
Generalised Test Tables: A Practical
Specification Language for Reactive Systems?

Bernhard Beckert1, Suhyun Cha2, Mattias Ulbrich1, Birgit Vogel-Heuser2, and
Alexander Weigl1

1 Karlsruhe Institute of Technology, Germany
beckert@kit.edu, ulbrich@kit.edu, weigl@kit.edu

2 Technical University of Munich, Germany
suhyun.cha@tum.de, vogel-heuser@ais.mw.tum.de

Abstract. In industrial practice today, correctness of software is rarely
verified using formal techniques. One reason is the lack of specification
languages for this application area that are both comprehensible and
sufficiently expressive. We present the concepts and logical foundations
of generalised test tables – a specification language for reactive systems
accessible for practitioners. Generalised test tables extend the concept of
test tables, which are already frequently used in quality management of
reactive systems. The main idea is to allow more general table entries,
thus enabling a table to capture not just a single test case but a family
of similar behavioural cases. The semantics of generalised test tables is
based on a two-party game over infinite words.
We show how generalised test tables can be encoded into verification
conditions for state-of-the-art model checkers. And we demonstrate the
applicability of the language by an example in which a function block in a
programmable logic controller as used in automation industry is specified
and verified.

1 Introduction

Complex industrial control software often drives safety-critical systems, like
automated production plants or control units embedded into devices in automotive
systems. Such controllers have in common that they are reactive systems, i.e.,
that they periodically read sensor stimuli and cyclically execute the same piece
of code to produce actuator signals.

Usually, in practice, the correctness of implementations of reactive systems is
not verified using formal techniques. What is used instead in industrial practice
today is testing, where individual test cases are used to check the reactive system
under test [11]. Main reasons why formal methods are not popular are: (a) It is
difficult to adequately formulate the desired temporal properties. (b) There is
? Research supported by the DFG (German Research Foundation) in Priority Pro-

gramme SPP1593: Design for Future – Managed Software Evolution (VO 937/28-2,
BE 2334/7-2, and UL 433/1-2).



2 B. Beckert, S. Cha, M. Ulbrich, B. Vogel-Heuser, A. Weigl

a lack in specification languages for reactive systems that are both sufficiently
expressive and comprehensible for practitioners.

Test cases are commonly written in the form of test tables, in which each row
contains the input stimuli for one cycle and the expected response of the reactive
system. Thus, the whole table captures the intended behaviour of the system
(the sequence of actuator signals) for one particular sequence of input signals.

In this paper, we present a novel specification language called generalised test
tables (gtts) which lifts the principle of test tables to an expressive means for
temporal specification of reactive systems. With a gtt one can describe an entire
family of test cases with a single table.

The specification language comprised of gtts is designed to preserve the in-
tuitiveness and comprehensibility of (non-generalised) concrete test tables – in
particular for system design engineers who are experts in test case specification
but are not familiar with formal temporal specification. To this avail, the gener-
alisations are defined as conceptional extensions of notation already present in
concrete test tables. The features that go beyond the concrete case are chosen
such that essential characteristics of concrete test tables are preserved. Moreover,
concrete test tables are a special case of gtts. We argue that, thus, gtts are still
intuitive for an engineer. The characteristics of concrete test tables that we deem
essential and that are preserved in gtts are:

1. Every signal/actuator cycle corresponds to one row in the test table.
2. Rows in the test table are traversed sequentially (no jumping around).
3. Every row formalises a local implication of the form: “If the signal values

adhere to the input constraint, then the actuator signals adhere to the output
constraint.”

The main features of generalised test tables that go beyond concrete tables
are (a) generalisations of notational elements known from concrete tables and
(b) concepts adopted from other well-known table formalisms like spreadsheets.

The main contributions of this paper are: (1) the concept of gtts as a practical
specification language for reactive systems (Sect. 3); (2) a formal semantics for
gtts (Sect. 4), defined by means of a semi-deterministic input/output game;
(3) a sound encoding for gtts into Büchi automata, together with optimisations
(Sect. 5), which has been implemented (4) an extended example in which a realistic
min/max function block, which is a typical example for the software driving
automated production systems, is specified and verified using a gtt (Sect. 6).

