
Proceedings of the PhD Symposium

at the 19th International Conference on

Integrated Formal Methods (iFM) 2024

Manchester University, Manchester, UK

12 November 2024



Preface

The PhD Symposium at the International Conference on Integrated Formal Methods (iFM) 2024 aims at
providing PhD students an opportunity to present and discuss their research in the fields of theory,
implementation, integration or application of formal methods. It is targetted towards PhD students
and young researchers at an early career stage (up to 2 years after PhD completion). The goal of the
symposium is to provide a possibility to the participants to present their research projects. Moreover:
The PhD symposium offers the participants an excellent opportunity to introduce their work to fellow
researchers in an international setting, and to get feedback from senior researchers in the field. The
doctoral symposium provides an environment to exchange knowledge and experiences with fellow
PhD-students in a related topic – both regarding research topics, but regarding being a PhD candidate
and working towards an PhD, and about future career plans.
It is the 19th time the community meets at iFM. Like in the previous iterations of co-located PhD

symposia at iFM, we were able to engage outstanding figures from the scientific community as presenters
for the invited talks, who were able to provide participants with valuable input based on their scientific
and academic expertise and experience. Prof. Dr. Paula Herber from the University of Münster
illuminated the opportunities and challenges of an academic career in her lecture ”How to Become a
Professor,” while Dr. Renate A. Schmidt from the University of Manchester gave a more scientifically
oriented overview presentation titled ”Research in Knowledge Base Extraction: Tools, Applications and
Lessons Learnt.”
We received a total of 10 submissions, out of which the programme committee selected 8 for pre-

sentation and publication. This year, we supported three categories of papers that could be submitted:
1) Thesis Proposal Abstracts summarizing research questions and outlining a research project. They are
ideal for early-stage PhD students to get feedback on their research project during the initial planing
and orientation phase. 2) Result Reports summarizing preliminary results of early-stage research. Pa-
pers on unexpected results or ineffective methods were particularly welcome. 3) Master Summaries
summarizing the research question, method, and results of an impactful Master’s thesis together with a
discussion about possible next research steps. They were intended for new and future PhD students to
communicate their thesis results together an experienced supervisor. For all formats, supervisors and
colleagues were allowed to act as co-authors.

Mădălina Erașcu and Mattias Ulbrich,
co-chairs
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Combining Quantitative and Qualitative Analysis for Safe
and Resilient Intelligent Hybrid Systems
Pauline Blohm1, Paula Herber1 and Anne Remke1

1University of Münster, Münster, Germany

Abstract
Model-driven development frameworks such as MATLAB Simulink are widely used in industrial design processes
to conquer the increasing complexity of embedded control systems such as self-driving cars or critical infrastruc-
tures. As these systems are often safety-critical, formal methods to ensure safety, performance and resilience are
highly desirable, in particular also in the presence of dynamic and uncertain environments. Formal verification
has the potential to a) ensure that embedded systems function correctly for all possible system parameters and
input scenarios, and b) provide statistical guarantees in the presence of uncertainty and probabilistic behavior.
However, the application of existing formal verification and stochastic analysis techniques to embedded control
systems is a major challenge, in particular if they are hybrid, i.e. combine discrete and continuous behavior, and
include learning components to adapt to dynamic environments. To tackle this challenge, we aim at providing a
quantitative analysis for intelligent Simulink models via a transformation to Stochastic Hybrid Automata (SHA)
that gives us access to established analysis techniques for stochastic systems, such as reachability analysis or
(statistical) model checking. To incorporate dynamic adaptations via learning, we investigate techniques to
integrate domain-specific abstractions of the learning components into the SHA model. To ensure resilience of
learning hybrid systems, we aim at combining the strengths of qualitative and quantitative analyses.

Keywords
Hybrid Systems, Formal Verification, Stochastic Failures, Learning, Simulink, Hybrid Automata

1. Problem

The demands on the functionality and flexibility of embedded control systems are steadily increasing.
At the same time, they are more and more used in critical infrastructures, for example, controlling the
supply of energy or water, and in safety-critical systems such as self-driving cars and other autonomous
vehicles. With that, we increasingly use embedded control systems not only for our convenience
or for profit, but also trust our lives and personal well-being to these systems. At the same time,
learning components are nowadays often used to cope with dynamic environments. This makes it
crucial to ensure the safety, performance, and resilience of these systems under all circumstances.
Qualitative analysis techniques such as deductive verification can provide safety guarantees for hybrid
systems, however, they typically only consider the worst case scenario. In contrast, quantitative analysis
techniques like analytical reachability analysis or statistical model checking (SMC) can provide statistical
guarantees for safety or performance properties even in the presence of uncertainty, however, they
might not provide guarantees for all possible scenarios.
The integration of learning components and uncertainties further complicates formal verification

of hybrid systems. Qualitative analysis techniques often rely on abstractions, such as contracts, to
handle learning components or uncertainties. While these abstractions are necessary to provide
safety guarantees, they usually abstract from all quantitative information, yielding imprecise and
overly pessimistic results. In contrast, quantitative techniques exploit statistical information like the
distribution of events or failure and repair times. However, they suffer from state-space explosion,
in particular if learning components have to be verified to ensure safety under all circumstances or
with high accuracy. Furthermore, quantitative analyses techniques typically do not provide us with
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Figure 1: Combining the Strengths of Quantitative and Qualitative Analysis.

techniques for modular reasoning.

2. Proposed Solution

To ensure the safety and resilience of hybrid systems even in the presence of learning and in uncertain
environments, we aim at combining the strengths of qualitative analysis with the strength of quantitative
analysis. We focus on hybrid systems modelled in Simulink as it is widely adopted for embedded control
systems that combine discrete and continuous behavior. Previous work of one of the co-authors has
presented an approach for a qualitative analysis of Simulink models via a transformation to Differential
Dynamic Logic (dL) [1, 2] which is implemented in the tool Simulink2dL. The resulting dL Model can
then be analyzed using Deductive Verification to obtain formal guarantees that a system satisfies a given
Safety Property. Our aim is to complement this with efficient and scalable quantitative analysis [3, 4, 5]
and also to combine these techniques to provide an approach for comprehensive safety, resilience and
performance analysis for intelligent hybrid systems. The concept of the thesis is shown in Fig. 1 and
consists of four main parts:

1. We plan to provide an automated transformation Simulink2SHA from Simulink to Stochastic
Hybrid Automata. With this transformation, we define a formal semantics for Simulink, and it
gives us access to established Quantitative Analysis techniques, such as reachability analysis or
(statistical) model checking.

2. We aim at investigating how to introduce stochastic components via Probability Distributions into
the Simulink model to model uncertainties like component failure or sensor noise. With that, we
can also investigate resilience and performance of a model under verification.

3. We aim at investigating how Qualitative and Quantitative Properties for the dL and SHA models
can be derived from safety, resilience and performance requirements.

4. We plan to provide a technique to combine Qualitative Analysis results (e.g. from deductive
verification) with a Quantitative Analysis for (potentially learning) Simulink models. In particular,
we aim at investigating two different approaches: a) the integration of shielded SMC-based
learning, which has been proposed by one of the co-authors in previous work [6], and b) the use
of contracts or other domain-specific abstractions to safely integrate learning components, as has
been proposed by two of the co-authors in [2, 7].

As a first step, we have presented an approach for a manual transformation from Simulink to SHA,
which has been accepted at iFM 2024 [8]. Open research problems we plan to address in this thesis
are how to model uncertainties such that the resulting models are still analyzable, how to capture
qualitative and quantitative properties of intelligent systems appropriately and also how to combine
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qualitative with quantitative analysis techniques for SHA with learning components. One key challenge
is that, while modular reasoning would be highly desirable to handle complex systems, there exists no
established concept to include quantitative and statistical information in contracts.

3. Related Work

There have been quite some efforts to enable the formal verification of systems that are modeled in
Simulink [9, 10, 11, 12, 13, 14, 15]. Yet, all of these approaches, including the Simulink Design Verifier
[16], are limited to discrete subsets of Simulink. Formal verification methods that support hybrid
systems modeled in Simulink are, e.g., proposed in [1, 17, 18, 19, 20, 21]. However, they either focus on
techniques for a special class of systems and do not provide general transformation rules for a broader
set of blocks or focus on the qualitative analysis of safety properties and they neither take stochastic
components nor learning into consideration.

There also has been a number of works on statistical model checking (SMC) for Simulink, for example
[22, 23, 24]. Still they do not provide a stochastic model with formal semantics and thus cannot make
use of more advanced quantitative analysis techniques. In [25], the authors propose a transformation
from Simulink into stochastic timed automata (STA) and perform SMC with UPPAAL SMC on the
resulting network of STA. However, they do not consider stochastic blocks and transform a given
Simulink model into a deterministic STA model where all probabilities are one.
There also exists a broad variety of approaches to formally ensure safety of learning components

using shielding or runtime monitoring [26, 27, 28]. These approaches do not directly support Simulink
though, and they do not consider formal analysis techniques that take stochastic failures and learning
into account.

Uppaal Stratego [29] uses priced timed automata to model stochastic behavior, and provides tooling
for statistical model checking [30], timed games [31] and learning-based strategy synthesis [32]. While
Uppaal Stratego comes with a graphical interface and is designed for usability, the underlying formalisms
are less expressive than stochastic hybrid automata, in particular w.r.t. continuous system behavior
governed by differential equations and controlled by continuous and stochastic variables.
Finally, there has been some work on combining rigorous formal and statistical methods. In [33],

the authors incorporate statistical hypothesis testing to compute promising configurations of program
verifiers automatically. However, they do not support hybrid systems, and they do not consider both
safety and performance properties. In [34], the authors present a formal framework for an integrated
qualitative and quantitative model-based safety analysis. However, they do not support hybrid systems
and do not consider deductive verification methods.

4. Progress and Current State

The first step towards safe and resilient hybrid system is enabling a quantitative analysis for (stochastic)
Simulink models. As Simulink does not offer elaborate quantitative analysis, such as reachability
analysis or statistical model checking, a transformation into a formal model is desired. To tackle this
problem, we are currently working on a modular approach to transform Simulink models into SHA. In
[8], we present an approach that enables us to transform a subset of Simulink models to SHA and analyze
the SHA using the tool RealySt [3] to obtain reachability probabilities for critical safety properties.
This is an important first step towards ensuring safety and resilience of hybrid systems in the presence
of uncertainties. However, it still has some limitations, e.g. we only provide transformation rules for a
subset of Simulink blocks and the parallel composition has to be performed manually. To tackle these
limitations, we are currently working on a tool to automatically transform a given Simulink model to an
SHA using the transformation rules provided in [8]. Additionally, we plan to define transformation rules
for a larger subset of Simulink blocks and provide better support for the integration of stochasticity into
Simulink models, e.g. by providing parameterized subsystems that model specific stochastic behaviour.
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As next steps, we plan to address the research challenges defined above, namely the integration of
stochastic and learning components in Simulink, the derivation of qualitative and quantitative properties
that are important for safety, resilience and performance of intelligent Simulink models in uncertain
and dynamic environments, and the development of combined quantitative and quantitative analysis
techniques that enable us to formally analyze these properties.
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[32] P. Ashok, J. Křetínskỳ, K. G. Larsen, A. Le Coënt, J. H. Taankvist, M. Weininger, SOS: Safe, optimal
and small strategies for hybrid markov decision processes, in: International Conference on Quan-
titative Evaluation of Systems, Springer, 2019, pp. 147–164. doi:10.1007/978-3-030-30281-8_9.

[33] A. Knüppel, T. Thüm, I. Schaefer, GUIDO: Automated Guidance for the Configuration of Deductive
Program Verifiers, in: IEEE/ACM Int. Conference on Formal Methods in Software Engineering

5



(FormaliSE), IEEE, 2021, pp. 124–129. doi:10.1109/FormaliSE52586.2021.00018.
[34] M. Gudemann, F. Ortmeier, A framework for qualitative and quantitative formal model-based

safety analysis, in: IEEE Int. Symposium on High Assurance Systems Engineering, IEEE, 2010, pp.
132–141. doi:10.1109/HASE.2010.24.

6



Hybrid Games with Triggers⋆

Qais Hamarneh

Karlsruhe Institute of Technology (KIT), Am Fasanengarten 5, 76131 Karlsruhe, Germany

Abstract
Hybrid games are a highly expressive way to model the interaction between cyber-physical systems. This high
expressivity comes at the price of decidability. This work proposes an extension to hybrid games that adds the
conditions prompting agents to move. We call this extension hybrid games with triggers (HGT). We show how
this extension makes it possible to translate a hybrid game into a discrete game with countable state space.

Keywords
Hybrid Games, Hybrid systems, Discrete Games, Verification

1. Introduction

Modelling the interaction between multiple cyber-physical systems (CPS) is a critical problem in
computer science, particularly in formal methods. Many approaches were presented to model and
reason about this interaction, such as dynamic differential logic [1], and its extension to differential
game logic [2], algebraic [3] and coalgebraic [4] approaches among many others.

This work is based on modelling an interaction between multiple CPSs as a hybrid game [5], a
multi-agent extension of hybrid automata [6]. Hybrid games allow for discrete and continuous system
evolution. Typically, the discrete evolution represents the agents’ control, whereas the continuous
evolution represents the motion dynamics. While hybrid games are very expressive, this expressivity
comes at the price of decidability. In [7], Heinziger et al. show that the reachability in even very
restrictive fragments of hybrid automata, like a stopwatch automaton, is undecidable.

There have been multiple attempts to discretize hybrid systems [8] by restricting either the discrete
dynamics like in rectangular hybrid games [5] or the continuous dynamics like in o-minimal hybrid
games [9]. This work presents a novel extension of hybrid games that allows discretization without
restricting system dynamics. It does this by augmenting the hybrid game definition with information
about the agents’ rationale. This rationale is expressed as quantifier-free formulas of real arithmetic
called triggers. A trigger is a condition that the agent must act once satisfied. We call this extension
hybrid games with triggers (HGT).

HGTs are inspired by de Alfaro et al.’s timed games [10]. In this version of timed games, each agent
declares a time delay, after which they would take an action unless some other agent played first. In
essence, our extension replaces the time delay with arithmetic formulas, similar to the guards and
invariants of hybrid automata [6], and the timed game with a hybrid game.

Using a logical formula instead of a time delay brings multiple advantages. (1) Formulas reduce the
need for perfect information by covering cases without calculating the time required to reach them. For
instance, a car safety trigger could look like this:

free-ahead(𝑝𝑜𝑠𝑖𝑡 𝑖𝑜𝑛) ≤ braking-distance(𝑠𝑝𝑒𝑒𝑑). (1)

(2) Unlike time, a small set of formulas like 1 could be sufficient to model a complete system. (3) As we
show in this paper, given a countable language of real arithmetic [11], triggers reduce the hybrid game
into a discrete game with countable state space.
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In the next Section 1.1, we briefly overview the related work. Section 2 defines the hybrid games this
work is based on. The main contribution of this work is presented in sections 3 and 4. In Section 3,
we introduce the syntax and semantics of hybrid games with triggers, and we informally define the
algorithm to create a discrete game based on an HGT in Section 4. We conclude in Section 5 with a
summary and a look at future work.

1.1. Related Work

This work can be seen as a hybrid extension of de Alfaro et al.’s timed games [10]. Multiple points were
taken directly from the timed games, like the winning conditions and what happens when multiple
triggers are satisfied simultaneously. However, the discretization algorithm is entirely different. The
discretization in the timed games relies on the existence of a finite bisimulation of timed automata as a
region automata. Hybrid automata do not always offer a finite bisimulation [12].

As already discussed, other ways to discretize hybrid games exist [5][9], but where these methods
restrict the game dynamics to allow discretization, our approach rely on adding more information to
the game instead of restricting it.

Tight durational concurrent game structures (TDCGS) [13] are intuitively similar to hybrid game
with triggers. Transitions in TDCGS carry an integer time delay. This time, however, is treated as a
cost and does not reflect the evolution of the continuous dynamics.

2. Preliminaries

Hybrid Game

This definition of a hybrid game is adopted from [5]. The hybrid game is defined over a finite set of
real-valued variables 𝑋. The set of all valuations 𝜈 ∶ 𝑋 → R is called 𝑉 𝑎𝑙(𝑋). We extend the notation 𝜈
to arithmetic terms over 𝑋. 𝐹𝑜𝑟𝑚𝑋 is the set of all real arithmetic quantifier-free formulas over 𝑋.

Given a valuation 𝜈 ∈ 𝑉 𝑎𝑙(𝑋) and an arithmetic term 𝜃, we write 𝜈[𝜃/𝑥] for the valuation where all
variables have the same value as in 𝜈, except 𝜈[𝜃/𝑥](𝑥) = 𝜈(𝜃). This definition is extended to ordered
sets of assignments, where the assignments are executed in order. Given a set of differential equations
𝐹, we write 𝜈[𝐹 , 𝑡] for the valuation updated according to the equations in 𝑓 𝑙𝑜𝑤 after some time 𝑡 ∈ R≥0
has passed. A hybrid game G is a tuple:

G = (𝐿𝑜𝑐, 𝑙0, 𝑋 , 𝜈0, 𝑓 𝑙𝑜𝑤, 𝑖𝑛𝑣 , 𝐴𝑔𝑡, 𝐴𝑐𝑡, 𝐸)

𝐿𝑜𝑐 a finite nonempty set of locations.
𝑙0 ∈ 𝐿𝑜𝑐 the initial location.

𝑋 a finite nonempty set of real-valued variables with typical elements 𝑥0, 𝑥1.
𝜈0 ∶ 𝑋 → R the initial valuation.

𝑓 𝑙𝑜𝑤 a continuous transition relation that assigns each location 𝑙 ∈ 𝐿𝑜𝑐
a set of differential equations 𝑓 𝑙𝑜𝑤(𝑙) = { ̇𝑥𝑖 = 𝜃𝑖 ∣ 𝑥𝑖 ∈ 𝑋}.

