called super logical
consequence to distinguish it from the concept Φ `T ,Σ φ that is true when for any
T -Σ-structureM withM |= Φ alsoM |= φ is true. For the above example type
hierarchy T1 = {A,B} which had unrelated types A and B (A 6v B,B 6v A), we
obtain 6` ¬∃x:A.∃ y:B.(x .= y), but `T1,∅ ¬∃x:A.∃ y:B.(x .= y).

Definition 7 forbids the introduction of subtype chains like A v B v T into
the type hierarchy. However, it can be shown that relaxing the definition in
that respect results in an equivalent notion of logical consequence. We keep the
restriction here since it simplifies reasoning about type hierarchy extensions.



The calculus of our choice is the sequent calculus. The basic data that is
manipulated by the rules of the sequent calculus are sequents. These are of the
form φ1, . . . , φn =⇒ ψ1, . . . , ψm The formulas φ1, . . . , φn at the left-hand side of
the sequent separator, =⇒, are the premises or the antecedent of the sequent,
the formulas ψ1, . . . , ψm on the right are the conclusions or the succedent. The
intended meaning of a sequent is that the premises together imply at least one
conclusion. In other words, a sequent φ1, . . . , φn =⇒ ψ1, . . . , ψm is valid iff the
formula

∧
1≤i≤n φi →

∨
1≤j≤m ψj is valid.

Figures 1 and 2 show the usual set of rules of the sequent calculus with
equality as it can be found in many text books, e.g. [5, Section 5.4]. The only
exception is rule eqDynamicSort, which is the main innovation of our approach.
Here, [z/t2](φ) is used to denote the application of the substitution t2 for free
occurrences of variable z in φ. Note that the rules contain the schematic variables
Γ , ∆ for set of formulas, ψ, φ for formulas and t, c for terms and constants.

The rule eqDynamicSort is different than the other rules in that it introduces
a new type. In that sense it is similar to the rules forallRight and exLeft that
introduce new constant symbols. These constants are used to denote an unknown
value whose existence is guaranteed. The rationale behind the new type C in
eqDynamicSort is the same: Since the equality t1

.= t2 in the antecedent requires
that the types σ(t1) and σ(t2) have a common element, there must also be a type
to accommodate that value. In the rule that type is made explicit and named
C.

Theorem 1 (Soundness and Completeness Theorem).
Let T = (TSym,v) be a type hierarchy and Σ a signature, Γ,∆ ⊂ FmlT ,Σ
without free variables. Assume that for every A ∈ TSym\{⊥} there is a constant
symbol of type A. Then:

Γ =⇒ ∆ is universally valid iff there is a closed proof tree for the Γ =⇒ ∆.

Proof. Soundness. We only present the proof for the new rule eqDynamicSort,
the remaining cases follow the usual pattern.

To prove soundness of eqDynamicSort we assume that
∧
Γ ∧t1

.= t2∧∃x.(x
.=

t1 ∧ x
.= t2)→

∨
∆ is universally valid for type hierarchy TC and need to show

that
∧
Γ ∧ t1

.= t2 →
∨
∆ is universally valid for the hierarchy T .

The type hierarchy TC = (TSym∪ {C},vC) is an extension of the hierarchy
T = (TSym,v) in the sense of Definition 7 , with vC the least subtype relation
containing v ∪ {(C, σ(t1)), (C, σ(t2))}.

Assume that
∧
Γ ∧ t1

.= t2 ∧ ∃x.(x
.= t1 ∧ x

.= t2) →
∨
∆ is universally

valid for type hierarchy TC . To prove universal validity of
∧
Γ ∧ t1

.= t2 →
∨
∆

we need to consider a type hierarchy T 1 = (TSym1,v1) that is an arbitrary
extension of T = (TSym,v) and an arbitrary (T 1, Σ)-structureM = (M, δ, I)
satisfying M |= Γ ∧ t1

