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Abstract. Over the last years, we have seen tremendous progress in
the area of deductive program verification. To demonstrate this progress,
and to bring the area of deductive program verification even further, we
have proposed the VerifyThis Collaborative Long Term Challenge, which
calls upon the program verification community to verify different aspects
of a realistic software application over a period of several months. Goal
of the challenge is to foster collaboration in order to verify a realistic
and industrially-relevant software application. This paper outlines the
considerations that we made when selecting the challenge, and discusses
how we believe it will encourage collaboration. It presents the software
application that was selected for the challenge in 2019–2020, discusses
the practical set up of the challenge, and briefly reports on the received
solutions and an online workshop where the different solutions were
presented.

1 Introduction

Over the last 20 years, enormous progress has been made in the area of program
verification [10]. This progress can be witnessed for example by the development
of large, non-trivial case studies, such as the verification of the TimSort imple-
mentation in the shipped Java libraries [9], or the parallel nested depth first
search [23]. Another evidence of the progress of program verification tools are
the outcomes of program competitions, such as VerifyThis [15,16,14,12,13] and
VSComp [18,8], where we see a steady increase in the complexity of challenges
that have been posed (and solved). However, program verification competitions
encourage competition rather than collaboration, and moreover they always im-
pose a strict time constraint, ranging from 90 minutes per challenge (VerifyThis),
to a time-span of 2 days for 4 challenges (VSComp). Thus, though program
verification competitions are very useful, given the way that they currently are
executed, they do not give a full account of what can be achieved with deductive
program verification techniques in general. And in particular, they do not address
the question whether deductive software verification techniques are suitable for
realistic, industrial-size software.
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Moreover, we see that program verification tools are mainly developed in
isolation, i.e., every tool implements its own techniques without benefitting from
results obtained by other tools. We feel that this situation needs be changed: every
program verification tool has its own strengths and weaknesses, and applying
them on large real-world examples can be hampered by these weaknesses. Thus,
these weaknesses need to be addressed, and rather than doing this for each
verification tool individually, we believe that this should be done by collaboration
and exchange.

Therefore, we asked ourselves what could be achieved in the area of program
verification if (a) we as the program verification community collaborated and
(b) the time constraints were removed? To answer this question, and in particular
to encourage more collaboration within the program verification community,
we have launched the VerifyThis Collaborative Long Term Challenge. The idea
behind this challenge is to propose a single, large, industrially-relevant software
application, which can benefit from formal verification, but that is too large and
complex for a single verification tool. It is our hope that people contributing
to this challenge all verify different aspects of the application, and that they
exchange results, in order to verify together (almost) all relevant aspects of the
application. We hope that the challenge will be of interest also to the larger
program verification community, using techniques such as (bounded) model
checking, static analysis and symbolic evaluation, and not just deductive software
verification. Section 4.2 lists a variety of verification missions that show that the
chosen challenge can be attractive to many communities. It is our belief that if
the program verification community combines forces, we will be able to show that
program verification can produce relevant results for real systems with acceptable
effort.

This paper describes the set up of the VerifyThis Collaborative Long Term
Challenge. In particular, we discuss the considerations that we took into account
when selecting the challenge (for 2019–2020, the selected challenge is the verifica-
tion of the OpenPGP Key Server), the overall set up of the challenge, and the
actions and measurements that we have taken to actually foster collaboration.
The main goal of this paper is to document and outline our considerations when
setting up the challenge, and to help future challenge developers with their
selection process.

Originally, it was planned that the long term challenge would end with a
presentation session during the VerifyThis competition event. We briefly report
on the five solutions that were handed in, on an online workshop that was held in
April 2020 in which the different (partial) solutions to the challenges have been
presented, and on lessons learnt.

The remainder of this paper is organised as follows. Section 2 discusses some
earlier long term verification challenges, and compares their goals and set up
with the current one. Section 3 then discusses the considerations that we took
into account for selecting the challenge, and how this challenge can be used to
encourage collaboration within the verification community. Section 4 discusses
the particular challenge selected for 2019–2020, while Section 5 discusses the
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practical set up of the challenge, and the measures we took to foster collaboration.
It reports on the submitted solutions and experiences from the online workshop.