𝑖𝑛𝑣 ∶ 𝐿𝑜𝑐 → 𝐹𝑜𝑟𝑚𝑋 associate each location with an invariant.
𝐴𝑔𝑡 = { 1, 2, … , 𝑘 } a finite nonempty set of agents.
𝐴𝑐𝑡 = 𝐴𝑐𝑡1 ⊍ 𝐴𝑐𝑡2 ⊍ … ⊍ 𝐴𝑐𝑡𝑘 a disjoint union of finite nonempty sets of agents’ actions.

The typical actions of agent 𝑖 ∈ 𝐴𝑔𝑡 are 𝑎𝑖, 𝑏𝑖.
𝐸 a finite nonempty set of edges representing discrete transition relation

with typical elements (𝑙 , 𝜑, 𝑎𝑖, 𝐴, 𝑙′) such that:
● 𝑙 , 𝑙′ ∈ 𝐿𝑜𝑐,
● 𝜑 ∈ 𝐹𝑜𝑟𝑚𝑋 called a guard,
● 𝑎𝑖 ∈ 𝐴𝑐𝑡𝑖 an action for some 𝑖 ∈ 𝐴𝑔𝑡, and
● 𝐴 is a finite (possibly empty) ordered set of assignments called a jump.
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We use the functions 𝑏𝑒𝑔𝑖𝑛(𝑒), 𝑔𝑢𝑎𝑟𝑑(𝑒), 𝑎𝑐𝑡(𝑒), 𝑗𝑢𝑚𝑝(𝑒) and 𝑒𝑛𝑑(𝑒) to reference the components of
an edge 𝑒 ∈ 𝐸.

A valuation 𝜈 enables the edge 𝑒 = (𝑙 , 𝜑, 𝑎,𝐴, 𝑙′) ∈ 𝐸 (we say the action 𝑎𝑐𝑡(𝑒) is enabled) if:

● 𝜈 ⊧ 𝑖𝑛𝑣(𝑙), ● 𝜈 ⊧ 𝜑, and ● 𝜈[𝐴] ⊧ 𝑖𝑛𝑣(𝑙′)

In a hybrid game, a configuration is a pair ⟨𝑙 , 𝜈⟩ representing the game’s location 𝑙 ∈ 𝐿𝑜𝑐 and valuation
𝜈 ∈ 𝑉 𝑎𝑙(𝑋). ⟨𝑙0, 𝜈0⟩ is the initial configuration. Two types of transitions are possible: A time transition

⟨𝑙 , 𝜈⟩
𝑡
Ð→ ⟨𝑙 , 𝜈[𝑓 𝑙𝑜𝑤(𝑙), 𝑡]⟩ for 𝑡 ∈ 𝑅≥0 is legal if for all 𝑡′ ∈ [0, 𝑡], 𝜈[𝑓 𝑙𝑜𝑤(𝑙), 𝑡′] ⊧ 𝑖𝑛𝑣(𝑙). An edge transition

⟨𝑙 , 𝜈⟩
𝑒
Ð→ ⟨𝑒𝑛𝑑(𝑒), 𝜈[𝑗𝑢𝑚𝑝(𝑒)]⟩ for an edge 𝑒 ∈ 𝐸 with 𝑏𝑒𝑔𝑖𝑛(𝑒) = 𝑙 is a legal transition if 𝜈 enables 𝑒. The

agent 𝑖 that takes the action 𝑎𝑐𝑡(𝑒) ∈ 𝐴𝑐𝑡𝑖 is called to blame for the edge transition. The other agents are
called blameless. A play is an infinite sequence of configurations (⟨𝑙0, 𝜈0⟩, ⟨𝑙1, 𝜈1⟩, ⟨𝑙2, 𝜈2⟩, … ) which
starts at the initial configuration and for each 𝑖 ∈N0, there exists a legal transition ⟨𝑙𝑖, 𝜈𝑖⟩→ ⟨𝑙𝑖+1, 𝜈𝑖+1⟩.

Remark 1. In this paper, we assume all differential equations to be solvable. Even with solvable differential
equations, the question of whether there exists a play that reaches a certain configuration is undecidable in
a hybrid game [7].

2.0.1. Example

Figure 1: Robots on tracks.

Figure 1 shows an orange and a green robot
moving on tracks in a warehouse. The ware-
house contains 6 tracks, 2 horizontal 𝐻 =
{ℎ1, ℎ2 } and 4 vertical 𝑉 = { 𝑣1, 𝑣2, 𝑣3, 𝑣4 }. The
robots continuously pick items from storage
units (small circles) and take them to the pro-
cessing units (small squares). The robots must
also avoid collisions with each other. To model
this system as a hybrid game, we define the
locations as the current tracks of the two robots 𝐿𝑜𝑐 = (𝐻 ∪𝑉) × (𝐻 ∪𝑉). The current location is (ℎ1, 𝑣3).
The invariants define the end points of each track. The flow in each location describes the motion of
each robot based on its current speed. Intersection points are edges that allow the robots to change
tracks. Self-loop edges change a robot’s speed without changing its track.

3. Hybrid Game with Triggers (HGT)

In this section, we introduce an extension to the definition of hybrid games. We call this extension
hybrid games with triggers or (HGT) for short. A trigger is an agent-declared quantifier-free formula
of real arithmetic that, once satisfied, prompts the agent to take an action. Intuitively, the trigger is
the reason the agent moves. An autonomous vehicle could set a trigger to be not enough free space
ahead or the desired intersection is reached. According to the case that comes first, the car would have
to take an action. An edge transition only happens when some agent has a satisfied trigger. With
each edge transition, each agent gets to update their triggers. We call the set of all possible triggers
𝐹𝑜𝑟𝑚𝑇 𝑟 𝑖𝑔 ⊆ 𝐹𝑜𝑟𝑚𝑋.

The definition of HGT extends the definition of hybrid games as follows:

G ≔ (𝐿𝑜𝑐, 𝑙0, 𝑋 , 𝜈0, 𝑓 𝑙𝑜𝑤, 𝑖𝑛𝑣 , 𝐴𝑔𝑡, 𝐴𝑐𝑡⊥, 𝐸⊥, 𝐹 𝑜𝑟𝑚𝑇 𝑟 𝑖𝑔, trig0)

The function 𝑡𝑟 𝑖𝑔0 ∶ 𝐴𝑔𝑡 → 𝐹𝑜𝑟𝑚𝑇 𝑟 𝑖𝑔 is the initial triggers function. The set 𝐴𝑐𝑡⊥ includes a stutter
action ⊥ ∉ 𝐴𝑐𝑡, available for every agent. If an agent’s trigger is satisfied and this agent has no enabled
actions in 𝐴𝑐𝑡, the agent must take the stutter action ⊥. This indicates that there is a self-loop edge
for every location 𝑙, (𝑙 , 𝑇 𝑟𝑢𝑒, ⊥, ∅, 𝑙) ∈ 𝐸⊥. A configuration in a HGT is a triplet ⟨𝑙 , 𝜈 , trig⟩. The initial
configuration is ⟨𝑙0, 𝜈0, trig0⟩.
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Trigger Formula: A formula 𝜑 is called a trigger formula if and only if for every valuation 𝜈 and
every map 𝑓 𝑙𝑜𝑤 assigning a differential equation to each variable in 𝑋, there exists a minimum time
𝑡 ∈ R≥0 to satisfy 𝜑, i.e. such that 𝜈[𝑓 𝑙𝑜𝑤, 𝑡] ⊧ 𝜑 and for all 0 ≤ 𝑡′ < 𝑡, 𝜈[𝑓 𝑙𝑜𝑤, 𝑡′] ⊭ 𝜑, or if 𝜑 is never
satisfied, i.e. 𝜈[𝑓 𝑙𝑜𝑤, 𝑡] ⊭ 𝜑 for all 𝑡 ∈ R≥0. In other words, a formula 𝜑 is a trigger formula (𝜑 ∈ 𝐹𝑜𝑟𝑚𝑇 𝑟 𝑖𝑔)
if and only if its solution set is a closed set under the usual topology in R∣𝑋∣.

This restriction eliminates formulas like 𝑥 > 2 for a variable 𝑥 ∈ 𝑋 where no exact time exists when
it is first satisfied if the valuation 𝜈(𝑥) = 0 and 𝑓 𝑙𝑜𝑤(𝑥) = 1. On the contrary, 𝑥 ≥ 2 is a valid trigger
formula.

Given a valuation 𝜈, a flow 𝑓 𝑙𝑜𝑤 and a trigger 𝜑, we define the function time to trigger or 𝑡 𝑡 𝑡(𝜈, 𝑓 𝑙𝑜𝑤, 𝜑)
to return the minimum time required to satisfy the trigger 𝜑 if it exists and ∞ otherwise. This definition
is extended to configurations ⟨𝑙 , 𝜈 , trig⟩ to return the minimum time required to satisfy any of the
formulas if such a time exists:

𝑡 𝑡 𝑡(⟨𝑙 , 𝜈 , trig⟩) = min{ 𝑡 𝑡 𝑡(𝜈, 𝑓 𝑙𝑜𝑤, trig(𝑖)) ∣ 𝑖 ∈ 𝐴𝑔𝑡}.

The definition of legal transitions in HGT is more restrictive than that in hybrid games. A transition
is ⟨𝑙 , 𝜈 , trig⟩→ ⟨𝑙′, 𝜈′, trig′⟩ legal if and only if it fulfils the following conditions:

• ⟨𝑙 , 𝜈⟩→ ⟨𝑙′, 𝜈′⟩ is legal in the hybrid game,

• a time transition ⟨𝑙 , 𝜈 , trig⟩
𝑡
Ð→ ⟨𝑙 , 𝜈[𝑓 𝑙𝑜𝑤(𝑙), trig], trig⟩ does not change the triggers function trig,

and 𝑡 ≤ 𝑡𝑡 𝑡(⟨𝑙 , 𝜈 , trig⟩), and
• an edge transition ⟨𝑙 , 𝜈 , trig⟩

𝑒
Ð→ ⟨𝑒𝑛𝑑(𝑒), 𝜈[𝑗𝑢𝑚𝑝(𝑒)], trig′⟩ if 𝜈 ⊧ 𝑡𝑟 𝑖𝑔(𝑖) for the agent 𝑖 ∈ 𝐴𝑔𝑡 to

blame for the transition.

Along with each edge transition, each player 𝑖 gets to choose a new trigger 𝜑𝑖 ∈ 𝐹𝑜𝑟𝑚𝑇 𝑟 𝑖𝑔 creating a new
trigger function mapping 𝑡𝑟 𝑖𝑔′(𝑖) = 𝜑. Similar to [10], if more than one trigger is satisfied at the same
time, the agent who gets to take an action is chosen at random.

3.0.1. Example

We go back to the example shown in Figure 1. In the current configurations, the green robot has the
trigger:

𝑔𝑟𝑒𝑒𝑛.𝑝𝑜𝑠 = 𝑖𝑛𝑡𝑒𝑟 𝑠𝑒𝑐𝑡 𝑖𝑜𝑛(ℎ1, 𝑣4) ∨ free-ahead(𝑔𝑟𝑒𝑒𝑛.𝑝𝑜𝑠) ≤ braking-distance(𝑔𝑟𝑒𝑒𝑛.𝑠𝑝𝑑)

The orange robot’s trigger is similar but has 𝑖𝑛𝑡𝑒𝑟 𝑠𝑒𝑐𝑡 𝑖𝑜𝑛(ℎ2, 𝑣3).
In this example, we can notice that robots (agents) do not need to calculate the time needed for the

trigger to be satisfied when selecting one. Another observation is that a small set of trigger formulas is
often sufficient for many systems. This feature makes reasoning about the system significantly easier.

Remark 2. Contrary to guards and invariants, triggers are not part of the game structure but rather part
of the players’ strategies. A player could choose different triggers in the same location (see Example 3.0.1).
While it is possible to extend the game structure by adding more locations and more restrictive guards and
invariants to embed the triggers into the game structure, this is not always possible with a finite set of
locations.

Winning Conditions: We adopt the winning conditions from [10]. The idea of these winning
conditions is that an agent cannot win by preventing time from progressing. A play is a winning
play for agent 𝑖 if time diverges 𝑡𝑑 and the play fulfils their goal 𝜙𝑖 or if time converges 𝑡𝑐, but the
agent 𝑖 is not to blame (𝑏𝑙𝑎𝑚𝑒𝑙𝑒𝑠𝑠𝑖) for the time convergence, i.e. the agent 𝑖 only takes a finite number
of actions during the entire play. The set of winning plays for agent 𝑖 with the desired outcome 𝜙𝑖
is (𝑊𝐶(𝜙𝑖) ∩ 𝑡𝑑) ∪ (𝑏𝑙𝑎𝑚𝑒𝑙𝑒𝑠𝑠𝑖 ⧵ 𝑡𝑑), where 𝑊𝐶(𝜙) is the set of plays that fulfils 𝜙. As noted in [10],
according to these winning conditions, both agents can lose in a two-agent game where one agent
has the goal 𝜙 and the other ¬𝜙. This is when the two agents infinitely take turns blocking time from
progressing. I.e. time converges, and neither agent is 𝑏𝑙𝑎𝑚𝑒𝑙𝑒𝑠𝑠.
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Figure 2: Time-abstract discrete game structure.

4. Discretizing a Hybrid Game with Triggers

In this section, we show an intuitive way to define a discrete game, such that agent 𝑖 ∈ 𝐴𝑔𝑒𝑛𝑡 has a
winning strategy in the HGT if and only if the same 𝑖 has a winning strategy in the discrete game. The
intuition of the discrete game is to skip any time steps where no triggers are satisfied. This allows
time to move in discrete steps. At any configuration ⟨𝑙 , 𝜈 , trig⟩ with 𝜈 ⊭ trig(𝑖) for all 𝑖 ∈ 𝐴𝑔𝑡, the game
can progress by 𝑡 𝑡 𝑡(⟨𝑙 , 𝜈 , trig⟩). If a trigger is satisfied, any enabled edge can be taken and the trigger
function gets updated.

Due to space limitations, we only briefly describe the discrete game in this paper.
The discrete game is structured as a concurrent game structure (CGS) [14]. The players are the agents

of the HGT 𝐴𝑔𝑡 with the addition of the player 𝑅𝑎𝑛𝑑𝑜𝑚 ∉ 𝐴𝑔𝑡 to select the agent who gets to take an
action when more than one trigger is satisfied. While only one action is taken in each step, the game
is concurrent to allow all agents to select new triggers simultaneously. The actions available for the
agents are 𝐴𝑐𝑡 × 𝐹𝑜𝑟𝑚𝑇 𝑟 𝑖𝑔. The actions available for 𝑅𝑎𝑛𝑑𝑜𝑚 are the set 𝐴𝑔𝑡.

The set of states 𝑆 of the discrete game is defined inductively:

• 𝑠0 = ⟨𝑙0, 𝜈0, trig0⟩ ∈ 𝑆 is the initial state.
• If the state 𝑠 = ⟨𝑙 , 𝜈 , trig⟩ ∈ 𝑆, then:

– if no trigger is satisfied 𝜈 ⊭ trig(𝑖) for all 𝑖 ∈ 𝐴𝑔𝑡 and 𝑡 𝑡 𝑡(⟨𝑙 , 𝜈 , trig⟩) ∈ R≥0, then
⟨𝑙 , 𝜈[𝑓 𝑙𝑜𝑤(𝑙), 𝑡 𝑡 𝑡(⟨𝑙 , 𝜈 , trig⟩)], trig⟩ ∈ 𝑆,

– otherwise for every 𝑒 ∈ 𝐸⊥ enabled at 𝑠 and for every function trig′ ∶ 𝐴𝑔𝑡 → 𝑇 𝑟𝑖𝑔𝑔𝑒𝑟, the
state ⟨𝑒𝑛𝑑(𝑒), 𝜈[𝑎𝑠𝑠𝑖𝑔𝑛(𝑒)], trig′⟩ ∈ 𝑆.

A time-abstract game is visualized in Figure 2, where the game evolves only based on the players’
choices.

Given that the number of edges 𝐸⊥ is finite and the number of trigger formulas is countable [11], each
layer of the tree is countable. The state space of the entire discrete game is, therefore, countable. Each
discrete game state is labelled with formulas that its valuation satisfies and are relevant to the agents’
winning conditions. These formulas serve as atomic propositions in the discrete game. Additionally, the
states are labelled according to their position in the tree. We use a set of atomic propositions inspired
by [10] to prevent agents from winning by blocking the passing of time. The boolean proposition 𝑡 𝑖𝑐𝑘
is true if the global time has passed an integer value compared to the state’s parent in the tree. The
atomic propositions 𝑏𝑙𝑎𝑚𝑒𝑖 for 𝑖 ∈ 𝐴𝑔𝑡 express the agent whose action reached this state.

A play is winning for an agent 𝑖 if (1) the play satisfies the desired outcome 𝜙 (expressed as a temporal
property) and has an infinite number of states marked with 𝑡 𝑖𝑐𝑘 or (2) the play has a finite number of
states marked with 𝑡 𝑖𝑐𝑘 and a finite number of states marked with 𝑏𝑙𝑎𝑚𝑒𝑖. The existence of a winning
strategy for the agent 𝑖 can be then expressed in the notation of ATL* [14] as follows:

⟪{ 𝑖}⟫(𝜙 ∧◻◇ 𝑡 𝑖𝑐𝑘) ∨ (◇◻¬𝑡𝑖𝑐𝑘 ∧◇◻¬𝑏𝑙𝑎𝑚𝑒𝑖) (2)
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This reduces the winning conditions in a hybrid game with triggers to an ATL* model checking problem
over countable state space. This is shown to be decidable in [15, 16].