.= t2 with the aim of showing M |=
∨
∆. Let T be the

dynamic type of tM1 = tM2 , i.e., δ(tM1 ) = δ(tM2 ) = T , which obviously satisfies
T v σ(t1) and T v σ(t2). Set T 1

C = (TSym1 ∪ {C},v1
C) with v1

C being the
smallest subtype relation containing v1 ∪ {(C, σ(t1)), (C, σ(t2))}. We need a



eqLeft
Γ, t1

.= t2, [z/t1](φ), [z/t2](φ) =⇒ ∆

Γ, t1
.= t2, [z/t1](φ) =⇒ ∆

if σ(t2) v σ(t1)

eqRight
Γ, t1

.= t2 =⇒ [z/t2](φ), [z/t1](φ),∆
Γ, t1

.= t2 =⇒ [z/t1](φ),∆
if σ(t2) v σ(t1)

eqSymmLeft
Γ, t2

.= t1 =⇒ ∆

Γ, t1
.= t2 =⇒ ∆

eqReflLeft
Γ, t

.= t =⇒ ∆

Γ =⇒ ∆

eqDynamicSort
Γ, t1

.= t2, ∃x.(x
.= t1 ∧ x

.= t2) =⇒ ∆

Γ, t1
.= t2 =⇒ ∆

if σ(t1) and σ(t2) are incomparable,
the sort C of x is new and satisfies C @ σ(t1) and C @ σ(t2)

Fig. 2. Equality rules

further extension T 2 = (TSym1 ∪ {C,C2},v2) of T 1
C , where v2 is the smallest

subtype relation containing v1
C ∪∆ with ∆ = {(C2, C), (C2, T )}.

We proceed in the main proof by constructing a (T 2, Σ)-structure M2 =
(M, δ2, I) that differs fromM only in δ2 which is given by

δ2(o) =
{
C2 if o = tM1 = tM2
δ(o) otherwise .

This leads toM2 |= ∃x.(x .= t1 ∧ x
.= t2) – if we remember that x is a variable

of the type C and C2 v C.
The crucial property of the type hierarchy T 2 is

for any o ∈M and any A ∈ TSym1 δ(o) v1 A⇔ δ2(o) v2 A . (1)

Here are the arguments why (1) is true: In case o 6= tM1 we have δ2(o) = δ(o) ∈
TSym1 and δ(o) v1 A⇔ δ(o) v2 A by item 1 of Lemma 2. In case o = tM1 = tM2
we have δ(o) = T and δ2(o) = C2. By item 2 of Lemma 2, C2 v2 A is equivalent
to the disjunction of T v1

C A or C v1
C A. Again by Lemma 2, this is equivalent

to T v1 A or σ(t1) v1 A or σ(t2) v1 A. Since T v σ(t1), σ(t2), this is equivalent
to T v1 A. In total, we have shown (1) by proving that C2 v2 A is equivalent
to T v1 A.

We need to convince ourselves thatM2 |=
∧
Γ ∧ t1

.= t2 is still true. We will
prove the following auxiliary statement:

Let φ be an arbitrary (T , Σ)-formula, β a variable assignment, then
(M, β) |= φ ⇔ (M2, β) |= φ

(2)

The proof of (2) proceeds by induction on the complexity of φ. The only non-
trivial steps are the induction steps for quantifiers. So assume that the claim is



true for φ(x1, . . . , xn)1 and we try to establish it for (∃x1.φ)(x2, . . . , xn), with
x1 a variable of type A. By choice of φ, the type A is different from C and C2.

(M, β) |= ∃x1.φ⇔ (M, βox1
) |= φ(x1) for o ∈M with δ(o) v A

⇔ (M2, βox1
) |= φ(x1) induction hypothesis

⇔ (M2, β) |= ∃x1.φ by (1)
Now, we have establishedM2 |=

∧
Γ ∧ t1

.= t2. From the assumption we obtain
M2 |=

∨
∆, which entailsM |=

∨
∆ by another appeal to (2), as desired.