2 Related Community Challenges

We are not the first to propose a community challenge, or grand challenge. As
stated by Bicarregui, Hoare and Woodcock [5]:

Grand challenges have a long history. From the problem of longitude in the
18th century, through Hilbert’s programme for 20th-century mathematics,
to the space race of the 1960s, grand challenges have led to considerable in-
novation and have accelerated engineering and technological advancement
towards their goal.

This section discusses some earlier grand challenges in the area of program
verification.

The Steam Boiler Case Study [2,1] is the first competition of formal program
specification and development methods that we are aware of. Originally, this
challenge was proposed to the participants of a 1995 Dagstuhl seminar. The
challenge had a competitive character: its intention was to challenge the formal
specification community to apply their methods to a non-trivial non-academic
case study of a steam boiler control system. The organisers gave a lot of freedom
to the participants in how they wanted to address the challenge:

We deliberately abstained from imposing any specific constraints on
the expected solution. The idea was not to exclude any approach and
to permit each method to be shown at its best, be it by providing a
formal requirement specification, an architectural design, a sequence of
stepwise refinements, an executable program or an analysis and proof of
behavioural properties one wants to guarantee for the system.

Interestingly, the challenge proposers noticed that the internet helped tremen-
dously to improve communication between the challenge participants, and to
ensure that the competition is conducted on a universal scale. When preparing
our challenge, we realised that enabling an efficient and lively communication
between challenge participants is still critical for its success.

In 2000, the Mondex case study was presented [25]. This case study is a bit
different: originally it was not designed as community challenge, but rather as
a case study for the formal modelling, specification and verification of a smart
card electronic cash system. The original case study was developed in Z, but
quickly it was picked up as an interesting case study by other groups working on
verification of smart card applications. The Mondex case study has solutions in
Z, KeY, KIV, Alloy.

The Verifying Compiler: A Grand Challenge for Computing Research was
proposed by Hoare [11] in 2003. This grand challenge eventually led to a repository
of verified software [5]. In his original proposal, Hoare identified a set of criteria
that distinguish a grand challenge in science or engineering from other research
problems:
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A grand challenge represents a commitment by a significant section of the
research community to work together towards a common goal, agreed to
be valuable and achievable by a team effort within a predicted timescale.

We feel that much of the spirit of Hoare’s grand challenge is similar to ours.
However, Hoare’s grand challenge was even larger than ours, and did not focus
so much on one particular application.

In 2007, Joshi and Hoare proposed a challenge to build a verifiable filesys-
tem [17]. They propose this smaller challenge as a stepping stone towards the
original verifying compiler grand challenge. They identified this particular chal-
lenge because:

[it was of] sufficient importance that successful completion of the mini
challenge would have an impact beyond the verification community.

Interestingly, in their paper they also describe other challenge options that they
considered, such as the verification of the Linux Kernel, but which they discarded
because its complexity and size seemed too large for a reasonable challenge.

3 Challenge Selection

One of the most important aspects of the VerifyThis Collaborative Long Term
Challenge is the selection of the software system serving as the challenge. We
identified various criteria that we believe would attract the interest of the verifi-
cation community, and also carefully considered how the challenge could pave the
way for potential collaboration between researchers working on different formal
verification techniques.

3.1 Criteria for Challenge Selection

We composed the following list with properties that we consider that a suitable
target application for the proposed kind of challenge should possess:

– The application should be a real piece of software; possibly part of a relevant
production system. This would make it attractive for people to participate:
it will give them the satisfaction of contributing to a relevant problem given
that their verification efforts will concern the properties of a real software
system.

– The application should be open source: researchers must be able to publish
adaptations, modifications, and analyses without restrictions.