2 The Basis: Concrete Test Tables

Concrete test tables – of which generalised test tables are an extension – describe
a single test case for a reactive system. The rows of a concrete test table corre-
spond to the successive steps performed by the system under test. The columns
correspond to the system’s variables. These are partitioned into input variables
and output variables. In addition, there is a special column named duration.
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Inputs Outputs
# A B C X Y Z duration
0 1 1 2 0 0 5 1
1 0 3 3 6 6 5 7
2 1 4 2 2 8 5 2

Fig. 1: Example for a concrete test
table.

The reactive systems we consider are ex-
ecuted cyclically, where each cycle is one step
in the test. Cycles consume a fixed period of
time, the cycle time. In each cycle, the con-
crete input values contained in the table row
corresponding to that step are the stimuli for
the system; and the system is expected to
react with the output values contained in the
same row. If the observed system response is
different from the expectation for one or more of the rows in the test table, then
the system violates the test case. The value of duration determines how long
the system is to remain in the step, i.e., how often the row is to be repeated.
duration is given as a number of cycles (it can also be given as a time constraint,
which is transformed into cycles by division with the system’s specific cycle time).
A table row with a duration of n is equivalent to repeating that same row n times
with a duration of 1.

Example 1. Fig. 1 shows an example for a simple concrete test table. The
table has three input variables A,B,C and three output variables X,Y, Z, and
describes a test case of 10 cycles (as the durations of the three rows add up to 10).
In this example, all variables are of type integer; whereas in general, other types,
such as Boolean variables, are also possible.

There is no restriction on the types of variables and their values that can be
used in the tables. In the following, we use variables of type Boolean and integer;
and the example in Sect. 6 uses bounded bit vector types.

3 The Concept of Generalised Test Tables

Generalising a test table and its specified test case is done by substituting
concrete values in the table’s cells by constraint expressions. Intuitively, a system
satisfies a generalised test table if it responds to input values that adhere to the
input constraints with output values that adhere to the output constraints. This
generalises the meaning of concrete test cases were the constraints are unique
values. Thus, a generalised test table specifies a – possibly infinite – set of concrete
test tables. A detailed explanation of the semantics of generalised test table is
given in Sect. 4.

In the following, we explain three generalisation concepts: (1) abstraction
using constraint expressions (which is the basis of generalisation), (2) using
references to other cells in constraint expressions, and (3) using generalisation in
the duration columns of tables.

Abstraction using constraints. Instead of concrete values, we allow cells to
contain constraints such as “X > 0”, “X + 1 = 4”, or “X > 3 ∧X < 10.” Besides
the name of the variable that the cell corresponds to (e.g., X), the expressions can
be built using all operators of the appropriate type (+, ∗ etc.), constant values
(0, 1, 2, . . .), and predicates such as =, >,≥ etc. In addition, logical operators
(∧,∨ etc.) can be used to combine several atomic constraints.
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Abbrev. Constraint
n X = n
< n X < n (same for >,≤,≥, 6=)
[m,n] X ≥ m ∧X ≤ n
– X = X (don’t care)

Fig. 2: Constraint abbreviations (X is the name
of the variable that the cell corresponds to;
n,m are arbitrary expressions of type integer).

For convenience, we allow ab-
breviations (see Fig. 2): In the
column for variable X, the con-
straint “X < n” can be written
as “<n” and “X = n” simply
as “n”. We allow interval con-
straints [n,m], which stand for
“X ≥ n∧X ≤ m.” And “–” is the
constraint satisfied by all values
(“don’t care”) .

References to other cells. A reactive system’s behaviour depends both on
the current and the previous input stimuli. Therefore, the expected values in the
cells of a generalised test table are not independent of each other. We may want
to specify that, e.g., for the value of input A being n, the value of output X is
n+ 1. For that purpose, we introduce two additional syntactical concepts to be
used in constraints: global variables and references to other cells.

Global variables, denoted by lower-case letters, can be used in all constraints
in any place where an expression of the corresponding type is expected. The
value of a variable v is globally the same in all cells, in which v occurs. Thus,
we can write p in a cell with input A (short for A = p) and p+ 1 in a cell with
output X (short for X = p+ 1) to express that the value of output X is equal
to p+ 1 for the input A being of value p. Besides being the same in all cells, the
value of a global variable is only restricted by the constraints, in which it occurs.
Thus, for example, X = p is equivalent to “don’t care” if p does not occur in any
other cell.