5. Discussion and Conclusion

Extending hybrid games with triggers has multiple advantages and applications beyond the decidable
fragment of hybrid games brought on by triggers.

In addition to the significant decidability results, triggers could help improve system understandability.
An AI system, for instance, could be trained to choose (or form) a trigger formula and not act again until
this formula is satisfied. Such a feature would have major benefits to AI verification and explainability.

In summary, hybrid games with triggers (HGT) offer a powerful framework for reasoning about and
verifying multi-agent hybrid systems. We show that by incorporating agents’ rationale into the game
model, HGT can effectively reduce a hybrid game to a decidable discrete game without restricting its
continuous or discrete dynamics.
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1. Context and Motivations

In the context of Industry 4.0, flexible manufacturing is especially essential for developing
future factories with enhanced planning, scheduling, and control [1]. The quick and effective
adaptation in the production line in response to customers’ requirements or facing unwanted
situations will considerably promote flexibility in manufacturing. For instance, due to the
COVID-19 crisis1, some companies have been re-purposing their production lines to join the
fight against the pandemic2 (e.g., perfumes to hand sanitizers and vehicles to ventilators). The
question is how the human expert who runs the factory can know if the currently available
resources (machines, tools, equipment, and technicians) can quickly and efficiently switch to a
specific production process based on new work orders [2].

Similar disruptions may arise from extreme weather, longer-term climate change, declining
international order, economic crises, changing societal priorities, cyber threats, or terrorism.
Furthermore, flexibility in the manufacturing industries is more critical than ever to tackle
ever-growing product variability, supply chain volatility, and unpredictability of customer
requirements. Product life cycles are becoming more and more dynamic; also, at the same
time, the number of product variants continues to grow. There is a need for more flexible,
trustworthy, and efficient manufacturing processes.Traditional manufacturing paradigms such
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as lean manufacturing, just-in-time production, and KANBAN 3 systems often struggle to adapt
to unforeseen disruptions. These systems can fall into a "rupture condition" when faced with
unexpected challenges like pandemics, economic crises, or cyber threats. Rapid reconfiguration
of operations highlights the need for flexibility in manufacturing to manage product variability,
supply chain volatility, and unpredictability of customer demand.

Most production planning still depends on industry standards, best practices, manufacturing
know-how, and machinists’ experiential knowledge. Despite the advent of Artificial Intelligence
(AI), industries still depend on human expertise to make process planning decisions in an
unprecedented situation because of uncertain or low expectations of AI investments (Trust).
Personal judgment overrides AI-based decision-making (Human-reasoning).

However, human experts will only trust and accept AI results if the automated decision-
making process is transparent [3][4]. If the AI system decides that a production step or plan
matches or does not match the capabilities of a particular machine, the human expert should
understand why this decision is made (i.e., which of the machine’s capabilities leads to such
a decision). Accordingly, a trustworthy AI, commonly called explainable AI (XAI) [5], should
be able to explain why a particular decision was reached in a way that human experts can
understand, for example, in the case of real-time decision-making for manufacturing operations,
why some processes were performed, what process is currently being performed, and what
processes should occur in the future. However, the explainability of the AI model standalone is
not enough; decision logic must also be transparent and grounded in interpretable knowledge
structures to ensure accurate understanding, paving the way for integrating semantics alongside
these models.
Semantics is the study of meaning [6]; it corresponds to providing structured and meaningful
explanations that are not only data-driven but also align with real-world concepts. Ontologies are
crucial to providing this semantic structure and adding context to the explanations. Ontologies
are defined as an explicit formal semantic representation of knowledge through logical axioms
[7].

The use of semantics in explaining various types of supervised and unsupervised learning
models was presented by Seeliger et al. [8]. In a narrower scope, Bianchi et al. [9] reviewed
methods of embedding knowledge graphs in ML models to achieve explainability. Regarding
the quality of the explanations, past research in behavioral psychology [10][11] showed that
three qualities make the explanations more intuitive for humans. Such explanations must
be more straightforward in that they include fewer general reasons, mention well-known
events as reasons, and be coherent and consistent with prior knowledge. This stresses the
need to adopt XAI techniques that are not solely data-driven (statistical learning) but embed
semantic-driven symbolic reasoning in the prediction models from the ground up. Research is
scarce in this direction, with only a handful of other projects targeting XAI-based hybrid AI for
manufacturing, such as AI4EU444or XMANAI5. Humans expect explainable decisions based
on what they consider commonsense (i.e., simple facts about people and everyday life, data
evidence, and causal reasoning).

3https://leanmanufacturingtools.org/kanban/
4https://www.ai4europe.eu/
5https://ai4manufacturing.eu/
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Commonsense knowledge (CSK) explanation is the most meaningful and sought-after expla-
nation technique [12]. According to the state of the art, incorporating and implementing CSK
capabilities into AI can enhance the overall manufacturing potential and accelerate the growth
of AI applications in the industry [13]. However, representing CSK related to manufacturing is
challenging [14]. In the literature, significant progress has been made in four areas related to
CSK in AI, mainly reasoning about taxonomic categories, logic, time and space, and actions
[15].

Yet, there seems to be no CSK for the industry that integrates all main aspects of manufacturing
process requirements. The manufacturing commonsense knowledge (MACS) should cover
generic manufacturing background knowledge that human experts, such as machinists, planners,
and shopfloor managers, carry as part of their experience to know or assume to understand
and reason about information (or situation) that they are dealing with (e.g., a machine needs
some kind of energy, a machine can breakdown, the production process needs raw materials,
etc.). Generating commonsense explanations requires integrating richer domain knowledge
[16] represented through ontologies.

The ontologies should cover production-relevant domains, including machine capabilities,
production process, product specifications, raw materials, etc.

We examine current methods for manufacturers to increase transparency in AI system
decision-making as a state of the art methodology structure shown in Fig.1. Two promising
areas of XAI are ontology-based (O-XAI) and semantic-based (S-XAI), which use semantic
information to provide human-readable explanations of AI decisions. Translating AI algorithm
decision paths to meaningful explanations using semantics, O-XAI, and S-XAI helps humans
identify cross-cutting concerns influencing AI system decisions. We discuss the pros and cons
of using O-XAI and S-XAI systems in manufacturing and future research potential to guide
researchers and practitioners in utilizing these explainable systems for decision-making [18].

Figure 1: Semantics based XAI in manufacturing
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"CSK and Hybrid AI for Trustful and flexible manufacturing 4.0" (Chaikmat 4.0)6 is a research
project funded by the French National Agency of Research ANR that aims to add flexibility and
transparency to manufacturing through trustful automatic decision.

In the context of flexible manufacturing, the selection of resources must also consider the
dynamically changing conditions of the shop floor, including factors such as the age of the
machines, maintenance histories, and the availability of operators. These considerations are
crucial to determining the actual performance of machines and equipment. CHAIKMAT’s core
objective is to evaluate whether available machines can execute specific production processes
effectively.

The project seeks to add flexibility and transparency to manufacturing through reliable
automatic decision-making systems. These systems are designed to provide human experts
with meaningful explanations about decisions, using MACS to make the process clear and
understandable. To meet these challenges, CHAIKMAT,s proposes a hybrid approach that
bridges the gap between human expertise and AI-based decision-making. This strategy proposes
efficient resource use and enhanced industrial flexibility, laying the groundwork for more
advanced manufacturing operations [17].

2. Thesis Objectives

The primary objective of this thesis, within the scope of the project, is to investigate the use
and effects of ontology-based models in manufacturing in the context of semantic reasoning,
explainability, and efficient formalization of machine capabilities. The focus is primarily on
robotics, with the intention of improving the explainability of how robots are assigned tasks
based on their capabilities. This involves developing and validating ontological models to en-
capsulate MACS and robotics capabilities for decision-making and explainability. The following
are the objectives that have been outlined below:

• Formalization of machine specifications that include capabilities, capacities, functions,
quality, and process characteristics, focusing on robotics.

• Establish a framework for identifying MACS patterns, extracting MACS, formalizing
MACS using standard vocabulary, converting them into semantic rules, and leveraging
MACS patterns within decision-making processes.

• Utilization of machine capabilities and MACS patterns, alongside a neural network frame-
work, to explain whether an existing set of machines can perform a specific task or not
based on robot capabilities.

3. Research Questions

Developing methods for utilizing machine specifications and MACS patterns, along with inte-
grating a semantics-based explainable AI (S-XAI) framework, is crucial to achieving the primary
objectives of this thesis. These elements will enhance decision-making processes, increase user

6https://chaikmat-anr.uttop.fr
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trust, and provide transparency. The following research questions have been formulated to
guide this investigation:

• How can we formalize key notions such as Capability, Capacity, Function, Quality, and
Process Characteristics in the context of robotics?

• How can MACS be extracted, formalized, and integrated into decision-making processes
to enhance explainability?

• How can ontologies and knowledge graphs can facilitate the creation of explanations that
align with human understanding while enhancing the use of S-XAI in manufacturing
decision-making processes?

4. Contribution

This thesis presents three critical contributions to improving the explainability of the decision-
making process in manufacturing by integrating robotics capabilities, MACS, and S-XAI.

Figure 2: Robot Capability Ontology

Our first contribution is the development of the Robotic Capability Ontology (RCO) [19], an
application ontology specifically designed to model robotic capabilities [19]. RCO utilizes the
Manufacturing Service Description Language (MSDL) [20], a domain reference ontology created
for manufacturing services and aligned with the Basic Formal Ontology (BFO) [21], Industrial
ontology Foundry (IOF) [22], Information Artifact Ontology (IAO) [23], and Relations ontology
(RO) [24] as shown in Fig,2. MSDL’s modular structure and domain-neutral classes allow RCO
to describe and expand upon robotic capabilities accurately. This enables the design of an
ontological model that precisely captures robotic specifications from its specification manual
as advertised capabilities to actual capabilities in an operational environment as operational
capabilities.

Our second contribution introduces the concept of MACS. We propose a methodology for
identifying MACS patterns, extracting, formalizing, and modeling this knowledge, and a stan-
dardized vocabulary that organizes MACS into semantic rules, as shown in Fig.3. These semantic
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Figure 3: Manufacturing Commonsense Knowledge

rules are then converted into schema languages such as SPARQL and Datalog rules, which are
used to create a MACS Knowledge Graph (MACS-KG) to demonstrate the applicability of the
proposed method.

Our third contribution is developing a (S-XAI) framework as shown in Fig.4. that incorporates
a neural network model trained on historical data about different tasks to predict robotic
operational capabilities such as ’Repeatability’ and ’Precision’ on a given set of coordinates for
a new task.

Figure 4: Semantic-XAI

Also, utilizing XAI techniques like Local Interpretable Model-Agnostic Explanations (LIME),
Partial Dependency Plots (PDP), and Permutation Features Importance (PF) for the prediction
of operational capabilities from neural networks alongside natural language explanations based
on MACS patterns, the system provides clear, logical, and understandable explanations for each
prediction.
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5. Summary

We propose an S-XAI framework to address the concern about explainability issues related to
the decision-making process in the manufacturing industry. The framework combines neural
networks for predictive analysis of robot operational capabilities with rule-based reasoning
grounded in MACS. This approach brings transparency and explainability to decision-making,
ensuring stakeholders can trust and understand automated decisions.

A vital feature of the framework is the ability to integrate symbolic and sub-symbolic reason-
ing paradigms, enabling real-time, explainable decisions in manufacturing environments. By
incorporating a neural network, the system will be scalable with the increasing data volume
and continuously improve through active learning. At the same time, the use of manufacturing
commonsense knowledge ensures that explanations provided to users are contextually relevant
and easy to comprehend, fostering user trust and system acceptance.
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Abstract
Various neural network verifiers have been developed to ensure that a neural network satisfies desired properties
after training. A promising approach for creating correct-by-construction machine-learnt models is to incorporate
explicit logical constraints into the training process via so-called differentiable logics. This paper provides an
overview of our research area, our preliminary results, as well as an outline of future research directions.
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1. Introduction

It has been shown that neural networks fail to learn background knowledge from data alone and are
susceptible to adversarial inputs [1, 2], which has implications for their use in safety-critical domains.

Numerous verifiers for neural networks have emerged in the past few years, such as Reluplex [3],
Marabou [4, 5], Branch-and-Bound [6], NNV [7], and 𝛼, 𝛽-CROWN [8–13], winner of the recent Neural
Network Verification Competitions (VNN-COMP) [14–17]. For an overview of state-of-the art verifiers,
we refer the interested reader to [18–21].

Verification of neural networks is typically limited to neural networks with fixed weights that have
ceased learning [22]. A step in the direction of correct-by-construction neural networks are so called
differentiable logics, used to incorporate logical constraints into the machine learning process.

2. Background

Machine learning. In gradient-based machine learning, optimal parameters 𝜃+ (such as neural
network weights) are determined by minimising a loss function, L, which quantifies the error between
the predicted output and the desired output. This optimisation is typically achieved using gradient
descent methods. The goal is to find the set of parameters 𝜃+ that minimises the loss function, formally
expressed as

𝜃+ = argmin𝜃 L(𝑥, 𝑦), (1)

where 𝑥 represents the input data and 𝑦 denotes the corresponding desired output.

Differentiable logics. The idea of learning with constraints is to incorporate a logical constraint 𝜙
into this optimisation process by translating the logical constraint into an additional loss term L𝜙.

𝜃+ = argmin𝜃 L(𝑥, 𝑦) + 𝜆L𝜙(𝑥, 𝑦). (2)

Note that the additional loss term introduces a new hyperparameter 𝜆 that is responsible for balancing
the different loss terms. As explained in Section 3, in our experimental evaluation [23] we used the
adaptive loss-balancing approach GradNorm [24] in order to find close-to-optimal values for 𝜆.
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Various translations that map logical constraints into real-valued, differentiable functions have been
defined in the literature, such as semantic loss [25], DL2 [26], designed specifically for incorporating
constraints into neural networks, or fuzzy logic based ones [27–30], which exploit the fact that fuzzy
logics are real-valued logics that often use operators that happen to be differentiable-almost-everwhere.

Specialised network architectures. Note that incorporating logical constraints into the machine
learning pipeline via additional loss terms as done in Eq. (2) does not guarantee constraint satisfac-
tion; other approaches exist that incorporate logical constraints into the network architecture, such
as proposed by Li and Srikumar [31], DeepProbLog [32], Logic Tensor Networks (LTNs) [33, 34],
MultiPlexNet [35], CNN [36], and CNN+ [37].

3. Contributions to Date

The theory of these differentiable logics is well-studied [38–41] in the literature with respect to various
interesting properties, such as (1) the shadow-lifting [42] property of a conjunction 𝑥 ∧ 𝑦, which requires
the truth value of the conjunction to increase when the truth value of one of its contituents increases,
(2) whether implication operators admit classical logic reasoning such as Modus Ponens and Modus
Tollens [39], and (3) the logical consistency [38] of operators, which looks at the maximum truth value
obtainable for tautologies when using certain operators.

Given the wide range of possible logic translations available, our initial research question was: what
is the optimal translation for use in training?

To address this question, we provide in [23] an experimental comparison of differentiable logic
operators. Additionally, we provide a Python implementation [43] of various differentiable logics in
PyTorch [44], implemented in a way that makes it easy to train any neural network on any dataset with
arbitrary constraints.

In order for our experimental comparison to be as fair as possible, we utilised Projected Gradient
Descent (PGD) [45] to use a constraint counterexample in training as initially suggested by [26], which
allows each logic to have the most impact on the learning process, and additionally we use the adaptive
loss-balancing approach GradNorm [24] in order to estimate the parameter 𝜆 from Eq. (2) to balance
the different loss terms, allowing each logic to perform at its best.

Experimental results. We obtained somewhat surprising results: while we expected to confirm
theoretic results from the literature, we found that shadow-lifting conjunctions were not necessarily
the best choice; neither were those implications that closely follow Modus Ponens and Modus Tollens
reasoning. In general, training with any differentiable logic will lead to improved constraint satisfaction
(albeit at an expense of prediction accuracy, as reported previously by Tsipras et al. [46]). However, the
performance of the differentiable logics depends highly on the specific task at hand.

For example, we compared the performance of five different logic translation for training a neural
network on the German Traffic Sign Recognition Benchmark (GTSRB) [47] to satisfy the constraint
“the sum of probabilities of all elements in a group of related traffic signs should either be very high or
very low”. Here, we consider groups of related traffic signs (e.g. the group of all speed limit signs) in
order to add background knowledge into the network.

As can be seen in Fig. 1, training with any differentiable logic leads to improved constraint accu-
racy and reduced prediction accuracy, however, the difference between the different logics is not as
pronounced as expected from their theoretical properties.

Conclusions for future research. Instead of trying to find a single best one-size-fits-all differentiable
logic that should be used in all scenarios, it might prove to be more fruitful to investigate what logical
constraints mandate what properties the logic translation should exhibit. In the following section, we
collate some interesting research areas which we have identified and which we plan to investigate in
the future.
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Figure 1: Training a network to satisfy a logical constraint on GTSRB with different logics. Surprisingly, the
best-performing logic is the Gödel fuzzy logic, despite not having favourable theoretical properties such as
shadow-lifting. Here, “Prediction Accuracy” is the percentage of correct predictions, and “Constraint Accuracy”
the percentage of the constraint being satisfied.

4. Areas for Future Work

Specifications for machine learning. A common problem in the machine learning context is the
lack of well-defined, general-purpose specifications [48–50] beyond often-used properties such as local
robustness, which requires the neural network to be stable against slight perturbations to an input.

Additionally, despite there being complete verification techniques based on SMT or abstract inter-
pretation, these require being able to specify a meaningful region of the input space. This is often
infeasible in all but the most low-dimensional, interpretable settings such as the verification [3] of
the experimental neural network compression [51] of the airborne collision avoidance system ACAS
Xu [52], where meaningful regions of the input space can be expressed via constraints on the position
and velocities of different aeroplanes.