– Even though the application should be written in a real-world language (and
be executable), the involved challenges should be of a language-independent
nature, such that it can be convincingly transferred to other similar program-
ming languages, and participation in the challenge is not restricted to people
that work on a program verification tool for exactly the right language.
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– The application should be easily decomposable, i.e., it should be possible
for people to focus on only a part of the complete application, without the
need to fully specify and verify the complete application. We believe that
decomposability is also essential to enable collaboration.

– The application should be real, but not over-complex, i.e., it should be
possible for participants to get a good overall understanding of the application
without too much effort. After that, they can concentrate on those parts of
the application that they wish to verify.

– The core functionality of (at least part of) the application should be simple
and well-understood.

– It should be possible to attack the verification of the application at different
levels: a participant might start with a highly simplified version of the code
and then refine this into a more realistic version. It should also be possible
to first concentrate on the key characteristics, and then later extend it in
different directions, for example considering error handling or performance
optimisations.

– It should be possible to point out a varied collection of relevant and interesting
aspects in the project that people could try to verify, such as:
• algorithmic properties, e.g., finding a crucial loop invariant;
• optimisation-related properties, e.g., preservation of correctness when a

cache is used, the application is optimised for speed etc.;
• heap shape specifications and suitable framing conditions;
• runtime safety; i.e. absence of runtime exceptions (to attract the automatic
verification community)

• concurrency-related properties;
• exception handling;
• bounded loops and bit arithmetic (to attract bounded checkers); and
• behavioural protocols (to attract modelling community).

Importantly, the aspects to verify should not feel artificial, i.e., they should
be related to real reliability aspects of the code.

Candidates In our search we considered several software applications as candidate
challenges. The GNU Multiple Precision Arithmetic Library (GMP) is a library
for infinite-precision arithmetic. Together with the GNU Scientific Library (GSL)
it provides a feature-rich set on mathematical algorithms, which makes it highly
relevant and widely used. Both were not further investigated because they do
not contain any concurrent algorithms. The same reasons are also valid for
Eigen – a C++ library for linear algebra. Boost libraries, like Graph or Parallel,
were declined because of their complexity and their heavy use of template
programming, which renders them very C-specific. We also considered to propose
a collection of algorithms as provided by a standard text book, like [24]. Such
algorithms are practical and important, but we felt that they were not realistic
enough. Probably such algorithms are better suited for the on-site VerifyThis
program verification competition (i.e., as a 90 minutes challenge). Cryptographic
algorithms are highly relevant in daily use. Therefore we looked at Bouncy castle
– a library providing cryptographic implementations for the Java Crypto API.
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However, cryptographic algorithms are not easy to specify, and their formal
verification requires a substantial amount of mathematical reasoning. Finally,
we also considered several libraries for distributed computation, such as Apache
Hadoop and Thrill, but for these libraries we felt it was unclear what would
actually be the desired properties to verify.

3.2 Encouraging Collaboration

As mentioned above, the VerifyThis Collaborative Long Term Challenge has been
particularly designed with the goal in mind to incite collaboration between the
participants. In fact, we feel that to further advance the field of formal program
verification, more collaboration between different techniques and tools is essential.

Two unrelated tools can seldom make use of each other’s results easily, mostly
because combining fundamentally different techniques is inherently difficult. The
common specification languages Java Modelling Language (JML) [19] and the
ANSI/ISO-C specification Language (ACSL) [4] are designed to be applicable in
different verification scenarios (e.g., deductive verification and runtime assertion
checking). Even for these limited scopes, coming up with an indisputable, common
language semantics is difficult (the runtime semantics of ACSL differs from that
for deductive verification [21], and verification tools differ in how they verify JML
specifications [6]).

This challenge has the potential for the program verification community to
investigate ways of how results of one verification endeavour can be used in
another. To achieve this goal, it is important that the challenge is formulated on a
very general level that is not restricted to a particular sub-community. Section 4.2
reports on some relevant questions that exemplify that variety of different property
types that can be specified and verified using different approaches. The more
concrete situation should allow collaborating partners to identify what guarantees
the results obtained in a different formal system imply in their formalism, and
how these results can be encoded in their verification context.