In addition to global variables, we allow references to other cells using the form
“X[−n]”, where X is a variable name and n ≥ 0 is a concrete number. X[−n]
refers to the cell in the X-row n cycles before the current one. For references to
other cells in the current cycle, we just write “X” as an abbreviation for “X[−0]”,
which refers the value of column X on the same row.

Thus, we can write “A+ 1” in an X-cell to express that the output X is by
one greater than the input A. To express that the value of Y increases by one in
each cycle, we write Y [−1] + 1 in each Y -cell except for the first one.

References to other cycles are always relative to the current cycle – they are
not given w.r.t. the start or end of the table. Absolute references to particular
cells can be expressed using global variables. References to future cycles (both
relative and absolute) could also be added – at least for static analysis – but are
not covered in this paper.

Generalisation in the duration column. The duration variable defines the
number of cycles for which a row is repeated. As a further generalisation concept,
we allow the concrete values in the duration column to be replaced by constraints.
However, in contrast to the columns for input and output variables, we only allow
the duration column to contain constraints describing intervals; and they must
not refer to other cells. Thus, constraints of the form “[n,m]” and “≥n” are the
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only possibilities. We use “∗” as a special “don’t care” symbol for the duration
column; it is equivalent to “≥0”.

Inputs Outputs

# A B C X Y Z duration

0 1 1 2 0 0 – 1

1 – p p =2∗p X Z[−1] ≥6

2 – p+1 – [0,p] >Y [−1] 2∗Z>Y ∗

Fig. 3: Example for a generalised test table
with a global variable p.

Example 2. Fig. 3 shows
an example of a simple gener-
alised test table, incorporating
the generalisation concepts de-
scribed above. Note that the con-
crete table depicted in Fig. 1 is
one of the possible instances of
the generalised test table given
in Fig. 3, achieved by instanti-
ating the global variable p with
the value 3.

The first row expresses a cycle, which is executed once. It provides three
concrete input values for the sensor inputs A,B,C, and expects the outputs X,Y
to both be equal to 0, whereas the output value for Z can be of arbitrary value.

The input values for the second row are applied repeatedly for strictly more
than five scan cycles (there is no upper bound). The input A is a “don’t care”
value, i.e., it can potentially be different for each cycle. The input values for B
and C may also be arbitrary; however, they are bound to be equal to the global
variable p. Hence, the values of B and C are the same in each of the cycles of the
second table row. The output value of X is required to be identical to 2 ∗ p, i.e.,
twice the value of the input values for B,C. Moreover, Y is also required to be
equal to 2 ∗ p, enforced by the reference to the X-cell. Finally, the value of output
Z is equal to the one of the first row, as it is ensured by the back-reference Z[−1],
requiring the value in each cycle to be the same as that of the previous one.

For the third row – which does not correspond to the third cycle, but at
least to the eighth cycle, as the second row is repeated at least six times – the
inputs for A,C are arbitrary and B is equal to p+ 1. The output value for X
is an arbitrary one between 0 and p inclusively. The output Y contains a back
reference to Y from the previous cycle. Thus, in the first cycle of the third row,
Y is greater than 2 ∗ p (as Y = 2 ∗ p from the second row’s last cycle). The value
of Y must then increase in each further cycle. The value of Z must be more
than half the value for Y in order to satisfy the constraint 2 ∗ Z > Y . The third
row may be repeated arbitrarily often, as indicated by the symbol ∗ in column
duration. Note that no real system is able to fulfil the last row for an arbitrarily
large number of steps, since the enforcement of strict monotonicity in Y must
lead to an integer overflow at some point.

This paper introduces and describes the formal foundations of gtts and shows
their principal suitability for formal specification and automatic verification. In
a companion paper [12], the presentation focuses more on the adequacy and
usability of the approach for engineers. A thorough empirical study which analyses
the accessibility of the individual features by field engineers remains as future
work.
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4 Semantics of Generalised Test Tables

A gtt is a sequence of rows. Each row corresponds to three constraints: one for
the input variables, one for the output variables, and one for duration of that row.
Which part of a constraint is written in exactly which column is only relevant as
long as abbreviations and syntactic sugar is used. For example, writing Y in the
X-column of a table is expanded to X = Y , so the column is relevant. But it is
irrelevant in which column we write a constraint like X = Y , that is not further
expanded. This gives rise to the following definition, which basically just fixes
notation:

Definition 1 (Generalized Test Table as Sequence of Constraints). Let
T be a generalised test table with m rows; let InVarT and OutVarT be the set of
input variables resp. the set of output variables of T ; and let GVarT be the set of
global variables occurring in T . Then T is identified with the sequence

(φ1, ψ1, τ1) · · · (φm, ψm, τm) ,

where φi is the conjunction of all constraints contained in cells in row i that
correspond to input variables, ψi is the conjunction of all constraints contained in
cells in row i that correspond to output variables, and τi is the interval contained
in the duration column at row i.

The reactive systems whose behaviour is being specified by test tables can be
formalised as functions from sequences of inputs to sequences of outputs. The
possible inputs are elements of I = I1 × · · · × Ik where the Ir are the value spaces
of the input variables. And the possible outputs are elements of O = O1 × · · · ×Ol

where the Os are the value spaces of the output variables.

Definition 2 (Reactive system). A reactive system is a history-deterministic
function p : Iω → Oω. That is, i1↓n = i2↓n implies p(i1)↓n = p(i2)↓n for all n,
where x↓n denotes the finite initial sub-sequence of x of length n.

In the following, we often identify a reactive system p with the set of its possible
traces, i.e., p ⊆ (I ×O)ω.

4.1 Unrolled Instances of Generalised Test Tables

The rows of gtts have a duration and may be repeated more than once. In a first
step towards defining the semantics of gtts, we eliminate the indeterminism w.r.t.
the repetition of rows and define the set of unrolled instances of a gtt by making
the repetitions explicit. At the same time, we also instantiate the global variables
contained in gtts with all their possible values.

Definition 3 (Unrolled Instances). Let G = (φ1, ψ1, τ1) · · · (φm, ψm, τm) be
a gtt without global variables. The set D1(G) of unrolled instances of G consists
of all gtts

(φ1, ψ1, 1)T1 · · · (φm, ψm, 1)Tm
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such that Ti is in the interval τi (1 ≤ i ≤ m). 3

In the unrolled instances, the duration constraint is redundant (as it is
always 1); in the following, we therefore write (φi, ψi) instead of (φi, ψi, 1).

Global variables are not considered in unrolled instances, as their semantics
is defined via universal quantification: A system has to conform to the test table
for all their instances (see Def. 5).

In general, the set of unrolled instances for a generalised test table is infinite.
This does not pose a problem as the notion of unrolled instances is only used as
a theoretical concept for defining the semantics of gtts.

4.2 Evaluation of expressions

The evaluation of constraints that appear in unrolled instances of gtts is straight
forward. Note that they do not contain global variables anymore as these have
been instantiated during unrolling.

Definition 4. Let v ∈ (I × O)∗ be a partial trace of length n ≥ 1. And let
v↓n = (i, o) be the last element of the trace. Then, the valuation function JeKv,
which assigns a value to every expression or formula e, is inductively defined by:

Je ◦ fKv = JeKv ◦ JfKv for ◦ ∈ {+,−,≤,∧,∨, . . .}
JXKv = i(X) if X ∈ InVar
JXKv = o(X) if X ∈ OutVar

JX[−k]Kv = JXKv↓(n−k) if k < n

JX[−k]Kv = JXKv↓1 if k ≥ n

4.3 Two-Party Game for Defining Test Conformance

The intuition behind the following definitions is the following: A reactive system
p conforms to a gtt G if every trace t ∈ p conforms to G, where a trace conforms
to G if one of the following conditions holds: (a) the input/output pairs of t
satisfy all rows of at least one unrolled instance of G, or (b) t fails to satisfy the
input constraints of all unrolled instance of G. In the former case, the trace is
covered by the specification described by G, in the latter case, the input sequence
triggers an application scenario which is not covered by the specification.

Formally, we define the semantics of a gtt G by means of a game played
between a challenger (that chooses the inputs) and the reactive system p under test
(that chooses the outputs). The challenger can be identified with the environment
of the system. The game is played operating on a set S of unrolled instances of
G from which in every round inconsistent and conflicting instances are removed.