For high-dimensional input spaces such as encountered in image classification, distinguishing mean-
ingful images from noise is usually impossible, and verification is therefore usually limited to point-wise
verification, which cannot provide any guarantees for the network behaviour on unseen data.

Going forward, it might prove to be beneficial to explore types of general-purpose properties (such as
robustness or monotonicity) one might expect a neural network to satisfy across various applications.

Expressivity of differentiable logics. Logical constraints used in training are usually expressed
in propositional logic, as in the ROAD-R dataset [53] for autonomous driving, which incorporates
background knowledge such as ¬(Pedestrian ∧ Cyclist) or ¬(Traffic light green ∧ Traffic light red) into
video frames. These constraints are sufficient to correct the network predictions if they do not align
with the background knowledge, however, the authors note that future extensions of the dataset will
investigate more expressive properties beyond propositional logic.

While properties such as local robustness [54] around point 𝑥0 are usually expressed as

∀𝑥. ||𝑥 − 𝑥0||∞ ≤ 𝜖 → ||N (𝑥) −N (𝑥0)||∞ ≤ 𝛿, (3)

the universal quantification is normally handled outside of the constraints by employing PGD to approx-
imate the worst possible perturbation in the neighbourhood of 𝑥0 as initially suggested by Fischer et al.
[26], however, a unifying approach capable of handling general universal (and existential) quantifiers is
provided by Ślusarz et al. [40].

Going beyond first-order logic, especially in contexts such as video or natural language processing,
one might like to employ temporal properties to model time-dependent behaviours. There are already
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differentiable temporal logics [42, 55–57]. We plan to investigate the ways in which these logics differ
and identify the strengths and weaknesses of each.

Additionally, Farrell et al. [50] suggest there could be a need for probabilistic properties. To this end,
approaches have been developed such as DeepProbLog [32] that allow for incorporating probabilistic
constraints into neural networks.

Certified training. Using PGD to find the worst perturbation around a point as done for Eq. (3)
does not provide any guarantees as it minimises a lower bound on the worst-case loss [19]. Instead
of finding a worst perturbation, it would be interesting to investigate approaches based on certified
training such as proposed by [58–61].

This area will be the immediate focus of our work, as we expect it to provide a solid foundation that
all subsequent research efforts into expressive specifications and logics can benefit from.

Acknowledgments

This publication has emanated from research conducted with the financial support of Science Foundation
Ireland under grant number 20/FFP-P/8853.

References

[1] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, R. Fergus, Intriguing
properties of neural networks, 2014. doi:10.48550/arXiv.1312.6199. arXiv:1312.6199.

[2] I. J. Goodfellow, J. Shlens, C. Szegedy, Explaining and Harnessing Adversarial Examples, 2015.
doi:10.48550/arXiv.1412.6572. arXiv:1412.6572.

[3] G. Katz, C. Barrett, D. L. Dill, K. Julian, M. J. Kochenderfer, Reluplex: An Efficient SMT Solver for
Verifying Deep Neural Networks, in: R. Majumdar, V. Kunčak (Eds.), Computer Aided Verification,
Lecture Notes in Computer Science, Springer International Publishing, Cham, 2017, pp. 97–117.
doi:10.1007/978-3-319-63387-9_5.

[4] G. Katz, D. A. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim, P. Shah, S. Thakoor, H. Wu,
A. Zeljić, D. L. Dill, M. J. Kochenderfer, C. Barrett, The Marabou Framework for Verification and
Analysis of Deep Neural Networks, in: I. Dillig, S. Tasiran (Eds.), Computer Aided Verification,
Lecture Notes in Computer Science, Springer International Publishing, Cham, 2019, pp. 443–452.
doi:10.1007/978-3-030-25540-4_26.

[5] H. Wu, O. Isac, A. Zeljić, T. Tagomori, M. Daggitt, W. Kokke, I. Refaeli, G. Amir, K. Julian, S. Bas-
san, P. Huang, O. Lahav, M. Wu, M. Zhang, E. Komendantskaya, G. Katz, C. Barrett, Marabou
2.0: A Versatile Formal Analyzer of Neural Networks, 2024. doi:10.48550/arXiv.2401.14461.
arXiv:2401.14461.

[6] R. Bunel, I. Turkaslan, P. Torr, M. Pawan Kumar, J. Lu, P. Kohli, Branch and bound for piecewise
linear neural network verification, Journal of Machine Learning Research 21 (2020).

[7] H.-D. Tran, X. Yang, D. Manzanas Lopez, P. Musau, L. V. Nguyen, W. Xiang, S. Bak, T. T. Johnson,
NNV: The Neural Network Verification Tool for Deep Neural Networks and Learning-Enabled
Cyber-Physical Systems, in: S. K. Lahiri, C. Wang (Eds.), Computer Aided Verification, Lecture
Notes in Computer Science, Springer International Publishing, Cham, 2020, pp. 3–17. doi:10.1007/
978-3-030-53288-8_1.

[8] H. Zhang, T.-W. Weng, P.-Y. Chen, C.-J. Hsieh, L. Daniel, Efficient Neural Network Robust-
ness Certification with General Activation Functions, 2018. doi:10.48550/arXiv.1811.00866.
arXiv:1811.00866.

[9] K. Xu, Z. Shi, H. Zhang, Y. Wang, K.-W. Chang, M. Huang, B. Kailkhura, X. Lin, C.-J. Hsieh,
Automatic Perturbation Analysis for Scalable Certified Robustness and Beyond, 2020. doi:10.
48550/arXiv.2002.12920. arXiv:2002.12920.

25



[10] K. Xu, H. Zhang, S. Wang, Y. Wang, S. Jana, X. Lin, C.-J. Hsieh, Fast and Complete: Enabling
Complete Neural Network Verification with Rapid and Massively Parallel Incomplete Verifiers,
2021. doi:10.48550/arXiv.2011.13824. arXiv:2011.13824.

[11] S. Wang, H. Zhang, K. Xu, X. Lin, S. Jana, C.-J. Hsieh, J. Z. Kolter, Beta-CROWN: Efficient Bound
Propagation with Per-neuron Split Constraints for Complete and Incomplete Neural Network
Robustness Verification, 2021. doi:10.48550/arXiv.2103.06624. arXiv:2103.06624.

[12] H. Zhang, S. Wang, K. Xu, L. Li, B. Li, S. Jana, C.-J. Hsieh, J. Z. Kolter, General Cutting Planes for
Bound-Propagation-Based Neural Network Verification, 2022. doi:10.48550/arXiv.2208.05740.
arXiv:2208.05740.

[13] Z. Shi, Q. Jin, Z. Kolter, S. Jana, C.-J. Hsieh, H. Zhang, Neural Network Verification with Branch-and-
Bound for General Nonlinearities, 2024. doi:10.48550/arXiv.2405.21063. arXiv:2405.21063.

[14] S. Bak, C. Liu, T. Johnson, The Second International Verification of Neural Networks Com-
petition (VNN-COMP 2021): Summary and Results, 2021. doi:10.48550/arXiv.2109.00498.
arXiv:2109.00498.

[15] M. N. Müller, C. Brix, S. Bak, C. Liu, T. T. Johnson, The Third International Verification of Neural
Networks Competition (VNN-COMP 2022): Summary and Results, 2022. doi:10.48550/arXiv.
2212.10376. arXiv:2212.10376.

[16] C. Brix, S. Bak, C. Liu, T. T. Johnson, The Fourth International Verification of Neural Networks
Competition (VNN-COMP 2023): Summary and Results, 2023. doi:10.48550/arXiv.2312.16760.
arXiv:2312.16760.

[17] C. Brix, M. N. Müller, S. Bak, T. T. Johnson, C. Liu, First three years of the international verification
of neural networks competition (VNN-COMP), International Journal on Software Tools for
Technology Transfer 25 (2023) 329–339. doi:10.1007/s10009-023-00703-4.

[18] X. Huang, D. Kroening, W. Ruan, J. Sharp, Y. Sun, E. Thamo, M. Wu, X. Yi, A survey of safety
and trustworthiness of deep neural networks: Verification, testing, adversarial attack and defence,
and interpretability, Computer Science Review 37 (2020) 100270. doi:10.1016/j.cosrev.2020.
100270.

[19] C. Urban, A. Miné, A Review of Formal Methods applied to Machine Learning (2021). doi:10.
48550/arXiv.2104.02466. arXiv:2104.02466.

[20] C. Liu, T. Arnon, C. Lazarus, C. Strong, C. Barrett, M. J. Kochenderfer, Algorithms for Verifying
Deep Neural Networks, Foundations and Trends in Optimization 4 (2021) 244–404. doi:10.1561/
2400000035.

[21] A. Albarghouthi, Introduction to Neural Network Verification, 2021. doi:10.48550/arXiv.2109.
10317. arXiv:2109.10317.

[22] M. Kwiatkowska, Safety verification for deep neural networks with provable guarantees, in:
Leibniz International Proceedings in Informatics, LIPIcs, volume 140, 2019. doi:10.4230/lipics.
concur.2019.1.

[23] T. Flinkow, B. A. Pearlmutter, R. Monahan, Comparing Differentiable Logics for Learning with
Logical Constraints, 2024. doi:10.48550/arXiv.2407.03847. arXiv:2407.03847.

[24] Z. Chen, V. Badrinarayanan, C.-Y. Lee, A. Rabinovich, GradNorm: Gradient Normalization for
Adaptive Loss Balancing in Deep Multitask Networks, in: Proceedings of the 35th International
Conference on Machine Learning, PMLR, 2018, pp. 794–803. URL: https://proceedings.mlr.press/
v80/chen18a.html.

[25] J. Xu, Z. Zhang, T. Friedman, Y. Liang, G. V. den Broeck, A Semantic Loss Function for Deep Learning
with Symbolic Knowledge, 2018. doi:10.48550/arXiv.1711.11157. arXiv:1711.11157.

[26] M. Fischer, M. Balunovic, D. Drachsler-Cohen, T. Gehr, C. Zhang, M. Vechev, DL2: Training and
Querying Neural Networks with Logic, in: Proceedings of the 36th International Conference on
Machine Learning, PMLR, 2019, pp. 1931–1941.

[27] E. Giunchiglia, M. C. Stoian, T. Lukasiewicz, Deep Learning with Logical Constraints, in: Pro-
ceedings of the Thirty-First International Joint Conference on Artificial Intelligence, International
Joint Conferences on Artificial Intelligence Organization, Vienna, Austria, 2022, pp. 5478–5485.
doi:10.24963/ijcai.2022/767.

26



[28] Z. Li, Z. Liu, Y. Yao, J. Xu, T. Chen, X. Ma, J. Lü, Learning with Logical Constraints but without
Shortcut Satisfaction, in: The Eleventh International Conference on Learning Representations,
2022.

[29] H. He, W. Dai, M. Li, Reduced Implication-bias Logic Loss for Neuro-Symbolic Learning, 2023.
doi:10.48550/arXiv.2208.06838. arXiv:2208.06838.

[30] M. Stoian, E. Giunchiglia, T. Lukasiewicz, Exploiting T-norms for Deep Learning in Autonomous
Driving, in: CEUR Workshop Proceedings, volume 3432, 2023, pp. 369–380.

[31] T. Li, V. Srikumar, Augmenting Neural Networks with First-order Logic, in: A. Korhonen,
D. Traum, L. Màrquez (Eds.), Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, Association for Computational Linguistics, Florence, Italy, 2019, pp.
292–302. doi:10.18653/v1/P19-1028.

[32] R. Manhaeve, S. Dumancic, A. Kimmig, T. Demeester, L. De Raedt, DeepProbLog: Neural Proba-
bilistic Logic Programming, in: Advances in Neural Information Processing Systems, volume 31,
Curran Associates, Inc., 2018.

[33] L. Serafini, A. d’Avila Garcez, Logic Tensor Networks: Deep Learning and Logical Reasoning from
Data and Knowledge, 2016. doi:10.48550/arXiv.1606.04422. arXiv:1606.04422.

[34] S. Badreddine, A. d’Avila Garcez, L. Serafini, M. Spranger, Logic Tensor Networks, Artificial
Intelligence 303 (2022) 103649. doi:10.1016/j.artint.2021.103649. arXiv:2012.13635.

[35] N. Hoernle, R. M. Karampatsis, V. Belle, K. Gal, MultiplexNet: Towards Fully Satisfied Logical
Constraints in Neural Networks, Proceedings of the AAAI Conference on Artificial Intelligence
36 (2022) 5700–5709. doi:10.1609/aaai.v36i5.20512.

[36] E. Giunchiglia, T. Lukasiewicz, Multi-Label Classification Neural Networks with Hard Logical
Constraints, Journal of Artificial Intelligence Research 72 (2021) 759–818. doi:10.1613/jair.1.
12850.

[37] E. Giunchiglia, A. Tatomir, M. C. Stoian, T. Lukasiewicz, CCN+: A neuro-symbolic framework
for deep learning with requirements, Int. J. Approx. Reasoning 171 (2024). doi:10.1016/j.ijar.
2024.109124.

[38] M. M. Grespan, A. Gupta, V. Srikumar, Evaluating Relaxations of Logic for Neural Networks: A
Comprehensive Study, 2021. doi:10.48550/arXiv.2107.13646. arXiv:2107.13646.

[39] E. van Krieken, E. Acar, F. van Harmelen, Analyzing Differentiable Fuzzy Logic Operators, Artificial
Intelligence 302 (2022) 103602. doi:10.1016/j.artint.2021.103602. arXiv:2002.06100.

[40] N. Ślusarz, E. Komendantskaya, M. Daggitt, R. Stewart, K. Stark, Logic of Differentiable Logics:
Towards a Uniform Semantics of DL, in: EPiC Series in Computing, volume 94, EasyChair, 2023,
pp. 473–493. doi:10.29007/c1nt.

[41] R. Affeldt, A. Bruni, E. Komendantskaya, N. Ślusarz, K. Stark, Taming Differentiable Logics with
Coq Formalisation, 2024. doi:10.48550/arXiv.2403.13700. arXiv:2403.13700.

[42] P. Varnai, D. V. Dimarogonas, On Robustness Metrics for Learning STL Tasks, in: 2020 American
Control Conference (ACC), 2020, pp. 5394–5399. doi:10.23919/ACC45564.2020.9147692.

[43] T. Finkow, GitHub repository: tflinkow/comparing-differentiable-logics, 2024. URL: https://github.
com/tflinkow/comparing-differentiable-logics.

[44] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, S. Chintala, PyTorch: An Imperative Style, High-Performance
Deep Learning Library, in: Advances in Neural Information Processing Systems, volume 32,
Curran Associates, Inc., 2019. URL: https://proceedings.neurips.cc/paper_files/paper/2019/hash/
bdbca288fee7f92f2bfa9f7012727740-Abstract.html.

[45] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, A. Vladu, Towards Deep Learning Models Resistant
to Adversarial Attacks, 2018. URL: https://openreview.net/forum?id=rJzIBfZAb.

[46] D. Tsipras, S. Santurkar, L. Engstrom, A. Turner, A. Madry, Robustness May Be at Odds with
Accuracy, 2018. URL: https://openreview.net/forum?id=SyxAb30cY7.

[47] J. Stallkamp, M. Schlipsing, J. Salmen, C. Igel, The German Traffic Sign Recognition Benchmark:
A multi-class classification competition, in: The 2011 International Joint Conference on Neural

27



Networks, IEEE, San Jose, CA, USA, 2011, pp. 1453–1460. doi:10.1109/IJCNN.2011.6033395.
[48] S. A. Seshia, A. Desai, T. Dreossi, D. J. Fremont, S. Ghosh, E. Kim, S. Shivakumar, M. Vazquez-

Chanlatte, X. Yue, Formal Specification for Deep Neural Networks, in: S. K. Lahiri, C. Wang
(Eds.), Automated Technology for Verification and Analysis, volume 11138, Springer International
Publishing, Cham, 2018, pp. 20–34. doi:10.1007/978-3-030-01090-4_2.

[49] M. Leucker, Formal Verification of Neural Networks?, in: G. Carvalho, V. Stolz (Eds.), Formal Meth-
ods: Foundations and Applications, Lecture Notes in Computer Science, Springer International
Publishing, 2020, pp. 3–7. doi:10.1007/978-3-030-63882-5_1.

[50] M. Farrell, A. Mavridou, J. Schumann, Exploring Requirements for Software that Learns: A
Research Preview, in: A. Ferrari, B. Penzenstadler (Eds.), Requirements Engineering: Foundation
for Software Quality, Lecture Notes in Computer Science, Springer Nature Switzerland, 2023, pp.
179–188. doi:10.1007/978-3-031-29786-1_12.

[51] K. D. Julian, M. J. Kochenderfer, M. P. Owen, Deep Neural Network Compression for Aircraft
Collision Avoidance Systems, Journal of Guidance, Control, and Dynamics 42 (2019) 598–608.
doi:10.2514/1.g003724. arXiv:1810.04240.

[52] M. P. Owen, A. Panken, R. Moss, L. Alvarez, C. Leeper, ACAS Xu: Integrated Collision Avoidance
and Detect and Avoid Capability for UAS, in: 2019 IEEE/AIAA 38th Digital Avionics Systems
Conference (DASC), 2019, pp. 1–10. doi:10.1109/dasc43569.2019.9081758.

[53] E. Giunchiglia, M. C. Stoian, S. Khan, F. Cuzzolin, T. Lukasiewicz, ROAD-R: The autonomous
driving dataset with logical requirements, Machine Learning 112 (2023) 3261–3291. doi:10.1007/
s10994-023-06322-z.

[54] M. Casadio, E. Komendantskaya, M. L. Daggitt, W. Kokke, G. Katz, G. Amir, I. Refaeli, Neural
Network Robustness as a Verification Property: A Principled Case Study, in: S. Shoham, Y. Vizel
(Eds.), Computer Aided Verification, Lecture Notes in Computer Science, Springer International
Publishing, Cham, 2022, pp. 219–231. doi:10.1007/978-3-031-13185-1_11.