We illustrate the potential for collaboration by a hypothetical example. An
automatic static analysis may be able to infer that a module of the software only
changes a number of memory locations. The analysis can produce results quickly
without much specification overhead set since it answers a specialised question.
This allows one to focus during the verification of heavyweight functional specifi-
cations on the already intricate interactive task to craft the relevant auxiliary
specifications (contracts and loop specifications) that are usually required on such
occasions. The results of the scalable framing analysis can be used as additional
assumptions in the functional verification making it more precise.



The VerifyThis Collaborative Long Term Challenge 7

4 The OpenPGP Key Server

As the target for the 2019–2020 challenge, we chose a modern public key server
called hagrid3 This section introduces this application, and its verification
missions.

When using public key encryption and signatures in e-mails, one challenge
is to obtain the public key of recipients. To this end, public key servers have
been installed that can be queried for public keys. The most popular4 public key
server OpenPGP was recently shown to have severe security flaws. There was no
protection on who could publish a key for an e-mail address and no protection
on the amount of data published. This opened the gate for a broad range of
dangerous attacks such as the ones presented at CVE-2019-130505, or the ones
described in the blog post of the hagrid’s developers. Moreover, the old key
server software sks did not conform to the General Data Protection Regulation
(GDPR) and had performance issues.

As a consequence, the OpenPGP community decided to implement a new
server framework that manages the access to public keys. The new official server
is called hagrid, it is open source6, and it is already in production. hagrid is
written in the programming language Rust and comprises some 6,000 lines of
code in total7.

hagrid represents a modern piece of code, with both an acceptable size and
complexity, which makes it an excellent challenge application. Furthermore, it is
currently in use by many pervasive applications such as GPGTools, Enigmail,
OpenKeychain, GPGSync, Debian and NixOS, which implies that its verification
will have an important impact towards security and efficiency of software that
is in use daily. What is more, its architecture comprehends many interesting
aspects for verification, such as database consistency, concurrency, efficiency
and functional correctness, scoping a wide range of interests of the software
verification community. This also makes it suitable to encourage interaction
between members of the verification community, which can attack complementary
verification problems over the single challenge program.

4.1 The Verifying Key Server

While hagrid is the reference implementation, and the final goal is to verify
it, we decided to define a more general verifying key server. This allows us to
have a less restrictive starting point for verification by abstracting from hagrid’s
particular implementation decisions. It also establishes clear bases for abstraction
decisions to be made at the time of verifying with specific tailored tools.

3 See https://sequoia-pgp.org/blog/2019/06/14/20190614-hagrid/.
4 It is the default server used by the Thunderbird public-key engine Enigmail for
instance.

5 See https://access.redhat.com/articles/4264021.
6 Available at https://gitlab.com/hagrid-keyserver/hagrid, (2020-04-29).
7 Not including the underlying web framework or gpg library code.

https://gitlab.com/hagrid-keyserver/hagrid
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The server is essentially a database that allows users to store their public key
for their e-mail address, to query for keys for e-mail addresses and to tracelessly
remove e-mail-key pairs from the database. To avoid illegal database entry and
removal actions, confirmations are sent out to the e-mail addresses of issuing
users upon an addition or removal request.

The server possesses a web frontend which accepts requests from users or via
restful API. It additionally possesses a connection to a database from which it
reads key-value pairs and writes to it, and a channel for sending e-mails. Fig. 1
presents a schematic overview of the architecture. The key server can be separated
into three components: the webserver (frontend), the key manager (backend),
and the key database. At the core of the server, there are four operations that can
be triggered from outside the server via HTTP-API-requests to the web frontend.
The operations are:

Request adding a key A user can issue a request for storing a key for a
particular e-mail address. To avoid that anybody can store a key for someone
else’s e-mail address, the key is not directly stored into the database, but
stored intermediately. The user retrieves a confirmation code via the given
e-mail to verify the specified address. Only once the confirmation code is
activated, will the address be actually added to the database.