The player removing the last consistent instance from S loses the game. In
addition, the system can win by successfully reaching the end of one of the
non-eliminated table instances.
3 We use the notation (φ, ψ, τ)n do denote that the row (φ, ψ, τ) is repeated n times.
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Input: A gtt T
S ← D1(T )
v ← ε
k ← 1

5: loop
Challenger chooses i ∈ I.
System computes o ∈ O.
v ← v · (i, o)

10: S ← {D ∈ S | v |= φk for the k-th row tk = (φk, ψk) in D}
if S = ∅ then

terminate: System wins . Chosen input not covered by T
end if

15: S ← {D ∈ S | v |= ψk for the k-th row tk = (φk, ψk) in D}
if S = ∅ then

terminate: Challenger wins . Chosen output violates T
end if

20: if ∃D ∈ S. |D| = k then
terminate: System wins . Unrolled instance D has finished

end if
k ← k + 1

end loop

Fig. 4: Game between challenger and system w.r.t. a gtt T

Fig. 4 shows the game’s rules in algorithmic form. During the course of a
game, S holds the set of unrolled instances of G which have not been eliminated,
v holds the so far observed partial trace up to and including the current move,
and k counts the iterations. Initially the set S = D1(G) contains all unrolled
instances of the gtt T (Line 2). In each round, the challenger chooses input values
(Line 6), and the program under test computes its output from its internal state
and the input values (Line 7). The functions which choose the input/output
values depending on the observed partial trace are called strategies. Since reactive
programs are deterministic, there is only one strategy for the program, which is
encoded in its implementation. The challenger is not confined in its choices; there
are many possible strategies for the challenger. Whenever S becomes empty, i.e.,
no unrolled instance of G satisfies the partial trace, the respective player loses the
game: If this is caused by the input constraint φk being violated, the challenger
loses and the system wins (Line 12). If S becomes empty because the output
constraint ψk is violated, the system loses and the challenger wins (Line 17). If S
contains a consistent unrolled instance which has been fully traversed (its length
is the current iteration counter), then the partial trace v is a witness for the
system conforming to the gtt. The system wins (Line 21).
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A single game has three possible outcomes: Either (a) the challenger wins, or
(b) the system wins, or (c) neither party wins (draw). In the case of a draw, the
game is infinite, while a game where one player wins ends after a finite number
of iterations.

A strategy for one party is called a winning strategy if it wins every possible
game regardless of the other party’s strategy. The definition of conformance to a
gtt can now be defined based on who wins the games:

Definition 5 (Conformance). The reactive system P : Iω → Oω strictly
conforms to the gtt T iff its strategy is a winning strategy for the game shown
in Fig. 4 for all instantiations of global variables, i.e., it is winning w.r.t. σ(T )
for all instantiations σ that replaces each global variable occurring in T by an
element of its value space.4 The reactive system P weakly conforms to T iff its
strategy never loses.

I O �
– 1 *
– 2 [1,1]

Fig. 5: Gtt illustrating
the difference between
strict and weak confor-
mance

The difference between weak and strict conformance
is that of whether the analysis of a system w.r.t. a test
table successfully finishes after finitely many steps or
whether the system is under consideration for infinitely
many steps. For example, consider the very simple gtt
shown in Fig. 5. Intuitively, it requires that – indepen-
dently of the input – the output must eventually be 2
after an arbitrary number of cycles with output 1. The
reactive system that always returns 1 (and never 2) does
not have this property. Correspondingly, it does not strictly conform to the table
(it does not have a winning strategy). But it weakly conforms (it never loses
either). This corresponds to the fact that by inspecting finite partial traces, one
cannot decide whether or not this system violates the test table.

Any analysis that only considers partial traces (like run time monitoring or
testing) can, in general, only test weak conformance. A static analysis, however,
is able to analyse a reactive system w.r.t. strict conformance.

The definition of conformance (Def. 5) can be lifted to the case of non-
deterministic reactive systems by requiring that all possible strategies of P must
be winning strategies.

This semantics definition seems unnecessarily complicated, but an attempt to
define it on the program traces is bound to fail as the implication of a violated
constraint is different depending on whether it occurs on the input or on the
output values: A gtt with constraint false on the input side is trivially satisfied,
while false on the output side makes it unsatisfiable. Yet, both describe the same
set of traces: the empty set.