[55] Y. Xie, F. Zhou, H. Soh, Embedding Symbolic Temporal Knowledge into Deep Sequential Models,
in: 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021, pp. 4267–4273.
doi:10.1109/ICRA48506.2021.9561952.

[56] Z. Xu, Y. S. Rawat, Y. Wong, M. Kankanhalli, M. Shah, Don’t Pour Cereal into Coffee: Differentiable
Temporal Logic for Temporal Action Segmentation, in: Advances in Neural Information Processing
Systems, 2022.

[57] D. Li, M. Cai, C.-I. Vasile, R. Tron, Learning Signal Temporal Logic through Neural Network for
Interpretable Classification, in: 2023 American Control Conference (ACC), 2023, pp. 1907–1914.
doi:10.23919/ACC55779.2023.10156357.

[58] E. Wong, Z. Kolter, Provable Defenses against Adversarial Examples via the Convex Outer
Adversarial Polytope, in: Proceedings of the 35th International Conference on Machine Learning,
PMLR, 2018, pp. 5286–5295. URL: https://proceedings.mlr.press/v80/wong18a.html.

[59] E. Wong, F. Schmidt, J. H. Metzen, J. Z. Kolter, Scaling provable adversarial defenses, in: Advances
in Neural Information Processing Systems, volume 31, Curran Associates, Inc., 2018. URL: https:
//papers.nips.cc/paper_files/paper/2018/hash/358f9e7be09177c17d0d17ff73584307-Abstract.html.

[60] M. Mirman, T. Gehr, M. Vechev, Differentiable Abstract Interpretation for Provably Robust Neural
Networks, in: Proceedings of the 35th International Conference on Machine Learning, PMLR,
2018, pp. 3578–3586. URL: https://proceedings.mlr.press/v80/mirman18b.html.

[61] A. Raghunathan, J. Steinhardt, P. Liang, Certified Defenses against Adversarial Examples, 2020.
doi:10.48550/arXiv.1801.09344. arXiv:1801.09344.

28



Towards Logical Specification and Checking of Evasive
Malware
Andrei Mogage1,2, Dorel Lucanu1,∗

1Alexandru Ioan Cuza University, Iași, Romania
2Bitdefender, Iași, Romania

Abstract
The thesis proposes a new approach of combining formal methods and malware analysis for quickly determining
if an application has specific malicious capabilities. The proposed solution is a Formal Tainting-Based Framework
that uses a combination of binary instrumentation, taint analysis, and temporal logic in order to selectively extract
behavioral properties of a malware. These are then formalized in order to check if the application expresses
certain capabilities. The findings are accompanied by a concrete implementation, which proved effective and
efficient against real-life malware, as highlighted by an evaluation. Furthermore, the framework has been used
in actual cyber forensics investigations, reducing the time and efforts of security researchers. In this paper we
also investigate how the framework can be applied in the context of evasive malware, allowing us to bypass
anti-analysis techniques in order to reach the malicious core of the malware. This feature has not been previously
covered by our other papers.

Keywords
temporal logic, taint analysis, malware analysis, formal methods

1. Introduction

1.1. Context and Challenges

The purpose of this thesis is to combine knowledge from academia and expertise from the cyber-security
industry to enhance a critical task: malware analysis. This can be a complex process considering that
highly complex and evasive malware have been on an increasing trend for the last few years [1, 2, 3].

However, a rapid verification of a potential capability is more desired, in situations where quick triage
is necessary. For instance, a more useful and meaningful solution is to automatically get a verdict/hint
of what the program is capable of, e.g.: Does it steal data? Is it a ransomware? Moreover, it is very
helpful to know the arguments that led to that verdict. Knowing which semantic correlations have been
made in order to reach a verdict might allow us to determine the correctness of the assessment. For
instance, we want to know which chain of related events has led to the verdict that the program has
the capability of stealing data. This is in contrast with the AI-based approaches, e.g. machine learning,
where such correlations are merely statistical.

There are some problems that might interfere with this process:

• Obfuscation - This limits the usability of static analysis or even some dynamic analysis tools.
• Anti-analysis techniques - This limits or prevents the analysis, regardless of the analysis type,
depending on the techniques implemented.

• Traceability - While an analysis might capture the called APIs, such as a sandbox, there is no direct
correlation between passing the output of an API to the input of another. This happens because
the individual instructions are usually not traced, due to performance reasons (i.e., minimizing
overhead).
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The issue has also been the subject of extended research, both through academic [4, 5] and industry
contexts [6].

1.2. Contribution

Our contribution consists in a Formal Tainting-Based Framework (FTBF), which uses binary instru-
mentation to control an application, taint analysis to extract relevant behavioral properties into a
trace, a new temporal logic to analyze the tainted trace, Tainting-Based Logic (TBL), and a formally
described behavior (capability) that the user wishes to check. While taint analysis is more commonly
used to detect vulnerabilities or input reaching certain sinks, we use it to extract complex behavioral
properties, that are later formally checked against malicious capabilities. Even though we only include
the highlights in this paper, the entire framework is completely defined in [7] (submitted and accepted
at iFM 2024). To our best knowledge, this is the first time when dynamic instrumentation, taint analysis,
and temporal-logic-based checking are integrated into a formal framework for malware analysis. The
result is a sound confirmation of whether the application has a specific capability, ensured through the
formal checking process. The formalization component ensures that the results are sound, providing
accurate details, rather than educated guesses (e.g., based on naive static heuristics from sandbox reports).
Nonetheless, the system is built in such a fashion that it requires no knowledge of formal methods for a
user to be able to use it, but rather a basic understanding of how some capabilities can be implemented
at low-level.
In order to provide a concrete example of an ideal solution, we may refer to the task of an analyst

whose purpose is to determine whether the analyzed application possesses certain traits or exerts some
interesting behavior:

• Is it a ransomware? - i.e., encrypts files and asks for a ransom in return;
• Does it exfiltrate data? - i.e., transfers sensitive data without authorization;
• Does it deploy techniques to deter security solutions? - i.e., attempts to disrupt the activity of a
security solution in order to ensure the success of other malicious activities;

• Is it an Active Persistent Threat (APT)? - i.e., ensures the persistence over system reboot (or even
reinstall), keeps a low profile (hard to detect its resources - files, registries, processes), contacts
suspicious servers for further commands.

Assuming that the analysis tool can deter the anti-analysis techniques, thus managing to avoid
execution refusal, our extension will firstly taint sensitive data (API output, registers, memory) and
monitor its propagation towards the end of the execution. The tainting events(i.e., tainting and tracking)
will be formalized, by introducing predicates that express behavioral properties. Finally, we may devise
certain formulas that make use of temporal operators in order to check whether the analyzed application,
through its formalized output, has certain patterns of behavioral capabilities. This, of course, implies
a minimal knowledge of how certain attacks can be implemented, but the entire flow is effortless
and extendable. Furthermore, the entire process of formally defining rules can be simplified by using
artificial intelligence for obtaining hints regarding capabilities. The system is also accompanied by a
concrete implementation (for the Windows OS) and an evaluation process that proves its benefits. The
implementation has actually been integrated into two Dynamic Binary Instrumentation (DBI) tools,
Intel Pin [8] and COBAI [9]. The framework is sustained by experiments using actual malware families,
evaluating its efficiency in capturing various capabilities (e.g. code injection, encryption, deobfuscation,
privilege escalation). Moreover, the system has been used in real-life scenarios, during cyber forensics,
proving useful for speeding up the process of analysis and filtering data. Another important aspect is
providing the capability extraction features while handling anti-analysis techniques implemented by
evasive malware. This aspect has not been included in [7], but is discussed in Section 3.3, where we
combine FTBF with COBAI to achieve this.
In the following, we intuitively describe the formal framework in Section 2, along with necessary

elements for applying it towards malware analysis. We summarize our evaluation results against
malware families and discuss the transparency features in Section 3, and we conclude in Section 4.
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2. A Formal Tainting-Based Framework for Malware Analysis

The Formal Tainting-Based Framework (FTBF) uses Dynamic Binary Instrumentation (DBI) to instru-
ment the target application, while informing the taint analysis component of various events that occur
during execution (instrumented instructions, memory updates, etc.). According to a taint policy pro-
vided as input, some data will be tainted and monitored throughout the execution. All tainting-related
events are then formalized using Tainting-Based Logic (TBL) and placed into a formal tainted trace.
Lastly, this trace is checked against rules that specify capabilities (specified in TBL), which ultimately
provides a verdict whether the application has the capability described by the rule.
The syntax of TBL consists of three main categories of sentences:

1. behavioral patterns, whose instances describe behavioral properties of executions;
2. potential/capability patterns, whose instances describe capabilities of the executions;
3. rules, which relates behavioral properties and capabilities of an execution.

An example of a behavioral pattern is:

(TaintedAPI (CreateFile) ∧ X (Tainted(𝑇 )))
andthen PropToAPI (ReadFile, 𝑇 )

which, intuitively, describes that in the current state a file is created or accessed the first time, and it is
read at some later state. The parameter 𝑇 is the tainting tag used to track the file handle. Despite its
name, CreateFile is also used to open existing files. andthen is part of TBL and newly introduced,
and describes the fact that a property 𝜙2 occurs at a certain time in the future after another one 𝜙1. X is
borrowed from Temporal Logics and refers to the next state.
An example of a capability pattern is:

FileRead(T)

where the predicate describes the capability of a program to read the contents of a file, where the 𝑇
variable will be instantiated by a behavioral pattern (see the definition for capability rules below).

A simple example of rule is

(TaintedAPI (CreateFile) ∧ X (Tainted(𝑇 )))
andthen PropToAPI (ReadFile, 𝑇 )
⊢
FileRead(𝑇 )

which helps us to deduce that our program has the capability of reading the contents of a file. The
behavioral pattern is the same introduced earlier, where we expect a propagation of the taint symbol, 𝑇
(and its associated tainted data), from the CreateFile API to ReadFile. ⊧ is an entailment relation, i.e.,
𝐴 ⊧ 𝐵 means if A, then B.
FTBF has been introduced as a general framework for checking program capabilities. Our main

goal, however, is to channel its usage towards malware analysis. Specifically, to apply FTBF in those
scenarios where a specific malware capability (such as keylogging, encryption, or data ex-filtration)
needs to be quickly detected.
The requirements for doing so are related to taint policies and capability rules. We need to define

policies that capture factual behaviors related to malicious activities, along with rules that define a
behavioral pattern encoding a malicious capability. In doing so, we use the following sentences:

Behavioral Facts ∶ {Tainted ,Untainted , TaintedAPI , TaintedAPICond , PropToAPI ,
PropToAPICond , PropToReg,UntaintedReg, PropToMem,
UntaintedMem, TaintedMemAccess, TaintedCodeExecuted}.

Capabilities ∶ {𝐷𝑖𝑠𝑎𝑏𝑙𝑒𝑊 𝑖𝑛𝑑𝑜𝑤𝑠𝐸𝑣𝑒𝑛𝑡, 𝐶2𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛, 𝑅𝑎𝑛𝑠𝑜𝑚𝑤𝑎𝑟𝑒𝐵𝑒ℎ𝑎𝑣 𝑖𝑜𝑟 ,
𝐷𝑒𝑏𝑢𝑔𝑔𝑒𝑟𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛, 𝐷𝑖𝑠𝑎𝑏𝑙𝑒UAC, 𝑃𝑎𝑦 𝑙𝑜𝑎𝑑𝐷𝑒𝑜𝑏𝑓 𝑢𝑠𝑐𝑎𝑡𝑖𝑜𝑛,
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𝐶𝑜𝑑𝑒𝐼 𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛, 𝑃𝑟 𝑖𝑣 𝑖𝑙𝑒𝑔𝑒𝐸𝑠𝑐𝑎𝑙𝑎𝑡𝑖𝑜𝑛, 𝑆𝐺𝑋𝑆𝑢𝑝𝑝𝑙𝑦𝐶ℎ𝑎𝑖𝑛𝐴𝑡𝑡𝑎𝑐𝑘}
Constants ∶ {CreateFile, ReadFile, VirtualAlloc, …}∪

{ eax, rbx, esi, … }

The first category of constants refers to Windows APIs, whereas the latter describes CPU registers.

3. Evaluation

In this section, we present the potential of the analysis framework by testing it against a suite of
malicious applications.

3.1. Method

We have selected eight malware families and created one rule for each family, such that we will capture
different capabilities, depending on the target application. The selection process has been random, but
with a focus on selecting malware families that are still relevant (i.e., seen in recent attacks or that
represented a strong inspiration for subsequent cyber threats).
The number of samples for each family varies between 6 and 37, depending on their public avail-

ability. All applications have been collected from two publicly available sources: VirusTotal [10] and
Malpedia [11, 12]. Each malware family is briefly described below:

• Al-Khaser [13]: An application which deploys a myriad of malicious techniques, borrowed from
complex malware, in order for analysts to test analysis solutions. While not an actual malware (the
only one in this situation in our test suite), it is relevant for capturing anti-analysis capabilities;

• Avaddon [14]: A ransomware family initially seen in 2020, with a strong RaaS (Ransomware-
as-a-Service) model, which affected a high number of victims spanning multiple industries and
countries. Even if the RaaS has been shutdown in 2021, the malware is still being distributed
worldwide and several new ransomware families emerged later on and share common practices
and even source code [15];

• RokRat [16]: A Remote Administration Tool (RAT), first reported in 2017, RokRat is a malware
distributed in multiple malicious campaigns and makes use of numerous attack vectors and
techniques in order to infiltrate a victim and then start an entire chain of receiving and executing
commands. While it has not suffered significant changes at its core lately, it has been combined
with new techniques to ensure its success in affecting victims [17];

• Darkside [18]: A ransomware family renowned for high-impact attacks targeting large corpo-
rations and governments, culminating with the attack on the Colonial Pipeline in the United
States;

• CobaltStrike Beacon [19]: A beacon is a payload from Cobalt Strike [20] which mimics attacker
activities seen in the wild. However, beacons have been used directly in actual attacks as an
initial step for deploying other malware tools on the systems of affected victims;

• Phant0m [21]: A tool capable of tampering with the Event Logging Service integrated into the
Windows OS, resulting in the operating system not logging critical events that occur. This leads
to attacks that are more stealthy and harder to investigate;

• HermeticWiper [22]: A malware involved in cyber-attacks targeting Ukraine, emerged during the
recent war, which disrupts the functionality of systems;

• Makop [23]: An infamous ransomware family and group, which has been active for at least the
last 4 years.

For each malware category, we have verified one malicious capability:

• Al-Khaser - Debugger detection;
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• Avaddon - Disable User Account Control (UAC);
• RokRat - Code Injection;
• Darkside - C2 Communication;
• CobaltStrike Beacon - Deobfuscation;
• Phant0m - Disable Windows Event Logging;
• HermeticWiper - Privilege escalation;
• Makop - Ransomware Behavior.

All experiments have been conducted inside a virtual machine (using VMWare Workstation 16),
with a Windows 10 as guest with 8 GB of RAM, 4 cores and virtualization enabled, while the host uses
Windows 11 on an Intel i7-11800H CPU @2.30GHz and 32 GB of RAM.

3.2. Results

For simplicity, we have summarized the results for each test in Table 1. The tables contain the name of the
malware family, along with the duration (in seconds) necessary to analyze and capture the capabilities
described by the rules and the duration of a native execution. All experiments were successful (i.e.
the capability has been correctly identified). Moreover, each analysis instance was achieved under 30
seconds, except for a sample for Makop ransomware, where some anti-analysis tricks were deployed,
which slowed the analysis process.

Table 1
Summary of results

Malware Family Avg. Analysis (s.) Avg. Native execution (s.)

Al-Khaser 7.73 TIMEOUT
Avaddon 14.375 TIMEOUT
RokRat 22.69 19.72
DarkSide 15.87 14.68

CobaltStrike 4.13 TIMEOUT
Phant0m 6.22 1.22

HermeticWiper 9 TIMEOUT
Makop 20.42 TIMEOUT

These experiments bring forward the potential of such an analysis solution to quickly identify if a
program expresses a specific capability or not. Naturally, the analysis process will bring an additional
overhead compared with the program executing outside an execution environment. Because of this,
we have also tested the duration under native execution. However, while the analysis time represents
only duration until the capability is expressed, we could not verify at which exact moment the same
capability is expressed natively without tampering with the applications. Therefore, we have chosen to
estimate the total time necessary to complete the execution, with a provided timeout of 10 minutes.
This leads to three scenarios of comparison:

• TIMEOUT on native execution - this was caused by applications that either take longer than 10
minutes to complete their execution, or continue executing endlessly, e.g. waiting for network
commands or scanning possibly new files. This category only applies to native execution, while
all analysis instances ended successfully.

• Native duration is longer than analysis duration - this is directly related to the fact that the
execution of the analyzed program is terminated as soon as the capability has been expressed, as
an optimization technique.

• Native duration is shorter than analysis duration - this represents the overhead of the analysis
solution.
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Table 2
Evaluation scenarios per malware family

Malware Family TIMEOUT LONGER NATIVE LONGER ANALYSIS

Al-Khaser 15 0 0
Avaddon 8 0 0
RokRat 1 1 24
DarkSide 0 4 12

CobaltStrike 37 0 0
Phant0m 0 22 0

HermeticWiper 6 0 0
Makop 19 0 0

We have summarized how many of samples per malware family fall under these three scenarios
in Table 2.
Nonetheless, an actual real-life comparison is not with a native execution, but rather with the

effort, especially regarding the time consumed, of an analyst. Another important remark relates to the
generality of these rules, i.e. how well they can capture a capability. This is directly influenced by how
well a rule is constructed and if it considers multiple scenarios, because there might be multiple ways
of achieving an expecting results, e.g. by combining different APIs or instructions.