Completeness. The completeness part of the proof proceeds by contradiction.
Assume there is no closed proof tree with root labeled by Γ =⇒ ∆. We will
eventually construct a (T ′, Σ)-structureM = (H, δ, I) that is a counterexample
to the universal validity of Γ =⇒ ∆.

Let T be a proof tree with root labeled by Γ =⇒ ∆ such that all rules have
been exhaustively applied, but T is not closed. Because of the rules allLeft and
exRight, T is necessarily infinite. By an appeal to König’s Lemma there is an
infinite branch B of T that is not closed.

Let H0 be the set of all ground terms. We define the relation ∼B on H0 by

t1 ∼B t2 iff t1 = t2 or
there is a sequent Γ =⇒ ∆ in B with t1

.= t2 ∈ Γ

The relation ∼B is an equivalence relation. Reflexivity is assured by definition.
If t1 ∼B t2 with t1

.= t2 ∈ Γ and Γ =⇒ ∆ ∈ B, then somewhere in B the rule
eqSymmLeft must have been applied since we assume exhaustive rule application.
Thus there will be a sequent Γ ′ =⇒ ∆′ ∈ B with t2

.= t1 ∈ Γ ′ and we arrive at
t2 ∼B t1. It remains to show transitivity. We start from t1 ∼B t2 and t2 ∼B t3.
By definition of ∼B there are sequents Γ1 =⇒ ∆1 and Γ2 =⇒ ∆2 in B with
t1

.= t2 ∈ Γ1 and t2
.= t3 ∈ Γ2. Since there is no rule that drops an equality

in the antecedent, only the arguments may be swapped, there will be a sequent
Γ ′ =⇒ ∆′ in B such that t1

.= t2 or t2
.= t1 and at the same time t2

.= t3 or
t3

.= t2 occur in Γ ′. We consider each case separately.

1. t1
.= t2 and t2

.= t3
2. t1

.= t2 and t3
.= t2

3. t2
.= t1 and t2

.= t3
4. t2

.= t1 and t3
.= t2

In case (1) we use eqLeft to replace the left-hand side t2 of the second equation
by its right-hand side in the first equation and obtain t1

.= t3.
In case (3) we replace, using eqLeft, the left-hand side t2 of the first equation

by its right-hand side in the second equation and obtain t1
.= t3.

In case (4) replace the left-hand side t2 of the first equation by its right-
hand side in the second equation and obtain t3

.= t1. Another application of
eqSymmLeft yields t1

.= t3.
1 i.e., a formula with at most the free variables x1, . . . , xn



Case (2) is the most involved. By exhaustiveness of B we know that eqSymm-
Left will be applied again to both equations in focus. If it is first applied to the
first equation, we obtain the situation in case (4). If it is first applied to the
second equation, we obtain case (1).

Thus in any case t1 ∼B t3 follows and transitivity is established. In total we
know now that ∼B is an equivalence relation.

Next we aim to show that ∼B is also a congruence relation. This requires
first to show that ti ∼B t′i for 1 ≤ i ≤ n implies f(t1, . . . , tn) ∼B f(t′1, . . . , t′n)
for any n-place function symbol f . For simplicity we only present that case of
a unary function symbol f . We need to show f(t) ∼B f(t′) from t ∼B t′. We
first take on the case that σ(t) and σ(t′) are comparable, e.g., σ(t′) v σ(t). By
assumption there is a sequent Γ =⇒ ∆ in branch B with t .= t′ ∈ Γ . From the
argument given above, we know that there is also sequent Γ1 =⇒ ∆1 on B with
f(t) .= f(t) ∈ Γ1 and t .= t′ ∈ Γ1. By rule eqLeft we obtain a sequent Γ2 =⇒ ∆2
on B with f(t) .= f(t′) ∈ Γ2, and thus f(t) ∼B f(t′). It remains to deal with the
case that σ(t) and σ(t′) are incomparable. Then rule eqDynamicSort applies and
yields a sequent Γ3 =⇒ ∆3 on B with t .= t′ ∈ Γ3 and also ∃x.(x .= t∧x .= t′) ∈ Γ3
with x a variable of the new type C, with C v σ(t) and C v σ(t′). By exLeft
there is a Skolem symbol sk of type C with sk ∼B t and sk ∼B t′. By the
comparable types case of the congruence property already established we obtain
f(sk) ∼B f(t) and f(sk) ∼B f(t′). In total f(t) ∼B f(t′) as desired. The case
of arbitrary n-place function symbols is only marginally more complicated.