4 In fact, the global variables are replaced by constants representing values. We assume
that every value can be represented by a constant.
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I O duration
1 . . . . . . [0,∞]
2 . . . . . . [1, 1]
3 . . . . . . [0, 1]
4 . . . . . . [1, 1]

1 2 3 4 5

Fig. 6: A normalised table and the successor relation on its rows.

5 Transforming Generalised Test Tables into Automata

In this section, we describe the construction of a Büchi automaton that logically
encodes conformance to a gtt. In order to ease the presentation of this construction,
we assume a normalised form of test tables which allow only a restricted form of
duration constraints:

Definition 6 (Normalised gtt). A gtt G = (φ1, ψ1, τ1) · · · (φm, ψm, τm) is
normalised if τi = [1, 1], τi = [0, 1], or τi = [0,∞] (1 ≤ i ≤ m).

The syntactical restriction of normalised tables does not pose a limitation on
the expressiveness of gtts due to the following observation:

Proposition 1. For every gtt T there is a semantically equivalent normalised
gtt T0.

The construction of such a normalised table T0 for T is canonical: Every row
with a finite duration interval τ = [a, b] is unrolled into b rows with the first a
repetitions having duration [1, 1] and the remainder having duration [0, 1]. If
τ = [a,∞], then the row is repeated a times with duration [1, 1] and once with
duration [0,∞]. Note that if T has m rows and the largest number in the duration
constraints is n, then the normalised table has at most m · n rows.

Due to the intervals in the duration constraints, it is not automatically clear
to which row a system cycle has to conform, and which the successor row of
each row is (as intermediate rows may have zero duration). The set of possible
successor rows succ(k) for row k in a normalised gtt can be represented as

succ(k) = {k + 1} (1)
∪ (if k < m ∧ 0 ∈ τk+1 then succ(k + 1) else ∅) (2)
∪ (if τk = [0,∞] then {k} else ∅) , (3)

succ(0) = {1} ∪ (if 0 ∈ τ1 then succ(1) else ∅}) .

In a normalised table, the next row is always a possible successor row (1), but
rows may be leapt over (2), or repeated (3). succ(0) is the set of rows in which
the table may begin. Fig. 6 illustrates the row successor relation (right) for a
normalised gtt (left).

Alphabet. The Büchi automata will accept ω-traces in (I × O)ω produced
by a reactive system (Def. 2). The alphabet of the automata is defined over the
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domains of input and output variables of the reactive system. In the following,
we use Boolean formulas to describe subsets of the alphabet.

States. A gtt G = (φ1, ψ1, τ1) · · · (φm, ψm, τm) with m rows results in an au-
tomaton with 2m+2 states. The states are characterised by vectors (s1, . . . , sm+1, fail)
of Boolean variables, one for each row in G (s1 to sm), one indicating termina-
tion sm+1, and one indicating failure (fail). Intuitively, sk is true in a state iff
the table is in a situation where the test table may have been executed by the
trace up to the k-th row. The initial state (s0

1, . . . , s
0
m+1, fail0) is defined by

s0
k = true iff k ∈ succ(0) and fail0 = false . (4)

State Transition. Given a state (s1, . . . , sm+1, fail), its successor state (s′1, . . . , s′m+1, fail ′)
is deterministically computed according to these equivalences:

m∧
k=1

(
s′k ↔

m∨
i=1

(si ∧ k ∈ succ(i) ∧ φi ∧ ψi)
)

(5)

s′m+1 ↔
(
sm+1 ∨

n∨
i=1

(si ∧m+1 ∈ succ(i) ∧ φi ∧ ψi)
)

(6)

fail ′ ↔
(

fail ∨
( m∨

i=1
(si ∧ φi ∧ ¬ψi) ∧

m+1∧
i=1
¬s′i
))

(7)

The equivalences in (5) encode that the k-th row is active in the next step
(variable s′k) if there is an active row i preceding k such that both its input
constraint φi and output constraint ψi are satisfied. The same applies to the
virtual row m + 1 behind the table in (6). Here, additionally, once true, the
variable sm+1 never falls back to false again. The fail flag indicating a specification
violation is defined in (7). It is triggered whenever there is one active row i such
that its input constraint φi is satisfied while the output constraint ψi is violated
and there is no active row in the next step. Note that the equivalences above
ensure the state transition system is always deterministic.