Querying an e-mail address Any user can issue a request for learning the
key(s) stored with a concrete and verified e-mail address. Unlike on the old
public server, queries for patterns are not allowed. Public keys that have
been (verified) removed or have not yet been confirmed must not be returned
in queries.

Request removing a key The user can request the removal of the association
between a key and an e-mail address. The process begins with the confirmation
via the e-mail address: The user enters one of their previously confirmed
addresses. The server sends an e-mail to this address containing a link. Behind
this link, there is a website that allows the removal of the key’s association.

Confirming a request Additions and removals are indirect actions. Instead
of modifying the database directly, they issue a (secret and random) confir-
mation code. Confirmation of the code is performed using this operation. If
the provided code is one recently issued then the corresponding operation
(addition/removal) is finalised.

The challenge we propose focuses on the key manager component of the server.
This is a program that must provide implementations for the operations outlined
above.

Nevertheless, multiple extensions to the verifying server can impose a bigger
verification challenge for the participants. We encouraged participants to also
look at this. One would maybe want to verify the database or the REST-API.
One would usually want to abstract from the programming language unless the
verification tool is prepared for it, but on the other hand may decide to be as
faithful as possible to hagrid’s implementation, and thus as close as possible to
the real code. Other verification possibilities go in the direction of improving the
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Fig. 1. Schematic of the key server architecture

reference implementation, for instance by increasing the server’s performance by
using more sophisticated search-friendly data structures.

4.2 Missions

The hagrid server is a complex software system which has been chosen as the
target for the long term challenge since it provides verification challenges on
many different levels of abstraction, complexity and regarding many different
requirement aspects (e.g., safety, security, performance properties). This section
identifies different verification tasks (called missions) for the different abstraction
levels and aspects.

One design decision of the challenge is to leave it to the participating teams
on which actual artefact(s) they contribute a verification result. Depending on
the addressed mission, different artefacts suggest themselves:

1. the existing production hagrid reference implementation in Rust;
2. a new implementation (in any programming language) of the core functionality

satisfying a basic set of natural language requirements available on the
challenge website; or

3. a suitable abstraction from the code level to model a particular aspect (the
protocol, memory, key handling, . . . ).

This also accommodates for the fact that contemporary verification approaches
are heterogeneous in the languages and specification techniques they support.
By opening the choice of language and implementation layout, the scope of the
challenge has considerably broadened. Moreover, it allows also for an adjustable
degree of algorithmic complexity: The data structures used in a re-implementation
may range from rather simple ones (e.g., two arrays containing the email addresses
and the associated keys), over more complex (e.g., a hash map with concurrent
data access) up to an implementation that satisfies real-world requirements
regarding, e.g., efficiency and memory consumption. This allows the contributing
teams to choose their initial level and also to advance in the course of the
challenge.
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Moreover, an implementation may make use of underlying (provenly or as-
sumedly correct) libraries and middleware layers (e.g., by assuming method
contracts/function summaries and (object) invariants).

The first suggested mission of the VerifyThis Collaborative Long Term Chal-
lenge is the least specific task and allows many formal code analysis tools to
participate. Verification tools that run fully automatically (in particular the
participating tools in the SVCOMP8 competition series) are particularly well
suited to contribute solutions to this challenge and to show that results can be
obtained without further user input. For this foundational verification question,
no formal (full) specification is required.

Mission 1 (Safety) Verify that the chosen implementation of the key server
does not exhibit undesired runtime effects (e.g., no runtime exceptions in Java,
or no undefined behaviour in C).

Traditionally, the challenges in VerifyThis on-site competitions are more
heavyweight, with concrete application-specific functional requirements on the
used data structures that go beyond safety conditions and assertion checking.
They strive to establish properties that require a logical formalisation against
which the code needs to be verified. Unlike Mission 1, this functional verification
requires knowledge about what the system has to compute, i.e., a specification
must be provided. Depending on the complexity of the code and specification
(and verification technique), the verification may then run automatically, or (in
many cases) requires some form of user guidance (on top of the specification).