To show that ∼B is a congruence relation requires to verify the second claim
for any n-place predicate symbol q: if ti ∼B t′i for 1 ≤ i ≤ n and q(t1, . . . , tn) ∈ Γ
for some Γ =⇒ ∆ in B then also q(t′1, . . . , t′n) ∈ Γ ′ for some Γ ′ =⇒ ∆′ in B. This
follows easily from repeated application of the eqLeft rule.

By [t]B for t ∈ H0 we denote the equivalence class of t with respect to ∼B ,
i.e., [t]B = {s ∈ H0 | t ∼B s}. The universe of the intended counterexample can
be stated as:

H = {[t]B | t ∈ H0}
Next we need to decide what (dynamic) type an element [t]B should have in

the structure to be constructed. We call an equivalence class [t]B typed if there
is a type T0 ∈ T such that there is an term t0 ∈ [t]B with σ(t0) = T0 and for all
t′ ∈ [t]B the subtype relation T0 v σ(t′) holds true. For every equivalence class
[t]B that is not typed, we introduce a new type constant T[t] and set

∆ = {T[t] | [t]B ∈ H is not typed}
∆R = {T[t] v σ(t′) | t′ ∈ [t]B and T[t] ∈ ∆}

The type hierarchy T ′ = (TSym′,v′) extending T = (TSym,v) is given by
TSym′ = TSym ∪ ∆ and v′ the least subtype relation containing v ∪ ∆R.
Obviously, T v T ′.

We are now ready to define a first-order (T ′, Σ)-structureM = (H, δ, I).
The (dynamic) typing function is given by

δ([t]B) =
{
T0 if [t]B is typed by T0
T[t] the new type constant, otherwise



For any n-place function symbol f , we set I(f)([t1]B , . . . , [tn]B) = [f(t1, . . . , tn)]B .
Since ∼B is a congruence relation this is an unambiguous definition.

For any n-place predicate symbol p we set

I(p) = {([t1]B , . . . , [tn]B) | a sequent Γ, p(t1, . . . , tn) =⇒ ∆ occurs in B}

Again we have to argue that this definition is unambiguous. We do this again
for the special case n = 1. The generalization to arbitrary n is left as an easy
exercise to the reader. If Γ, p(t) =⇒ ∆ occurs in B and t ∼B s we need to show
that also a sequent Γ ′, p(s) =⇒ ∆′ occurs in B. We observe first that there is no
rule that removes or changes an atomic formula occurring in a sequent. Even in
eqLeft and eqRight the substituted formula is added. Therefore we will have a
sequent Γ ′′, t .= s, p(t) =⇒ ∆′′ in B. An application of eqLeft now completes the
argument.

This completes the definition of the structureM = (H, δ, I).

I(t) = [t]b for every ground term t. (3)

For 0-place function symbols c claim (3) is just the definition of I(c). The
rest of the claim follows by an easy induction on the structural complexity of t.

The next phase in the proof consists in the verification of the claim

M |=
∧
Γ ∧ ¬

∨
∆ for all sequents s = Γ =⇒ ∆ in B (4)

The proof of claim (4) is reduced to the following

For every formula φ
if there is Γ =⇒ ∆ ∈ B with φ ∈ Γ thenM |= φ
if there is Γ =⇒ ∆ ∈ B with φ ∈ ∆ thenM 6|= φ

(5)

Claim (5) is proved by induction on the structural complexity n(φ) of φ. If
n(φ) = 0 then φ is an atomic formula or an equation.