In this regard, a prerequisite for a user of this analysis solution is to have some general information on
such combinations that might lead to an expected output. Nonetheless, the effort required to construct
a rule, along with the analysis duration, are significantly lower than manually analyzing an application
or by filtering and correlating a myriad of results provided by other automated solutions, such as a
sandbox. Furthermore, the process of crafting rules for capturing capabilities can be simplified by using
Large Language Models (LLMs), as presented in [24]. The user can query a LLM for an overall idea of
how capabilities can be implemented, and then proceed with the formalization process.

3.3. Transparency

Although we have chosen Pin as the DBI component, we have also experimented with COBAI [9] as
well, due to its main focus on transparency, highly needed for evasive applications. This aspect has not
been previously discussed in [7], here is the first time we discuss the transparency of FTBF.
An analysis environment is considered ”transparent” if a malware is unable to detect its presence.

Usually, these attacks result in execution refusal or code executing outside the analysis environment.
Despite some reports stating that DBI might be unsuitable against evasive malware (e.g., [25]), our
empiric evaluation against malware or personally developed applications that deploy anti-analysis
techniques reveal that COBAI can be properly used against this category of malware. This also takes
into consideration various aspects of implementation details, Windows OS architecture, and malware
analysis in general. More details about this have been included in [9]. In order to ensure transparency
for both itself and the rest of the environment, COBAI deploys a series of heuristics based on anti-
analysis techniques seen in malware, but also in analysis-testing frameworks (such as Al-Khaser [13] or
Pafish [26]), or in academic literature [27, 28, 29]. We exemplify some of these heuristics below, where
we mention how a malware would try to detect the analysis process:

• System Artifacts: Querying the presence of certain sandbox or VM-specific artifacts, such as files
(i.e., hypervisor services), registries (i.e., sandbox configuration), network resources (i.e., IP or
MAC addresses), processes (i.e., those related with the virtual machine or sandbox), or hardware
properties (i.e., CPU virtualization flags);

• Debuggers: Scanning for a list of consecrated debugger names based on the list of active processes,
files, or the currently loaded modules;

• DBIs: Scanning the memory pages, threads, loaded modules, and other resources in order to
detect any possible anomaly;
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• Time-based Techniques: Using time for either measuring the time between certain commands
(which would be increased during the analysis, depending on the overhead), or verifying if the
time has been somehow accelerated (i.e., skipping sleep commands);

• Human Interaction: Verifying that certain events occur, that would be normally expected under a
legitimate scenario, such as cursor movement, mouse clicks, or keystrokes;

In order to counter-attack these techniques, COBAI will monitor specific instructions or APIs and
provide fake results when the program attempts at querying certain artifacts that would reveal the
analysis framework or environment. During some experiments with evasive malware, the results reveal
a good combination of COBAI and FTBF: COBAI will ensure transparency, in order for FTBF to be able
to capture the malicious capabilities that follow.

4. Conclusion

The Formal Tainting-Based Framework can be a powerful formalism and tool for quick and safe
verification of malware capabilities. Havingminimal knowledge on how capabilities can be implemented,
a user can use taint policies and capability rules to determine if a malware express a specific behavior.
The entire process uses binary instrumentation, taint analysis, and the proposed Tainting-Based

Logic, efforts that combine industrial efforts and academic knowledge, leading to sound and precise
results. Our claims are sustained by evaluation results using multiple malware families, with a rule
for each distinct capability. The results hint at significantly lowering the burden of a cyber researcher.
This fact is also highlighted through real-life use-cases, where we used the current implementation and
rule set to determine which malware samples might have a particular capability. Furthermore, we also
tackled the case of evasive malware, where one must first counter-attack the anti-analysis techniques
in order to reach the actual payload of a malware. This case has been handled by using COBAI as the
DBI component, which ensures transparency of the framework and the rest of the environment.
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Abstract
This paper addresses (part of) the problem of simplifying reasoning with proof assistants by transferring theorems
that are stated in a heavy form, using explicit invariants, to lightweight counterparts where the invariants are
handled implicitly by the type system. Specifically, we provide some abstract assumptions that allow one to
establish isomorphisms for nested applications of defined types in Gordon’s Higher-Order Logic (HOL). This
allows the seamless isomorphic transfer of results across type definitions in the presence of nesting. Our results
have been formalized in the Isabelle/HOL theorem prover, and we plan to integrate them with Isabelle’s Lifting
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1. Introduction

The definition of new types by carving out subsets of existing types, known as typedef, is a fundamental
mechanism in Higher-Order Logic (HOL), a logic that provides the foundation for several interactive
theorem provers, including HOL4 [1], HOL Light [2] and Isabelle/HOL [3]. While most of the uses of
typedef are hidden under the (automated) definition of (co)inductive datatypes [4, 5, 6, 7] and therefore
not directly invoked by the users, there still remains an important scenario where typedef is invoked
explicitly.

Namely, say one has a type (perhaps an algebraic datatype) 𝑇 that does not capture precisely the
intended concept (because it contains too many elements), but only via an invariant defined in terms of
a predicate on 𝑇, or equivalently, a set 𝐼 that has type 𝑇 set.1 Then one defines the more precise type 𝑆
as a typedef, to consist of exactly the inhabitants of 𝑇 that belong to the set 𝐼—i.e., 𝐼 is effectively turned
into a type.

Let us consider two examples, which will act as our running examples throughout this paper.

Example 1. (Distinct Lists) Polymorphic lists are introduced as the following datatype, where we
use ML-style notation feature by Isabelle/HOL as well as all the HOL-based provers (in particular, 𝛼
denotes a type variable):

datatype 𝛼 list = Nil ∣ Cons 𝛼 (𝛼 list)

For a list xs, we let length xs be its length and, given a natural number 𝑖 < length, we let xs!𝑖 be the (𝑖−1)’th
element in xs (so the indexing starts from 0). In some developments, one may be interested in working
with nonrepetitive (“distinct”) lists, i.e., lists whose elements do not repeat—to this end, one defines the
(polymorphic) predicate distinct ∶ 𝛼 list → bool by distinct xs ≡ ∀𝑖 𝑗. 𝑖 < 𝑗 ∧ 𝑗 < length xs ⟶ xs!𝑖 ≠ xs!𝑗.
The new (polymorphic) type 𝛼 dlist of distinct lists is defined as a typedef:

typedef 𝛼 dlist = {xs ∶ 𝛼 list ∣ distinct xs}

This command introduces the new type 𝛼 dlist together with an abstraction-representation pair of
(polymorphic) constants2 (Repdlist, Absdlist) with Repdlist ∶ 𝛼 dlist → 𝛼 list and Absdlist ∶ 𝛼 list → 𝛼 dlist
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1The type 𝑇 set of sets of elements of a type 𝑇 is a copy of the type 𝑇 → bool, where set is a type operator.
2In HOL, items that have a fixed interpretation, including fixed values such as 0 or defined functions, are called “constants”;
they are to be contrasted with “variables”, which do not have a fixed interpretation but range over given types.
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and the following axioms stating that these functions are mutually inverse bijections between the new
type 𝛼 dlist and the subset {xs ∶ 𝛼 list ∣ distinct xs} of the base type 𝛼 list.3 In Isabelle/HOL, these axioms
are actually packed into a single axiom:

type_definition Repdlist Absdlist {xs ∶ 𝛼 list ∣ distinct xs}

where the (polymorphic) predicate type_definition ∶ (𝛽 → 𝛼) → (𝛼 → 𝛽) → (𝛼 set) → bool is defined as
follows: type_definition 𝑟 𝑎 𝐴 ≡ (∀𝑥. 𝑟 𝑥 ∈ 𝐴) ∧ (∀𝑦 ∶ 𝛽. 𝑎 (𝑟 𝑦) = 𝑦) ∧ (∀𝑥 ∶ 𝛼. 𝑥 ∈ 𝐴 ⟶ 𝑟 (𝑎 𝑥) = 𝑥).

Thus, in this example 𝑇 is 𝛼 list, 𝐼 is {xs ∶ 𝛼 list ∣ distinct xs}, and 𝑆 is 𝛼 dlist. □

Example 2. (Discrete Distributions) A (discrete) distribution is a positive function to the real
numbers of countable support such that its values sum up to to 1. The polymorphic type 𝛼 distrib of
distributions on 𝛼 is introduced as a typedef having base type 𝛼 → real (the type of functions from 𝛼 to
real ):

typedef 𝛼 distrib = {𝑓 ∶ 𝛼 → real ∣ dist xs}

where the predicate dist ∶ (𝛼 → real) → bool is defined by dist 𝑓 ≡ (∀𝑥 ∶ 𝛼. 𝑓 𝑥 ≥ 0) ∧ countable {𝑥 ∶
𝛼 ∣ 𝑓 𝑥 ≠ 0} ∧ ∑𝑥∶𝛼 𝑓 𝑥 = 1.

As before, the above command introduces a new type 𝛼 distrib , an abstraction-representation pair
of constants (Repdlist, Absdlist) with (Repdistrib, Absdistrib) with Repdistrib ∶ 𝛼 distrib → 𝛼 list, and the
axiom type_definition Repdistrib Absdistrib {𝑓 ∶ 𝛼 → real ∣ dist 𝑓 } saying that Absdistrib and Repdistrib are
mutually inverse bijections between 𝛼 distrib and {𝑓 ∶ 𝛼 → real ∣ distrib xs}.

Thus, in this example 𝑇 is 𝛼 → real, 𝐼 is {𝑓 ∶ 𝛼 → real ∣ dist xs}, and 𝑆 is 𝛼 distrib. □

In a formal development that follows the above scheme, one usually distinguishes between:

• developing the “internal” mathematical theory, which usually proceeds without defining 𝑆, but
instead working with 𝑇 and stating the theorems relativized to 𝐼—for example, proving facts of
the form ∀𝑡 ∶ 𝑇 . 𝑡 ∈ 𝐼 ⟶ . . .

• at the end, defining 𝑆 and “sealing” the library for export by transferring from 𝑇 to 𝑆 all the
constants and all the main (exportable) facts that have been proved proved relative to 𝐼—for
example, turning facts of the form ∀𝑡 ∶ 𝑇 . 𝑡 ∈ 𝐼 ⟶ . . . into facts of the form ∀𝑡′ ∶ 𝑆. . . .

The process of “isomorphically” transferring 𝐼-relativized constants and results on 𝑇 to corresponding
constants and results on 𝑆, while seemingly conceptually straightforward, turns out to be quite subtle
in the presence of higher-order constants. It requires infrastructure for lifting relations along type
constructors (known as relators), which allows the automated proofs of the transferred theorems from
the original ones—this is facilitated in Isabelle/HOL by various dedicated tools [8, 9, 10].

In this short work-in-progress paper, we study a fairly common pattern: the isomorphic transfer in
the presence of nested type constructors. We start with motivation in terms of a standard construction
applied to our running examples (§2), which leads to formulating the wider scope of the problem. We
then work out the solution to the problem in an ad hoc manner on the running examples §3. After that,
we are ready to describe our main result: some abstract general structure and conditions that enable
this pattern, in that they allow constructing a back-and-forth bijection for transfer (§4), and show how
it instantiates to our examples. We conclude with related work and future plans, notably the planned
integration of our work into Isabelle’s Lifting and Transfer package (§5). Our concepts and results apply
to Higher-Order Logic, hence are in principle relevant to any HOL-based provers. We have formalized
them in the Isabelle/HOL theorem prover, and the formal scripts are publicly available [11].

3These are sometimes called an “embedding-projection pair”; here we prefer terminology that is closer to HOL, referring to a
representation function (indicating how elements of the new type are represented/implemented in terms of those of the old
one) and an opposite abstraction function.
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2. The Concrete Problem

Consider the problem of proving that the type constructors (polymorphic types) 𝛼 dlist and 𝛼 distrib
constitute monads [12, 13] or at least monad-like structures—which are very useful properties to have
for any (data)type, whenever possible.

According to the above pattern, one wishes to first prove the properties for the underlying
(representing types) 𝛼 list and 𝛼 → real relative to the defining predicates distinct and dist, and then
transfer them to the defined types 𝛼 dlist and 𝛼 distrib. (Not only is this good practice, but in some
sense it is the only way to proceed, at least initially when “bootstrapping” a theory for the defined
types, given that initially our only means to prove a property on the defined type is to trace it back
to a property on the underlying type.)

Some of the monadic structure and properties involve nesting the application of type constructors,
for example we want to have a map (functorial-action) operator mapdistrib ∶ (𝛼 → 𝛽) → (𝛼 distrib →
𝛽 distrib) and join (counit) operator joindistrib ∶ (𝛼 distrib) distrib → 𝛼 distrib satisfying (among others)
the associativity law joindistrib ∘ (mapdistrib joindistrib) = joindistrib ∘ joindistrib.

How to define such structure and prove such properties on the defined types? Let us start with a simple
example that does not involve nesting, namely defining the map operator on (𝛼 → 𝛽) → (𝛼 distrib →
𝛽 distrib) and proving that it preserves identities, in that ∀𝑑 ∶ 𝛼 distrib. mapdistrib (id ∶ 𝛼 → 𝛼) 𝑑 = 𝑑
where id denotes the identity function. We define mapdistrib on any 𝑔 ∶ 𝛼 → 𝛽 and 𝑑 ∶ 𝛼 distrib by
mapdistrib 𝑔 𝑑 = Absdistrib (𝜆𝑏 ∶ 𝛽. ∑𝑎∈𝑔−1 𝑏 Repdistrib 𝑑 𝑎). Notice that the definition requires a back-
and-forth application of the abstraction and representation functions Absdistrib and Repdistrib, with some
specific manipulation of items of the underlying type 𝛼 → real. (In this case, the specific manipulation
happens to involve taking the sum of a function in 𝛼 → real over all the elements of the 𝑔-preimage of
𝑔, but the exact nature of such manipulations is not important here.) Now, to prove the desired fact,
fix 𝑑 ∶ 𝛼 distrib. In order to show mapdistrib id 𝑑 = 𝑑, by the injectivity of Repdistrib it suffixes to show
Repdistrib (mapdistrib id 𝑑) = Repdistrib 𝑑. Using the definition of mapdistrib and the fact that Repdistrib is
left-inverse to Absdistrib, the above is equivalent to 𝜆𝑏 ∶ 𝛽. ∑𝑎∈id−1 𝑏 Repdistrib 𝑑 𝑎 = Repdistrib 𝑑, i.e.,
to 𝜆𝑏 ∶ 𝛽. ∑𝑎=𝑏 Repdistrib 𝑑 𝑎 = Repdistrib 𝑑, which follows from the properties of sums and function
extensionality.

We thus have the following pattern: To define constants on the defined type and prove properties for
them, we need to move back and forth via the abstraction-representation pair and use consequences of the
associated type_definition axiom.

But how to do this in the presence of nested defined type constructors (where the abstraction-
representation pairs stemming from type definitions no longer work out of the box)? In the next section,
we discuss in an ad hoc manner how to tackle the nested isomorphic transfer problem in the presence
of nested types for our two running examples. After that, we will introduce an abstract solution, which
covers these two cases and many others.

3. The Solution for Two Concrete Instances

Now let us come back to the original more complex problem, of defining joindistrib ∶ (𝛼 distrib) distrib →
𝛼 distrib (in addition to mapdistrib which we have already defined) and proving the associativity law.

In order to define joindistrib , which operates on the nested defined type (𝛼 distrib) distrib, we need
an understanding of how a counterpart of this operator should act on the (nested application of) the
underlying type, i.e., on (𝛼 → real)real. To be more exact, we don’t need to consider the behavior of
such a counterpart on all functions 𝐹 ∶ (𝛼 → real) → real, but seemingly only on functions that act
like distributions, i.e., satisfy distrib 𝐹 (i.e., are positive, have countable support and sum to 1). In fact,
upon a closer look we see that the functions of interest are not really distributions on the entire type
𝛼 → real, but on the subset of 𝛼 → real that consists of distributions only, i.e., distributions on the set
{𝑓 ∶ 𝛼 → real ∣ distrib 𝑓 }. In other words, we need a relativized version of the predicate distrib, let us
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denote it by distOn ∶ 𝛼 set → 𝛼 distrib → bool, defined by

distOn 𝐴 𝑓 ≡ (∀𝑥 ∶ 𝛼. 𝑥 ∈ 𝐴 ⟶𝑓 𝑥 ≥ 0) ∧ countable {𝑥 ∶ 𝛼 ∣ 𝑥 ∈ 𝐴 ∧𝑓 𝑥 ≠ 0} ∧ ∑𝑥∈𝐴 𝑓 𝑥 = 1

where we have highlighted the difference from the original predicate dist—in that the conditions are not
applied to the entire type 𝛼, but to a parameter subset 𝐴 ∶ 𝛼 set. Note that we can recover the original
predicate as dist = distOn UNIV, where UNIV is the “universal” set covering the entire type.

With this relativized predicate at hand, the picture becomes clear: Given a function 𝐹 ∶ (𝛼 → real) →
real that acts like a distribution on distributions on 𝛼, i.e., such that distOn {𝑓 ∶ 𝛼 → real ∣ dist 𝑓 } 𝐹 holds,
we have the formal means to turn it into a “flat” distribution, let us call it join 𝐹, on 𝛼 → real, namely by
summation (applying of course a well-known mathematical construction): join 𝐹 𝑥 ≡ ∑𝑓 ∈{𝑓 ∣ dist 𝑓 } 𝐹 𝑓 𝑥.
Now, to define joindistrib from join, we need to able to move back and forth between 𝛼 distrib distrib
and and (𝛼 → real) → real, ideally using a similar infrastructure as the abstraction-representation pair
(Absdistrib, Repdistrib) and predicate distrib that allowed us to move between 𝛼 distrib and 𝛼 → real. And
indeed, this is possible:

• We define dist2 ∶ ((𝛼 → real) → real) → bool to be distOn {𝑓 ∶ 𝛼 → real ∣ dist 𝑓 }.
• We define Absdistrib,2 ∶ ((𝛼 → real) → real) → (𝛼 distrib) distrib by

Absdistrib,2 𝐹 = Absdistrib (𝜆 𝑑 ∶ 𝛼 distrib. 𝐹 (Repdistrib 𝑑)).
• We define Repdistrib,2 ∶ (𝛼 distrib) distrib → ((𝛼 → real) → real) by

Repdistrib,2 𝐷 = 𝜆𝑓 ∶ 𝛼 → real. Repdistrib 𝐷 (Absdistrib 𝑓 ).