Mission 2 (Functionality) Formalise the natural language functional require-
ments from the challenge description as formal specifications for the core opera-
tions. Verify that the implementation of the operations satisfies your formalisation.

One example for a functional property of the key server is that if an e-mail
address is queried, a key stored for this e-mail address is returned if there is one
in the database.

Typically, especially for imperative (object-oriented) programming languages,
functional verification is performed modularly by specifying contracts for each
function (method) according to the design-by-contract paradigm and then proving
them correct individually.

Other formal method traditions focus less on the operational effects of in-
dividual functions in form of contracts, but allow one to model the evolution
of the entire system over time using a temporal or state-based formalism. This
is particularly the case for model checking approaches where properties of the
interaction protocol can then be analysed on an implementation-independent
level.

Mission 3 (Protocol) Specify the temporal protocol behaviour of the key server.
Identify relevant temporal properties for the key server and prove them satisfied
by the protocol.
8 See https://sv-comp.sosy-lab.org.

https://sv-comp.sosy-lab.org
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Mission 3 deals with somewhat different properties than functional verification. It
is a good candidate for a collaborative verification effort in the sense of Sec. 3.2:
One team of participants may prove properties of the protocol using an approach
designed for that purpose (e.g., model checking), whereas another team verifies
that the implementations of the operations adhere to their abstractions. Tools
have complementary strengths: Model checking cannot go into implementational
details on the programming language level, and for deductive verification, encoding
protocols is cumbersome, error-prone and little efficient.

There is a school of formal modelling techniques that allows one to model
systems on a rather abstract level, but with mathematical rigour. These models
can then be formally refined into more concrete detailed versions, and eventually
into executable code. Prominent representatives are (Event-)B, Abstract State
Machines or Z.

Mission 4 (Refinement) Encode the natural language requirements from the
challenge description as a mathematically rigour system model. Refine the abstract
model in one or more steps into an executable program.

Again this mission provides great potential for collaboration if abstract system
verification meets program verification.

Not every system property can be formalised as functional property (Mis-
sion 2); for instance privacy properties require different verification techniques.

Mission 5 (Privacy) Specify and prove that the key server adheres to privacy
principles. In particular: (a) only exact query match results are ever returned to
the user issuing a query, and (b) deleted information cannot be retrieved anymore
from the server.

One concrete example is that if an e-mail address has been deleted from the
system, no information about the e-mail address is kept in the server. Classical
non-interference analyses (from type-theoretical and dependency-graph-based
statistical analyses to deductive analysis) allow formal methods to be applied to
this mission.

There are more security-related properties for the key server since that has
to produce and distribute random confirmation codes. A key server should be
analysed w.r.t. cryptographic-related questions, too.

Mission 6 (Randomness) Prove that any created confirmation code is (a) ran-
domly chosen (i.e. that every string from the range is equally likely), (b) cannot
easily be predicted, and (c) is never leaked, except as the return value of the
issuing operation.

Another field of interesting properties (that also have been addressed in
VerifyThis onsite events recently) are questions around concurrency. They often
are related to the actual implementation.

Mission 7 (Thread safety) Specify and verify that your implementation is
free of data races, where data races arise when concurrent processes try to access
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a common memory location simultaneously. For concurrent applications, also
absence of deadlock and livelock are important requirements.

The key server as a software system providing a critical infrastructure also
has relevant properties concerning its availability, its resource consumption or
its performance. They are worth being formally analysed and their analysis can
likely benefit from guarantees obtained during analyses of functional aspects.

Mission 8 (Non-functional properties) Identify, specify and verify non-functional
properties of the key server concerning worst case execution times and worst
case memory consumption of the operations (or other relevant non-functional
properties).

5 Realisation

Finally, we discuss some practical aspects of how we have set up the challenge and
report on the experiences that we gained after the submission of the solutions.