For an atomic formula p(t̄) ∈ Γ we know by definition ofM thatM |= p(t̄).
Now, consider p(t̄) ∈ ∆. If M |= p(t̄) then there must by definition of M be a
sequent Γ ′ =⇒ ∆′ in B with p(t̄) ∈ Γ ′. Since atomic formulas never get removed,
we must have either p(t̄) ∈ ∆ and p(t̄) ∈ Γ or p(t̄) ∈ ∆′ and p(t̄) ∈ Γ ′. In both
cases the branch B could be closed, contrary to assumption. Thus we must have
M |= ¬p(t̄) for all p(t̄) ∈ ∆.

For t1
.= t2 ∈ Γ we get t1 ∼B t2 by definition of ∼B . Thus [t1]B = [t2]B

which directly yieldsM |= t1
.= t2.

For t1
.= t2 ∈ ∆ we need to show t1 6∼B t2. But, if t1 ∼B t2 were true, there

would by definition of ∼B be a sequent Γ =⇒ ∆ in branch B with t1
.= t2 ∈ Γ .

Since atomic formulas never get erased there would also be a sequent Γ ′ =⇒ ∆′

with t1
.= t2 ∈ Γ ′ and t1

.= t2 ∈ ∆′ and the branch could be closed contrary to
assumption.



The inductive step n(φ) > 0 is split into a total of 12 cases. Since this part
of the proof follows a well established pattern, we restrict our presentation to
two exemplary cases.

Case A φ1 ∧ φ2 in Γ .
Since branch B is assumed to be exhausted, rule andLeft will have been applied.
There is thus a sequent Γ ′ =⇒ ∆′ in B with φ1, φ2 ∈ Γ ′. By induction hypothesis
we knowM |= φ1 andM |= φ2 thusM |= φ1 ∧ φ2.

Case B ∃x.φ in Γ .
Since branch B is assumed to be exhausted rule exLeft will have been applied.
There is thus a sequent Γ ′ =⇒ ∆′ in B with [x/c]φ ∈ Γ ′ . By induction hypothesis
we knowM |= [x/c]φ and thus alsoM |= ∃x.φ. ut

3 A Basic Theory in Typed Logic

In this section, we introduce the concept of a basic theory that may be useful in
many application contexts.

Definition 9. Let T be a type hierarchy, Σ a signature.
A (T , Σ) theory T is called a basic theory if

– Σ contains at least for each A ∈ T , A 6= >,⊥
• The unary predicate symbols instanceA : > and exactInstanceA : >
• The function symbol castA : > → A
• The constant symbol defaultA : A.

Such Σ will be called a basic signature.
– T contains at least the following axiom schemes T baseT

1. ∀x.(instanceA(x)↔ ∃y.(y .= x)) with y : A (Ax-I)
2a. ∀x.(exactInstanceA(x)→ instanceA(x)) (Ax-E1)
2b. ∀x.(exactInstanceA(x)→ ¬instanceB(x)) with A 6v B (Ax-E2)
3. ∀x.( ( instanceA(x)→ castA(x) .= x) ∧

(¬instanceA(x)→ castA(x) .= defaultA) )
(Ax-C)

A, B range over TSym \{⊥} and x : > is a variable of the universal sort >.

Definition 10. Let Σ be a basic signature. A (T , Σ)-structure M = (M, δ, I)
is called a standard structure if

1. instanceMA = {o ∈M | δ(o) v A} = MA

2. exactInstanceMA = {o ∈M | δ(o) = A}

3. castMA (o) =
{
o if o ∈MA

defaultMA otherwise

There are at this point no restrictions on defaultMA except, of course, that it be
an element of MA.



Theorem 2.