Note that we defined distrib2 in line with the above analysis, and defined Absdistrib,2 and Repdistrib,2
with the aim of achieving a bijective correspondence between (𝛼 distrib) distrib and the elements of
(𝛼 → real) → real satisfyig dist2. Therefore, we can prove that type_definition Absdistrib,2 Repdistrib,2 {𝐷 ∣
dist2 𝐷} holds.

It now remains to prove the associativity of joindistrib, which we can rephrase as

∀𝐷 ∶ ((𝛼 distrib) distrib) distrib. joindistrib (mapdistrib joindistrib 𝐷) = joindistrib (joindistrib 𝐷) .

This involves further level of nesting of distrib; to this end, by essentially iterating one more step the
above construction, we obtain dist3 ∶ (((𝛼 → real) → real) → real) → bool , Absdistrib,3 ∶ (((𝛼 →
real) → real) → real) → ((𝛼 distrib) distrib) distrib and Repdistrib,3 ∶ ((𝛼 distrib) distrib) distrib →
(((𝛼 → real) → real) → real) such that type_definition Absdistrib,3 Repdistrib,3 {𝐷 ∣ dist3 𝐷} holds. Now
we can easily prove associativity similarly to how we proceeded in the non-nested case, but using the
appropriate back and forth infrastructure in each case, depending on the level of nesting.

A somewhat similar discussion applies to distinct lists, though the details differ:

• We define distinct2 ∶ (𝛼 list) list → bool by
distinct2 xss ≡ distinct xss ∧ (∀𝑖 < length xss. distinct (xss!𝑖)).

• We define Absdlist,2 ∶ (𝛼 list) list → (𝛼 dlist) dlist by
Abslist,2 xss = Abslist (map Abslist xss).

• We define Repdlist,2 ∶ (𝛼 dlist) dlist → (𝛼 list) list by
Replist,2 xss = Replist (map Replist xss).

where map is the standard mapping operator for lists. Again, we have that
type_definition Absdlist,2 Repdlist,2 {xss ∣ distinct2 xss} holds.

With the goal of a general solution in mind, let us note some similarities and commonalities of the
above two cases. While for distinct lists the definitions of the one-level-up abstraction and representation
functions involve entities of the same kind (namely abstractions for abstractions and representations for
representations), in the case of distributions the definitions combine the two, for example the definition
of the one-level-up abstraction uses outer abstraction together with inner representation. This is a
reflection of lists being a covariant functor and function-space-to-reals being a contravariant functor.
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The common pattern of the two is, however, the fact that the one-level-up operators employ composition
between an (1) operator and (2) the map function for the given functor applied to an operator. This is
manifestly clear for distinct lists, for example the one-level-up abstraction Absdlist,2 is the composition
of Absdlist with maplist Repdlist; for distributions, this is also seen to be the case, if we note that the map
function for the contravariant functor 𝛼 → real is 𝜆𝑔 ∶ 𝛼 → 𝛽. 𝜆𝑓 ∶ 𝛽 → real. 𝑔 ∘ 𝑓.

Another discrepancy between the two cases is the definition of the one-level-up characteristic
predicates (distrib2 versus distinct2); as we will see next, we will be able to uniformly capture both cases
under a more general set-lifting operator.

4. An Abstract Formulation of the Problem and a General Solution

We formulate the problem abstractly as follows: How to lift the abstraction-representation properties
characteristic of type definitions to nested applications of the defined type constructor? In technical terms:
Given a polymorphic type 𝛼 𝑇 and a polymorphic operator 𝐼 ∶ (𝛼 𝑇 ) set such that 𝐼 ≠ ∅ which produce
a type definition

typedef 𝛼 𝑆 = {𝑥 ∶ 𝛼 𝑇 ∣ 𝑥 ∈ 𝐼 }

what structure and properties are in general required for 𝑇 and 𝐼 in order to be able to lift the operator
𝐼 and abstraction-representation pair (Abs𝑆, Rep𝑆), for any 𝑛, to 𝑛-level operator 𝐼𝑛 ∶ (𝛼 𝑇 𝑛) set and
abstraction-representation pair (Abs𝑆,𝑛, Rep𝑆,𝑛) with Abs𝑆,𝑛 ∶ 𝛼 𝑇 𝑛 → 𝛼 𝑆𝑛 and Rep𝑇 ,𝑛 ∶ 𝛼 𝑇 𝑛 → 𝛼 𝑆𝑛
such that type_definition Abs𝑆,𝑛 Rep𝑇 ,𝑛 {𝑥 ∶ 𝛼 𝑇 ∣ 𝐼 𝑥} holds? (Above, 𝛼 𝑇 𝑛 denotes the 𝑛’th iteration of
the type constructor 𝑇, in particular 𝛼 𝑇 1 = 𝛼 𝑇 and 𝛼 𝑇 2 = (𝛼 𝑇 ) 𝑇; and similarly for 𝑆.) Indeed, this
would allow us to seamlessly apply to the nested case the same back and forth techniques as in the
non-nested case.

In the previous section, we have discussed solutions to two instances of this problem. The first
instance is representayive of a wide class of situations, namely polymorphic inductive datatypes (which
are all covariant functors) with invariants; the second also has some cousins in the formalization and
specification literature, for example the defined types topological filters and of mutisets, as well as
variations such as discrete subdistributions. In what follows, we introduce a generalization that covers
all these cases.

Assumptions. We assume that the underlying type constructor 𝛼 𝑇 comes equipped with an
operator Trel ∶ 𝛼 set → 𝛽 set → (𝛼 → 𝛽 → bool) → (𝛼 𝑇 → 𝛽 𝑇 → bool) for lifting relations to 𝑇 that for
bijective relations commutes with composition; namely, letting bijBetw 𝐴 𝐵 𝑅 express that the relation
𝑅 is a bijection between 𝐴 and 𝐵:

(A1) bijBetw 𝐴 𝐵 𝑃 and bijBetw 𝐵 𝐶 𝑄 implies Trel 𝐴 𝐶 (𝑃 ∘ 𝑄) = Trel 𝐴 𝐵 𝑃 ∘ Trel 𝐵 𝐶 𝑄 for all
𝐴, 𝐵, 𝐶, 𝑃, 𝑄

Moreover, we assume that there exists an operator Iset ∶ 𝛼 set → (𝛼 𝑇 ) set for lifting sets to 𝑇, which
is an extension of 𝐼 in that

(A2) Iset UNIV = 𝐼

and the following hold, where eqOn 𝐴 𝑅 says that the restriction of 𝑅 to 𝐴 is the equality on (i.e., the
diagonal of) 𝐴:

(A3) bijBetw 𝐴 𝐵 𝑅 implies bijBetw (Iset 𝐴) (Iset 𝐵) (Trel 𝐴 𝐵 𝑅) for all 𝐴, 𝐵, 𝑅
(A4) bijBetw 𝐴 𝐴 𝑅 and eqOn 𝐴 𝑅 implies eqOn (Iset 𝐴) (Trel 𝐴 𝐴 𝑅) for all 𝐴, 𝑅

𝑇 together with the operator Trel forms a relator-like structure [14, 15], similar to those that underlie
Isabelle/HOL’s transfer tool [8] and datatype specification mechanism [6]. However, this concept comes
with an explicit indication of the domain and codomain sets and targets bijections between these sets. In
particular, (A1) only requires Trel to commute with (relation) composition when restricted to bijective
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relations. While we think of Trel as being associated to 𝑇, we think of Iset as being associated to the
invariant 𝐼 (which it generalizes via (A2)). For example, if 𝑇 is list, then it is reasonable to take Trel to
be the list relator (relating lists position-wise), but we have no reason to commit to Iset as being the
standard set operator associated to lists (returning the set of all elements of a list)—rather, the choice of
Iset will depend on what invariant we want to consider on lists. Of course, as the axiom (A2) suggests,
the Iset parameter of our abstract framework is reminiscent of the relativized version of the predicate
dist that we employed in the case of distributions.

Trel and Iset are connected by the assumptions (A3) and (A4). Thus, (A3) states that Trel lifts bijections
between two sets to bijections between the Iset-liftings of these sets, which roughly means that Iset
partially acts like a subrelator of (𝑇 , Trel). Finally, (A4) is an Iset-relativization of the standard property
of relators of preserving equalities—namely, here we say Trel preserves partial equalities w.r.t. Iset.

Let us see how to instantiate this framework to our running examples. To this end, we first note that
having chosen our assumptions in terms of relations rather than functions allows us to capture both
covariant and contravariant cases. For the case of the distribution type 𝛼 distrib, we take:

• 𝛼 𝑇 to be 𝛼 → real;
• Trel 𝐴 𝐵 𝑅 𝑓 𝑔 to be ⇒real (𝜆𝑎, 𝑏. 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵 ∧ 𝑅 𝑎 𝑏) 𝑓 𝑔 ∧ (∀𝑎 ∉ 𝐴. 𝑓 𝑎 = ⊥) ∧ (∀𝑏 ∉ 𝐵. 𝑔 𝑏 =
⊥), where ⊥ is a (polymorphic) fixed “undefined” element (which is available in HOL on each
type via Hilbert choice) and ⇒real is the real-instance of the function-space relator, defined by
⇒real 𝑃 𝑓 𝑔 ≡ ∀𝑎, 𝑏. 𝑃 𝑎 𝑏 ⟶ 𝑓 𝑎 = 𝑔 𝑏;

• Iset to be given by the relativized form of the distOn predicate, namely Iset 𝐴 ≡ {𝑓 ∣ distOn 𝐴 𝑓 }.

For the case of the distinct-list type 𝛼 dlist, we take:

• 𝛼 𝑇 to be 𝛼 list;
• Trel 𝐴 𝐵 to be the list relator list_all, where list_all 𝑅 relates two lists just in case they have the
same length and their elements are position-wise related (thus, the domain and codomain sets
are ignored by Trel);

• Iset to be defined as Iset 𝐴 ≡ {xs ∣ distinct xs ∧ set xs ⊆ 𝐴}, where set ∶ 𝛼 list → 𝛼 set is the support
operator for lists (returning the set of all elements of a list).

Note the two flavors of instantiating the relativized operator Iset, depending on whether we deal
with a contravariant or covariant functor, namely : (1) either, in the contravariant case, by relativizing
the original predicate dist to distOn; (2) or, in the covariant case, by intersecting the original predicate
distinct with the adjoint of the support operator (which is usually available for covariant functors, and
in particular is available for all container types)—indeed, the righthand side of the definition of Iset 𝐴
can be written as {xs ∣ distinct xs} ∩ {𝑥𝑠 ∣ set xs ⊆ 𝐴}, and the operator 𝐿 = 𝜆𝐴. {𝑥𝑠 ∣ set xs ⊆ 𝐴} is the
right adjoint4 of the support operator set in the sense that xs ∈ 𝐿 𝐴 iff set xs ⊆ 𝐴. It is relatively easy to
check that these instances satisfy our assumptions. For example, (A3) in the case of the distribution
instantiation says that a bijection between two sets 𝐴 and 𝐵 induces a bijection the sets of distributions
on 𝐴 and 𝐵 respectively, which are constant ⊥ outside 𝐴 and 𝐵 respectively.

Our main result is that these abstract assumptions are sufficient for solving our problem, thus
generalizing the constructions in the above particular cases (and in many other cases, e.g., any datatypes
with invariants turned into typedefs).

Theorem: Under the assumptions (A1)–(A4) above, we have a solution to our problem for all
𝑛 ≥ 1, in that there exist 𝐼𝑛 ∶ (𝛼 𝑇 𝑛) set, Abs𝑆,𝑛 ∶ 𝛼 𝑇 𝑛 → 𝛼 𝑆𝑛 and Rep𝑇 ,𝑛 ∶ 𝛼 𝑇 𝑛 → 𝛼 𝑆𝑛 such that
type_definition Abs𝑆,𝑛 Rep𝑇 ,𝑛 𝐼𝑛 holds.

A formal proof in Isabelle/HOL of the core of this theorem can be found in [11]; due to the HOL
type system limitations, the formal proof is restricted to the case when 𝑛 = 2, but also indicates how to
iterate the argument for arbitrary 𝑛 and shows the iterations for 3 and 4.
4Incidentally, in Isabelle/HOL the operator 𝐿 is called lists—a suggestive name given that this operator is the set-based
counterpart of the list type constructor: it takes any set 𝐴 to the set of lists formed with elements of 𝐴.
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Proof sketch. We proceed by induction on 𝑛. For 𝑛 = 1, we simply take 𝐼𝑛 = 𝐼, Abs𝑆,𝑛 = Abs𝑆 and
Rep𝑆,𝑛 = Rep𝑆, so the desired fact holds by our assumptions.

For the induction step, assume that we have 𝐼𝑛 ∶ (𝛼 𝑇 𝑛) set, Abs𝑆,𝑛 ∶ 𝛼 𝑇 𝑛 → 𝛼 𝑆𝑛 and Rep𝑇 ,𝑛 ∶
𝛼 𝑇 𝑛 → 𝛼 𝑆𝑛 such that type_definition Abs𝑆,𝑛 Rep𝑇 ,𝑛 𝐼𝑛 holds. We define 𝐼𝑛+1 ∶ (𝛼 𝑇 𝑛+1) set, Abs𝑆,𝑛+1 ∶
𝛼 𝑇 𝑛+1 → 𝛼 𝑆𝑛+1 and Rep𝑇 ,𝑛+1 ∶ 𝛼 𝑇 𝑛+1 → 𝛼 𝑆𝑛+1 as follows: 𝐼𝑛+1 ≡ Iset 𝐼𝑛; Abs𝑆,𝑛+1 = Abs𝑆 ∘
funOf (Trel (relOf Abs𝑆,𝑛)); Rep𝑆,𝑛+1 = Rep𝑆 ∘ funOf (Trel (relOf Rep𝑆,𝑛)).

Above, the operators relOf ∶ (𝛼 → 𝛽) → (𝛼 → 𝛽 → bool) and funOf ∶ (𝛼 → 𝛽 → bool) → (𝛼 → 𝛽)
provide back and forth conversions between bijective relations and (partially) bijective functins. Namely,
we have the following properties for them, where bij_betw 𝐴 𝐵 𝑓 says that the restriction of the
function 𝑓 ∶ 𝛼 → 𝛽 to 𝐴 ∶ 𝛼 set is a bijection between 𝐴 and 𝐵 ∶ 𝛽 set: (1) If bij_betw 𝐴 𝐵 𝑓, then
bijBetw 𝐴 𝐵 (relOf 𝑓 ) and funOf (relOf 𝑓 ) = 𝑓; (2) If bijBetw 𝐴 𝐵 𝑅, then bij_betw 𝐴 𝐵 (funOf 𝑅) and
relOf (funOf 𝑓 𝑅 = 𝑅.

To prove type_definition Abs𝑆,𝑛+1 Rep𝑇 ,𝑛+1 𝐼𝑛+1 compositionally (along the definitions of the ab-
straction ad represenations operators), we introduce a generalization of type_definition that does not
assume one of its argument functions (namely the representation function) to operate on the en-
tire domain, but on an additional parameter set. Namely, we define bij_pair ∶ (𝛽 → 𝛼) → (𝛼 →
𝛽) → 𝛽 set → 𝛼 set → bool as follows, where we highlight the differences from type_definition:
bij_pair 𝑟 𝑎 𝐵𝐴 ≡ (∀𝑦. 𝑦 ∈ 𝐵 ⟶ 𝑟 𝑦 ∈ 𝐴) ∧ (∀𝑥. 𝑥 ∈ 𝐴 ⟶ 𝑎 𝑥 ∈ 𝐵) ∧ (∀𝑦 ∶ 𝛽. 𝑦 ∈ 𝐵 ⟶ 𝑎 (𝑟 𝑦) =
𝑦) ∧ (∀𝑥 ∶ 𝛼. 𝑥 ∈ 𝐴 ⟶ 𝑟 (𝑎 𝑥) = 𝑥). Thus, bij_pair 𝑟 𝑎 𝐵 𝐴 says that 𝑎 and 𝑟 are mutually inverse
bijections between 𝐴 and 𝐵; in particular, we have (3) bij_pair 𝑟 𝑎 𝐵 𝐴 = type_definition 𝑟 𝑎 UNIV 𝐴.

Next, we define the relational counterpart of bij_pair, namely bijPair ∶ (𝛽 → 𝛼 → bool) → (𝛼 → 𝛽 →
bool) → 𝛽 set → 𝛼 set → bool, such that bijPair 𝑃 𝑄 𝐵 𝐴 says that 𝑃 and 𝑄 are mutually inverse (rela-
tional) bijections between 𝐴 and 𝐵. The operators bij_pair and bijPair correspond to each other via the
translations between functions and relations: (4) If bij_pair 𝑟 𝑎 𝐵 𝐴 then bijPair (relOf 𝑟) (relOf 𝑎) 𝐵 𝐴;
(5) If bijPair 𝑃 𝑄 𝐵 𝐴 then bij_pair (funOf 𝑃) (funOf 𝑄) 𝐵 𝐴. They also commute with relation and
function composition: (6) If bij_pair 𝑟 𝑎 𝐵 𝐴 and bij_pair 𝑟 ′ 𝑎′ 𝐴 𝐶 then bij_pair (𝑟 ′ ∘ 𝑟) (𝑎′ ∘ 𝑎) 𝐵 𝐶; (7)
If bijPair 𝑃 𝑄 𝐵 𝐴 and bij_pair 𝑃 ′ 𝑄′ 𝐴 𝐶 then bijPair (𝑃 ∘ 𝑃 ′) (𝑄 ∘ 𝑄′) 𝐵 𝐶.