5.1 Practical Set-Up

The VerifyThis Collaborative Long Term Challenge was launched in August 2019,
and submitted solutions were due end of March 2020. Participants were invited
to present their results during the on-site VerifyThis program verification compe-
tition (co-located with ETAPS in April 2020). In addition, the plan to compose
a special issue with (partial) solutions to the challenge was announced.

Two crucial aspects of the long-term challenge were (1) to get people started,
and (2) to ensure that people continue working on the challenge. To achieve this,
we had set up several means of communication.

First of all, we have the website https://verifythis.github.io, which serves as
the entry point to the challenge and is the main source of up-to-date information.
The website has several functions. First of all, it informs the community about
the challenge and its current state by showing (preliminary) results and news. It
also provides information to the participants, such as an overview of the other
participants and artefacts that participants have made available for reuse. We
decided for a website hosted by Github, as this makes it easy for participants to
contribute to the website, either via the issue tracker or a via pull request. We
tried to encourage the participants to use this public repository by themselves.

In addition, we also created a mailinglist9, such that both organisers and
participants could communicate with each other directly. We had considered
using a collaborative development platform such as Slack, but decided not to
do this, because we felt that most of our potential participants would prefer
communication by email.

9 verifythis-ltc@lists.kit.edu

https://verifythis.github.io
verifythis-ltc@lists.kit.edu
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5.2 Submissions

At the end of the submission period, we had received five contributions from
different teams using different verification approaches and tools. Three of them
focused on functional specification (mostly missions 1 and 2), two considered
security-related aspects (mission 5). Short papers describing the solutions can be
found in the informal proceedings [20].

Submissions for functional properties were written in different programming
(and specification) languages and verified with different deductive verification tools
(SPARK [22], Why3 [7], and Java+JML with KeY [3]). All specifications followed
similar ideas: They specified the functional key server interface using contracts
that formally capture the effects of requests on the database (represented by
some form of ADT). The Why3 solution targetted a file-based database backend,
whereas the other two solutions modelled it as an in-memory database.

The other two submissions provided a security testing framework for the
keyserver based on history traces (in Scala), and a formulation of information
flow security properties with declassification in a variant of separation logic for
security properties. In particular, revocation of key entries was identified here as
an interesting challenge for non-interference approaches.

5.3 Experiences

We observed that the communication channels were used less frequently than we
expected. We assume that the mailing list was perhaps not the best medium for
the purpose. Moreover, new collaboration ideas did not spark between different
approaches or tools during the offline period. We summise that a stronger incentive
for collaboration could be given by additional meetings during the runtime of
the challenge. These could either be real-world meetings or could be performed
online.

Since the workshop originally planned in late April 2020 had to be postponed
(due to the Covid-19 pandemic), we set up an online meeting – close to the
original workshop date – at which the participants and interested parties could
discuss the challenge, their solutions and perhaps identify synergies and common
ideas.

The half-day online event received considerable attention (over 30 participants;
more than would have been expected for the online event). Similarities and
differences between the approaches were identified and discussed. The contributors
agreed that the LTC should not be called terminated, but that further work and
collaboration would improve their work. As a concrete idea for cooperation, it
was identified that explicitly modelling the history of requests can be adapted in
deductive specifications from the security testing approach.

The ETAPS conference (and with that its workshop) was postponed for
several months. The organisers and participants agreed to meet again when
ETAPS is held for an updated report on the collaboration and solutions to the
challenges.



14 Marieke Huisman, Raúl Monti, Mattias Ulbrich, and Alexander Weigl �

6 Conclusion

We received many positive reactions from the community since the start of this
challenge, and we hope that this will also lead to interesting and unexpected
verification outcomes. Ultimately, we hope that the challenge will bring the formal
verification community a step closer to its ultimate goal: the usage of formal
analysis in the daily software development process, by providing better insights
into the obstacles and potentials for the use of formal techniques, and therewith
helping the participants to further improve their approaches and tools.

In addition to tool improvements, we also hope that the VerifyThis Collab-
orative Long Term Challenge will diminish the gap between different formal
verification approaches, and will foster more collaboration within the verification
community.
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