1. LetM be a standard (T , Σ)-structure for basic signature Σ.
ThenM |= T baseT .

2. LetM be a (T , Σ)-structure for basic signature Σ andM |= T baseT .
Then o ∈ exactInstanceMA =⇒ δ(o) = A.

Proof. ad 1
Parts (1) and (3) of Definition 9 are direct formalization of the definitions of
instanceA and castA in standard structures in Definition 10. Part (2a) is also
an obvious consequence of the semantics of exactInstanceA. So let us turn to
part (2b) and consider o ∈ exactInstanceMA and a type B with A 6v B. By
the standard semantics definition this says δ(o) = A and δ(o) 6v B and thus
o 6∈ instanceMB . This provesM |= (2b).
ad 2
Since the first part of axiom (2) in T baseT entails exactInstanceMA ⊆ instanceMA ,
we obtain δ(o) v A from the definition of instanceA in T baseT . If δ(o) 6= A axiom
(2b) would yield o 6∈ exactInstanceMδ(o) contradicting (2) of Definition 10. ut

If a (T , Σ)-structureM satisfiesM |= T baseT , then it need not be a standard
structure, i.e., the reverse implication in Proposition 2 (2) need not hold. The
axioms would, e.g., be true if exactInstanceMA = ∅ for all A. We will neverthe-
less be able to prove that the sentences derivable from T baseT are exactly those
universally valid in all standard structures. This needs the following preparatory
definitions and lemma.

For an arbitrary extension T ∗ = (TSym∗,v∗) of T = (TSym,v) and sig-
nature Σ for the hierarchy T we construct for any (T ∗, Σ∗)-structure M with
M |= T baseT an adapted structure Ma that is standard and not too far away
fromM.Ma will be a (T a, Σa) structure for an extension T a of the hierarchy
T ∗. The signatures Σ∗ and Σa will at least contain all the symbols from Defini-
tion 9 relating to the new types not contained in TSym. In passing fromM to
Ma some elements of the universe need to be “relocated” into different types.
We will do this using a partial type projection πM,T : M p−→ TSym which is
characterized by

πM,T (o) = A ⇐⇒ o ∈ exactInstanceMA
and δ(o) v A
and (δ(o) v B =⇒ A v B) for all B ∈ TSym.

(6)

Function π is well-defined: Assume there are two A,A′ ∈ TSym for which the
right-hand side of the above definition is true. By the third condition we have
that A v A′ and A′ v A, hence, (T is a poset) A = A′.

The idea behind it is that π maps element o to the type it appears to live
in (o ∈ exactInstanceMA ) when looking at it from the perspective of T only.
The additional conditions make this well-defined and ensure that domains in
the adapted structure remain the same.



Definition 11. Let T ∗ = (TSym∗,v∗) be an extension of the type hierarchy
T = (TSym,v), Σ a basic signature for hierarchy T , and M = (M, δ, I) a
(T ∗, Σ∗)-structure.
The adapted structureMa = (M, δa, Ia) forM is the (T a, Σa) structure with

T a = (TSyma,va)
TSyma = TSym ∪ {To | o 6∈ dom πM,T } for new symbols To
va = transitive closure of vT ∪

{(To, A) | o 6∈ dom πM,T , A ∈ TSym, δ(o) v A}
Σa = Σ∗ ∪ {instanceC , exactInstanceC , castC , defaultC |

C ∈ TSyma \ TSym∗}

δa(o) =
{
A if πM,T (o) = A

To if o 6∈ dom πM,T

Ia(f) = I(f) for symbols f ∈ Σ
Ia(instanceTo

) = Ia(exactInstanceTo
) = {o} for all o 6∈ dom πM,T

Ia(castTo
)(x) = Ia(defaultTo

) = o for all o 6∈ dom πM,T

Lemma 3.

1. AMa = AM for A ∈ TSym.
2. IfM |= T baseT then (πM,T (o) = A ⇐⇒ o ∈ exactInstanceMA )

Property 1 is necessary for the construction ofMa to be well-defined. If domains
had changed, e.g., AMa 6= AM, the definition Ia(f) = I(f) would not make
sense.

Proof. ad 1

⊆⊆⊆ Assume o ∈ AMa , that is δa(o) = B va A for some B ∈ TSyma. If B = To,
then To va A implies by the definition of va (see part (2) of Lemma 2) that
there must be a type C ∈ TSym with δ(o) v C and C v A. Hence, also
δ(o) v A, i.e., o ∈ AM. If B = πM,T (o), then δ(o) v A by definition of
πM,T .