The acceptance condition remains to be described. By definition, a Büchi
automaton accepts an infinite word if one state from the set of final states
is traversed infinitely often. We construct two different such accepting sets of
states: condition AWC for weak conformance and AC for strict conformance (the
following formulas are identified with the set of states that satisfy them):

AWC := ¬fail AC :=
( m∧

i=1
¬si ∧ ¬fail

)
∨ sm+1

For weak conformance, the automaton accepts any trace that never have set
the flag fail to true. For strict conformance, the automaton accepts a trace if it
reaches a state in which sm+1 (the flag for finishing a table) is true or there is no
active row anymore without failing (i.e., the challenger has lost).

The automata. Based on the above constructions, we can now define two
Büchi automata. They share the state space, initial states (4), and transition
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function (5)–(7). The automaton AWC for weak conformance uses AWC as set
of final states, the one for strict conformance uses AC .

Proposition 2. Let T be a normalised gtt (Def. 6).
A reactive system P weakly conforms to T iff all traces of p are accepted

by AWC (T ), i.e., P ⊆ L(AWC (T )).
A reactive system P strictly conforms to T iff all traces of p are accepted

by AC(T ), i.e., P ⊆ L(AC(T )).

Extension for back references. The automata construction described above
does not cover gtts with back-references of the form v[−k].

To handle back reference, the state space needs to be enriched by additional
variables. For any input or output variable v for which a back-reference v[−k]
occurs in a table, the state variables v1, . . . , vk are added. Moreover, the following
equivalencies are added to the state transition:

v′1 = v ∧
k∧

i=2
v′i = vi−1

The expression v[−c] then refers to the variable vc for any constant c ∈ {1, ..., k}.
The same construction is applied for each global variable (as global variables
have the same value in all states).

Verifying system conformance. We provide two tools: the backend geteta
for conformance verification of software for automated production systems, and
stvs a graphical frontend for the creation of gtts and the inspection of counter
examples. The implementation of geteta takes a gtt (encoded in XML), and a
reactive system in Structured Text (ST), a textual programming language for
automated production systems within the IEC standard 61131-3, and translate
both to SMV file format. For the translation of ST source code, we use symbolic
execution to compute the state relation of one system cycle into single static
assignment form. For verification, we combine the model of the reactive system
and the automaton representing the gtt into a product automaton, in which the
inputs are chosen non-deterministically by the model checker. Links and further
information are available on the companion website5.

6 Experiment

We demonstrate the suitability of gtts for the specification and verification using
a realistic example from the domain of automated production systems.

System under test. We consider an example system whose purpose is to
watch over the input values and to raise a warning if they repeatedly exceed
the previously learned range of allowed values. Such diagnosis functionality is
common in safety-critical applications. More precisely, the system under test is the
function block MinMaxWarning written in ST. A function block declares its input,
5 Companion page: https://formal.iti.kit.edu/ifm17/

https://formal.iti.kit.edu/ifm17/
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Input Output �
# mode learn I Q W

1 Active – – 0 true –

2 Learn true q 0 false 1
3 Learn true p 0 false 1
4 Active – [p, q] [p, q] false *
5 Active – >q q false 5
6 Active – <p p false 5

(a)

Input Output �
# mode learn I Q W

1 Learn true q 0 true 1
2 Learn true p 0 true 1

3 Active – >q q false 10
4 Active – >q q true ≥ 1
5 Active – [p, q] [p, q] true 5
6 Active – [p, q] [p, q] false ≥ 1

(b)

Fig. 7: Two gtts for the specification of the MinMaxWarning’s behaviour

output and local variables. In the case of MinMaxWarning, the input variables
mode, learn, I and the output variables Q, W are declared. MinMaxWarning learns
the typical input values and warns the caller for subsequent outliers.

MinMaxWarning operates in two modes, Active and Learn, as selected by the
caller via mode. During the learning phase, the function block learns the minimum
and maximum values of the input values (I), if the learn flag is activated. When
switched into the active phase, the function block checks that the input value (I)
stays within the previously learned interval. The output value Q is equal to I if I
is within the learned interval; otherwise, the nearest value from the interval is
returned. If the input value keeps being out of range for a specified number of
cycles, then the function block raises an alarm via the variable W. The alarm is
reset after a certain cool down time if the input value falls back into the learned
interval. An unlearned function block always signals a warning.