⊇⊇⊇ Assume o ∈ AM, that is δ(o) = B v A for some B ∈ TSym∗. If o ∈
dom πM,T , then πM,T (o) is the v-smallest supertype in TSym covering B.
Hence, δa(o) = πM,T (o) v A. Part (1) of Lemma 2 yields δa(o) va A and
so o ∈ AM

a . On the other hand, if o 6∈ dom πM,T , then δa(o) = To and
To va A (by definition of va). Again, δa(o) va A and o ∈ AMa .

ad 2
We show that under the assumption of the axioms, the first condition in (6)
implies the other two. Choose o ∈ exactInstanceMA in the following.

Axiom (Ax-E1) ensures that o ∈ instanceMA , and axiom (Ax-I) that δ(o) v A.
(see later more details...)



Assume that the third condition were violated, that is, there is B ∈ TSym
with δ(o) v B and A 6v B. But this allows us to use axiom (Ax-E2) to obtain
o 6∈ instanceMB and (again by axiom (Ax-I)) that δ(o) 6v B. Contradiction. ut

Lemma 4. Let Σ, T , T ∗, T a be as in Definition 11 andM a (T ∗, Σ∗)-structure
satisfyingM |= T baseT .

1. The adapted structureMa ofM is a standard structure and
2. M |= ϕ ⇐⇒ Ma |= ϕ for all (T , Σ)-formulas ϕ.

Proof.
ad 1. To argue thatMa is a standard structure we look separately at the three
conditions of Definition 10, where A ranges of all type symbols in TSyma.

1. instanceMa

A = {o ∈M | δa(o) va A}
We have already observed that we have for all A ∈ TSym

AM
a

= {o ∈M | δa(o) va A} = {o ∈M | δ(o) v A} = AM.

For A ∈ TSym we know M |= ∀x(instanceA(x) ↔ ∃y.(y .= x)) from ax-
iom (Ax-I). Thus instanceMA = {o ∈ M | δ(o) v A}. By definition of Ma

we have instanceMa

A = instanceMA . Together with the initial observation this
proves what we want.
It remains to consider types To for o 6∈ dom πM,T . By definition instanceMa

To
=

{o}.
{o′ ∈M | δa(o′) va To} = {o′ ∈M | δa(o′) = To} Lemma 2(3)

= {o′ ∈M | o′ = o} Def. of δa

2. exactInstanceM
a

A = {o ∈M | δa(o) = A}
For A ∈ TSym the valuation exactInstanceM

a

A is the same as exactInstanceMA
From Lemma 3(2), we obtained that πM,T (o) = A ⇐⇒ o ∈ exactInstanceM

a

A .
Let o ∈ exactInstanceM

a

A be given. The implication from right to left gives
us that πM,T (o) = A and also δa(o) = A (since o ∈ dom πM,T ).
For the opposite direction, assume now that δa(o) = A. Since A ∈ TSym, it
must be that o ∈ dom πM,T and πM,T (o) = A. The implication from right
to left entails o ∈ exactInstanceM

a

A .
Finally, if To ∈ TSyma \ TSym is a type introduced in the adapted type
system for o 6∈ dom πM,T , then (by definition of δa) o is the only element of
that type, and Ia(exactInstance) is defined accordingly.

3. castMa

A (o) =
{
o if o ∈ AMa

defaultM
a

A otherwise
For a type A ∈ TSym, the domain AMa = AM has not changed; the defini-
tion of δa reveals that some elements o may now have a new dynamic type To
which is a subtype of A, but this does not modify the extension of the type.
We can use axiom (Ax-C) to show that the semantics of the cast is precisely
the required. We can use the fact that AM = instanceMa

A established in item
1 and leave the proof as an easy exercise.
Again for the types not already present in TSym, the definition of Ia fixes
the semantics of the cast symbols correctly.



ad 2.
For the evaluation of a formula, the adaptationMa is indistinguishable from

the originalM. Keep in mind that the syntactical material for ϕ is that of (T , Σ),
i.e., neither the types in TSym∗ \ TSym,TSyma \ TSym nor the corresponding
function and predicate symbols will appear in ϕ.