Test tables. The required functionality is partially described by the two
gtts shown in Fig. 7. These tables have two global integer variables p, q. As p
should represent the minimum input value, resp. q the maximum, we specify the
constraint p ≤ q in the model checker. The waiting time before an alarm is raised
is fixed to ten cycles, and the cool-down time to five cycles.

The first gtt (Fig. 7a) specifies a behaviour without warning. In the beginning,
it is checked that the unlearned system returns the default constants (Q = 0 and
W = true; Row 1). This phase can be interrupted for switching into the learning
mode (Rows 2 and 3). During learning, the system learns the minimum p and
the maximum q input values. Subsequently, the system response is only allowed
to be within this range. In Row 4, we test the non-warning case, in which only
inputs between p and q are supplied. Rows 5 and 6 test for input values outside
the range, and ensure that no warning is risen too early.

The second gtt (Fig. 7b) targets the case where warnings need to be given.
We use the same initialisation, but require a warning due to a too high input
(Rows 3 and 4). Rows 5 and 6 specify the cool-down within five cycles.

Verification. The verification system geteta that uses the construction from
Sect. 5 and version 1.1.1 of the model-checker nuXmv [4], needs 0.53 CPU seconds
for proving weak conformance of the first gtt and 0.63 CPU seconds for the second
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(median, n = 6). With the same setup, the verification of strict conformance takes
1.35 and 1.39 CPU seconds. Proving strict conformance requires an additional
fairness condition to avoid infinite stuttering on the non-deterministic input
variables. The experiments were run on a 3.20 GHz system with Intel Core i5-
6500 and 16 GB RAM. The companion website provides the experiment files.

7 Related Work

A Parnas table is a tabular representation of a relation. Lorge et al. [10] use
them in addition to first order logic for the specification of procedure contracts.
In the Software Cost Reduction approach (SCR) [7], a collection of Parnas tables
is used to specify a system’s behaviour as a finite automaton. We follow a
different approach with gtts: A system behaviour is specified as a sequence of
admissible reactions to stimuli in the rows of a single table. Automata in SCR are
deterministic while gtts are allowed to have non-deterministic transitions. Gtts
allow the direct access to past values via back references or global variables; SCR
requires an encoding of these values into the state. Both specification methods
use tables as specification representation because of its accessibility for system
engineers [7].

As an addition to the classical temporal specification languages CTL and
LTL, Moszkowski [9], presents Interval Temporal Logic (ITL), which is ω-regular.
ITL contains the chop-operator (r1; r2) which – similar to our concept of rows –
describes that there exists a point in time t s. t. until t the formula r1 holds in all
states and from t formula r2 holds in all the following states. Obviously, we can
encode a gtt T into an ITL by forming a disjunction of the generated normalised
gtt of T (Def. 6). In general, the encoding results into an exponential blow-up.
Armonie et al. [1] present ForSpec Temporal Logic (FTL) as an extension to
LTL with logical and arithmetical operations and description of regular events.
These regular events describes a finite regular language, similar to ITL and gtt.
Additionally, FTL allows the composition with temporal connectives (a compo-
sition of gtts is possible on the automata level). Ljungkrantz et al. [8] propose
ST-LTL, which enriches LTL with the arithmetical operators of Structured Text,
syntactical abbreviations for specifying the rising or falling edges of variables,
and access to previous variable value. To lower the obstacle for using formal
specification in the development of critical software, like automated production
systems, Dwyer et al. [6], Campos and Machado [3], and Bitsch [2] provide
collections of specification patterns. The idea of specification patterns is that
they cover the typical cases that arise from safety engineering. Additionally, their
usage is simplified due to documentation and categorisations.

8 Conclusion

Gtts are a novel formal specification method for behavioural specifications of
reactive systems. Their syntax is aligned with the concrete test tables and
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spreadsheet applications used in industry to ease the use of formal methods for
software or mechanical engineers.

We have shown that it is possible to specify realistic software blocks from
industry using gtts and verified them. Besides for verification at design time, gtts
can also be used to generate checker code that monitors systems at runtime [5].

The concept of gtts is an important step towards the integration of formal
methods into engineering automated production systems. Future work includes a
user study on the accessibility of the features and an extension of the notation
allowing the specification of software change during evolution.
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