Proof by structural induction over quantifications:

– For any quantifier-free ϕ we have that M, β |= ϕ ⇐⇒ Ma, β |= ϕ. This
is a direct consequence of the fact that functions and predicates in Σ are
interpreted identically inM andMa.

– Let ∀x:A. ϕ be a universally quantified formula for A ∈ TSym. We have:

M, β |= ∀x. ϕ
⇐⇒ M, βox |= ϕ for all o ∈ AM

⇐⇒ Ma, βox |= ϕ for all o ∈ AM (induction hypothesis)
(∗)⇐⇒ Ma, βox |= ϕ for all o ∈ AM

a

⇐⇒ Ma, β |= ∀x. ϕ

The essential point is (∗) relying upon that quantifiers range over the same
domains in M and Ma. We have observed this already in the proof of the
first point of this proposition.
The case for the existential quantifier is completely analogous.

The next lemma claims that T baseT is a complete axiomatization of standard
structures.

Theorem 3. Let Σ be a basic signature, T an arbitrary type hierarchy, and φ
a (T , Σ) sentence. Then

T baseT |= φ⇔ for all extensions T ∗ w T and (T ∗, Σ) standard structuresM
M |= φ

Proof. For the implication ⇒ from left to right we assume T baseT |= φ and fix
an extension hierarchy T ∗ w T and a (T ∗, Σ) standard structure M with the
aim of showing M |= φ. We will succeed if we can show M |= T baseT , which is
Theorem 2(1)).

For the reverse implication, ⇐, we assume the right-hand condition and fix
an extension T ∗ w T and a (T ∗, Σ)-structureM withM |= T baseT . We want to
arrive atM |= φ. LetMa be the adapted structure forM as in Definition 11.
By the first part of Proposition 4 we know thatMa is a standard structure. By
assumption this implies Ma |= φ. By the second part of Proposition 4, we get
M |= φ. ut

4 Towards a Java Theory

In this section we provide a few hints how theory T baseT can be instantiated and
extended to a theory TJ suitable for reasoning about a real Java program Π.



The type hierarchy TJ will consist of the classes occurring in Π with the subclass
ordering plus possibly some abstract data types. One might wish to fix certain
default elements by adding e.g., defaultObject = null and defaultboolean = false
to the theory.

It will also be useful to fix certain properties of the type hierarchy, e.g., that
int andObject are disjoint types. This can be done by adding ¬∃x.(instanceint(x)∧
instanceObject(x)) to TJ . As another example, one may want to formalize that
int has no strict subtype. This is achieved by adding ∀x.(instanceint(x) →
exactInstanceint(x)) to TJ .

Martin Giese in [1, Chapter 2]. included from the start a distinction between
abstract and non-abstract types, that he called dynamic types. In our setup we
can define a type T to be abstract by the formula ¬∃x.(exactInstanceT (x)), with
x a variable of type Object.

5 Concluding Remarks

We point out that finiteness of TSym is not assumed for the completeness proof.
One might sum up the distinctive feature of our approach by noting that it

allows us to convey typing information firstly in the way of syntax declarations.
Thus, associating a unique static type with every term with the usual benefits.
Secondly, typing information can be stated freely as axioms. Other approaches,
e.g. [11] only offer the second possibility

A first-order theory for Java along the lines sketched in Section 4 but more
expressive language has been implemented and used in the KeY system. This
theory is, in fact, based on a logic that is richer than the one introduced in
Section 2, contains e.g. conditional terms (if φ then t1 else t2) ∈ TrmA for
φ ∈ Fml and ti ∈ TrmAi such that A2 v A1 = A or A1 v A2 = A.
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