Finally, using (A1), (A3) and (A4), we can prove the crucial property that Trel “lifts” the bijPair property
relative to Iset: (8) If bijPair 𝑃 𝑄 𝐴 𝐵 then bijPair (Trel 𝐴 𝐵 𝑃) (Trel 𝐵 𝐴 𝑄) (Iset 𝐴) (Iset 𝐵). □

Note that the theorem asserts the existence of 𝑛-level predicates 𝐼𝑛 and abstraction-representation
pairs (Abs𝑛, Rep𝑛) which extend the original ones, 𝐼 and (Abs, Rep). But the question arises on whether
these are the “right” extensions. The answer relies only on the suitability of 𝐼𝑛, since once that is
decided than any projection pair (Abs𝑛, Rep𝑛) satisfying type_definition Abs𝑆,𝑛 Rep𝑇 ,𝑛 𝐼𝑛 would do—-
mirroring the fact that in a type definition (at level 1) only 𝐼 matters and any (Abs, Rep) satisfying
type_definition Abs𝑆 Rep𝑇 𝐼 is as good as any other.

Now, concerning the suitability of 𝐼𝑛, we note from the proof that 𝐼𝑛 = Iset𝑛 UNIV; so it all hinges upon
whether Iset is the “right” way of lifting sets of elements of 𝛼 to sets of elements of 𝛼 𝑇 that respects the
intended meaning of the subset 𝐼 of 𝛼 𝑇. In other words, whatever concept 𝐼 is supposed to represent, we
want that Iset provides a correct relativization of that concept from the entire type 𝛼 to a subset 𝐴 ∶ 𝛼 𝑠𝑒𝑡.
Our assumptions (A2)–(A4) are sanity properties for such a relativization, but whether this is the correct
relativization needs to be established in each particular case—in other words, it is the responsability
of the user of our framework to provide a correct and meaningful Iset operator. This is easily seen
to be the case in our two examples, where the move from 𝐼 to Iset clearly represents the move from
distributions on the whole type to distributions on a given subset, and from distinct lists on the whole
type to distinct lists on a given subset, respectively. Moreover, the scheme that worked for distinct lists
(of intersecting with the support operator) works for essentially the same reason for any container type.

Finally, a remark on the generality of the theorem: While we have formulated it in reference
to the (possibly iterated) nesting of a single type constructor, the construction and proof can be
straightforwardly (albeit tediously) extended to copewith combining / nesting different type constructors
(which can also have more than one argument).
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5. Related Work and Future Work

Isomorphic transfer is an important topic in formal reasoning, and is one of the main motivations of
major recent developments such as Homotopy Type Theory [16]. Transfer along ismorphisms, as well
as along quotient projections and refinements, is also well represented in the world of HOL-based
provers (and especially Isabelle/HOL), e.g., [17, 18, 19, 8, 20, 21]. In dependent type theory, problems
similar to the ones we address here are formulated in the context of (partial) setoids [22, 23], and proof
assistants such as Coq [24] (via SSReflect [25]) and Lean [26] offer quasi-automated mechanisms to
address them, thus mitigating what is referred to as “setoid hell”, i.e., the need to prove over and over
again that certain (partial) equivalence relations are preserved by the defined functions. Note that the
problem we addressed in this paper, which has to do with relativization to sets, is a particular case of
relativization to partial equivalence relations—and in fact dealing with the former at higher-order types
quickly escalates to having to deal with the latter, even in the absence of dependent types [10].

Another technical part of our setting concerns the HOL defined types, which are not included in their
base types but only injected into them. Other formalisms offer pure subtyping / inclusion mechanisms,
notably PVS [27], F⋆ [28], and logical frameworks featuring refinement types [29]—where the goal of
isomorphic transfer is replaced by corresponding goals concerning automating aspects of type checking.

Next, we will focus on the most closely related work, namely Isabelle’s Lifting and Transfer package
[30, 8]. From the very beginning, the authors of this tool have been aware of the potential difficulties
raised by nested type constructors, and have implemented a solution based on parameterized transfer
relations. For example, in the case of distrib, the current implementation defines automatically a relation
in (𝛼 → real) → 𝛽 distrib → bool (thus using different type variables 𝛼 and 𝛽) as the composition
between the relator⇒real and the relational version of Absdistrib. This does not guarantee an isomorphic
relationship between nested applications of (_ → real) and distrib like our framework does (exported
as a type_definition theorem), but offers enough infrastructure in order to allow the user to “lift” the
definition of constants from (_ → real) to distrib even in the presence of nesting. Since the relativized
defining set is not provided explicitly (like in our framework, as the operator Iset), the proof goals arising
when transferring theorems containing such constants are quite intricate and convoluted, in sharp
contrast to the non-nested case. On the other hand, at the expense of asking the user to provide more
information (not just the relator Trel but also the operator Iset) and proving some sanity properties,
our approach really flattens everything to the “first-order” non-nesting case—with the potential of
simplifying the proof goals. Moreover, currently the transfer package relies on a parametricity theorem
for the defined type’s underlying predicate, which our approach does not. Overall, our approach requires
some more initial effort from the user upon introducing a new type, but this has the potential to pay off
in the later stages of the developments.

This having been said, our work addresses only a subproblem of the overall lifting and transfer
problem, which the Lifting and Transfer package addresses quite comprehensively. So we do not
envision our development as an alternative to this mature tool, but as a possible “add-on” that can
improve the usability and automation of the tool’s handling of nested types. Since what we produce
for nested types are type_definition theorems, these can in principle be directly integrated into the
Lifting and Transfer package (via the “setup_lifting” command), save for one difficulty caused by the
fact that any provided abstraction operators are currently required to be registered as dataype-like
constructors—addressing this formal engineering problem is ongoing work. (Of course, the integration
will involve the fully general case, of different type constructors of possible multiple arguments nested
in arbitrary ways.)

Another short-term plan is to provide some generic infrastructure that automates our inferred result
for arbitrary type constructors, which can then be instantiated to different cases. This is being tackled
(in joint work with Dmitriy Traytel) with the help of a quasi-foundational developement of polymorphic
locales, generalizing Isabelle’s standard (monomorphic) locales [31, 32] in a manner that does not impair
the meta-properties of the logic and definitional mechanisms underlying Isabelle/HOL [33, 34, 35, 36].
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gestions, which led to the improvement of the presentation and to the discussion of more related work.
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Abstract
This paper addresses the challenges in Autonomous Robotic Systems (ARS) verification. We focus on identifying
the limitations of current ARS verification techniques and propose a new approach for verifying ARS using a
newly developed specification language called Cyclone.
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1. Introduction

The advent of ARS has revolutionized industrial production processes. Our society benefits from the
efficiency of ARS in multiple areas, such as manufacturing and healthcare. However, as ARS become
more complex and adaptive, ensuring their safety becomes increasingly important and challenging. The
challenges arise not only from the internal interactionswithin the systems themselves, but also from their
behavior in unpredictable environments. This poses a significant challenge for ARS verification [1, 2, 3].
Specifically, we aim to address the following challenges:

• Challenge 1: How can the properties of ARS be effectively verified to ensure that they operate
as intended without causing harm?

• Challenge 2: What are the properties of ARS that have not yet been fully elucidated, and how
can they be incorporated into the verification process?

• Challenge 3: Are current verification tools user-friendly enough to be used by users without a
background in formal verification?

To tackle these challenges, we have begun reviewing current techniques for verifying ARS. More
importantly, we are interested in gaining an overview of the types of properties that each verification
technique can address.

2. Current Techniques

So far, we have collected and reviewed 54 papers on autonomous robotic system verification1. Among
these papers, 24 use model checkers for verification [4, 5, 6, 7, 8, 9], while 21 focus on formal spec-
ifications [10, 11, 12, 13]. The remaining papers focus on contract-based verification (5 papers) and
runtime verification (4 papers) [10, 14, 15, 16, 17, 18, 19]. Some papers cover different types of ARS,
such as autonomous navigation, medical, aerospace, and industrial robots [20, 21]. Many verification
techniques focus on three key aspects of an ARS: autonomy, decision-making, and control.
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For example, Matt Luckcuck et al. propose an approach that uses model checkers to verify the safety
properties of an ARS [22, 23]. They focus on establishing a standardized verification framework across
multiple aspects of an ARS, such as perception, control, and decision-making.

Ingrand uses model checking to verify the low-level architecture of a robotic system [24]. This
approach particularly focuses on control algorithms, communication protocols, and autonomous prop-
erties. It ensures that the requirements of the fundamental layer of a robotic system (including real-time
decision-making and sensor-actuator coordination) are met. Foughali and Zuepke propose a cross-
disciplinary approach that is able to verify real-time systems used by autonomous robots [25]. Their
work covers aspects such as autonomy, perception, and control.

After reviewing these papers, we have identified three limitations in the scope of ARS verification. (1)
The key aspects of an ARS are not formally defined, which can directly impact the confidence in using
verification techniques. (2) The use of a set of verification tools is quite challenging for regular users.
Often, these tools require users to have knowledge of a particular formalism, and the learning curve is
typically steep. (3) Current techniques are prone to producing incorrect results when unpredictable
conditions occur. For example, when the weather changes, an ARS may behave entirely differently.
However, such conditions are typically not captured by current techniques.

3. Our Proposed Approach

Figure 1: The overview of our proposed approach. An ARS along with its properties are represented using a
graph that can be mapped to a Cyclone specification for verification.

To tackle these limitations, we have designed a new specification language called Cyclone [26]2.
Cyclone is based on graphs, and a verification task can be represented as a graph. Cyclone uses a novel
algorithm for bounded checking. It works by representing a verification task as a graph, which is then
reduced to a Satisfiability Modulo Theories (SMT) problem that can be efficiently verified/solved by an
SMT solver [27]. An overview of this proposed approach is illustrated in Figure 1.

Cyclone’s architecture is shown in Figure 2. Cyclone is written in Java and consists of more than 100k
lines of code including build scripts, test cases, configurations and other related projects. We designed
about 180 grammar rules for the Cyclone specification language and use ANTLR for generating lexers
and parsers. The type checker ensures the type safety of a specification, and produces relevant error
messages if there are any semantic errors in a specification. We have designed a state matrix as an
intermediate representation (IR) to capture all necessary information needed from the front-end of
the Cyclone compiler. Once this IR is produced, we use a novel algorithm to generate a set of graph
conditions with respect to the bounds chosen by users. These graph conditions can then efficiently be
verified by an off-the-shelf SMT solver3. Finally, the trace generator produces a trace or counter-example
for the specification (depending on the mode it is running as).

We now use a bouncing example to illustrate some of the features of Cyclone. Figure 3 plots a
transition graph for bouncing ball model. Listing 1 shows the corresponding Cyclone specification.
The two states 4(Fall and Bounce) in Figure 3 are directly mapped to the nodes and each transition
2Cyclone can be accessed through our online editor: https://cyclone.cs.nuim.ie, and a short tutorial is also included.
3Currently, Cyclone uses Z3 [27] as its default solver. Work is in progress to also support the CVC5 solver.
4The computation could terminate at any of the two nodes.
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Figure 2: Architecture of Cyclone.

Fall
x += v * t;

v -= G * t;

start
Bounce

v = -c * v;

x = 0;

x = 0 ∧ v ≤ 0

Figure 3: A transition graph for a bouncing ball.

is mapped to an edge. The calculation of the position of the ball is shown in each node. For example,
the Bounce node describes that when the ball hits ground (x=0), it loses some energy and change its
direction to bounce back. For this simple model, we use Cyclone to verify whether the position of the
ball always stays positive. In other words, the ball is either in the air or on the ground. This property is
described using a graph invariant 5 (Line 22 in Listing 1) in the specification. To verify this specification,
Cyclone uses a new algorithm that effectively reduces the transition graph along with its invariants
into a set of formulas that can be solved by an SMT solver [27].

To comprehensively evaluate Cyclone’s robustness, we have designed and collected over 200 sample
problems for testing purposes. We have found and fixed more than 120 issues in the past year. We have
also introduced Cyclone into the curriculum at Maynooth University and compared to other verification
tools. More than 200 students have learned and used Cyclone in multiple modules such as Software
Verification and Theory of Computation. We collect the feedback from students, more than 85% of them
think Cyclone is easier to learn. Some of the highlighted evaluation results can be found in [26].

Based on our preliminary evaluation, this approach provides us with three main advantages: (1) The
behaviors of a complex system can be visualized as a transition graph, making it easier to share and
communicate with other users. (2) Properties can be specified using graph invariants, and Cyclone
is capable of generating test cases for the defined graph (if needed) or verifying it by discovering
counter-example(s). (3) The learning curve is not as steep as other verification tools. In fact, we have
successfully used Cyclone to verify Event-B hybrid models [28] and now aim to extend it to ARS.

Listing 1: A Cyclone specificationmodelling a transition graph of a bouncing ball hybrid system depicted
in Figure 3. The variable block (Line 2–6) contains all necessary variables for computing the
ball’s position 𝑥, which can never be below 0 (Line 22). The node and edge blocks (Line 8–20)
model different states of the ball. The goal block (Line 24–26) instructs Cyclone to explore a
counter-example within a set of given bounds. Note that 𝑡 is the discretisation unit for time.

1 graph Bouncing_Ball {
2 real x where x >= 0; // position of the ball
3 real v; // velocity of the ball

5When a specification contains at least one graph invariant, Cyclone switches to the counter-example discovery mode.
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4 real t where t >= 0; // time sequence
5 const real G = 9.81; // gravitational force
6 real c where c >= 0 && c <= 1; // constant (energy loss)
7
8 normal start final node Fall {
9 x += v * t;

10 v -= G * t;
11 }
12
13 normal final node Bounce {
14 v = -c * v;
15 x = 0;
16 }
17
18 edge { Fall -> Fall }
19 edge { Fall -> Bounce, where x == 0 && v <= 0; } // the ball starts to bounce back when it reaches ground and its

velocity becomes negative.
20 edge { Bounce -> Fall }
21
22 invariant inv { x >= 0; } // position of the ball is never < 0
23
24 goal { // defines different bounds for Cyclone to explore.
25 check for 2,3,4,5
26 }
27 }

4. Work in Progress

Currently, we are investigating the use of Cyclone to verify a scheduling algorithm in an elevator system
as a case study. Our aim is to use Cyclone to help engineers uncover design flaws at a very early stage.
This involves modeling a scheduling procedure using a transition graph and defining its invariants. In
the future, we plan to (1) complete our survey on ARS verification, (2) identify other key aspects of an
ARS that need to be verified, and (3) design a framework that can transform an ARS’s specifications
along with its properties into a graph that can be directly mapped to a Cyclone specification.
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Abstract
The deployment of complex autonomous systems into open environment calls for robust, modular and verifiable
software architectures. Skillset models, which encapsulate the capabilities of the autonomous robots into
modular Skills, have emerged to address these challenges. Expressed within an intermediary layer of the robot’s
architecture, Skillsets break down high level actions produced by the Deliberative layer into lower level actions,
executed by functional components. The use of a Domain Specific Language (DSL) for Skillset modeling allow
formal methods to provide robust code generation and model verification. However, as Skill-based architectures
are more and more developed, the true benefits of opting for such an approach have yet to be investigated.

This extended abstract presents an early-stage analysis of recent Skill-based architectures making use of the
ONERA Robot Skill Toolchain1 with a focus on identifying best practices, common pitfalls, and offering guidelines
for future developments. The experiment relies on the works of several french laboratories, all making use of the
Robot Language DSL formalized by Albore et al.[1]. The findings suggest that while Skill-based architectures
present undeniable advantages in the development of autonomous systems, there is currently a need for more
standardized frameworks.

Keywords
Autonomous systems, robotic architectures, robotics, Skill-based architectures

1. Introduction

The development of autonomous systems presents the major challenge of integrating low-level functions
(e.g., actuation) and high-level decision-making capabilities (e.g., task scheduling) into robust and reliable
software architectures [2, 3, 4]. A common approach involves using layered architectures, especially a
three-layer architecture [5, 6] (Functional, Executive, and Deliberative layers). In this architecture, Skills
are abstractions of the robot’s capabilities [7]. A robot has a Skillset from which Skills can be executed
following plans provided by the Deliberative layer. Skills are formally modeled in the Robot Language
DSL [8] to facilitate formal verification [1, 9, 10] and reuse. Their flexibility and adaptability enables
non-experts to program and control robots by redesigning missions or adding new Skills [11, 12]. This
Skillset model is used for code generation creating the robot’s Executive layer, the Skillset Manager.
Code generation reduces the occurrence of faults and ensures the Skills behave as defined in the DSL.
Finally, developers define the Skillset Implementation, the interface between the Functional layer and
the Skillset Manager.

The Robot Language DSL has been evolving over the past few years, improving both on the aspects
of robustness and verifiability [1, 9, 10]. Several developers have implemented the Skill-based Executive
layer on different platforms and for different use cases. Yet, there is currently no established development
process or framework for developing such architectures. The modeling of Skills, the structure of the
Skillset implementation and the location of error handling features are left to the user’s preference.
Design choices and trends must be investigated in the hope of unveiling good practices and common
mistakes. This study marks the beginning of a Ph.D. thesis with the aim to improve the confidence
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level in the three-layer architectures used in autonomous systems by proposing new approaches to
specify Skill-level and multi-level recovery strategies, with a focus on a Skill-based Executive layer as
defined by Albore et al.[1], and displayed in Figure 1.

Figure 1: 3-layer architecture as defined by Albore et al.[1] with the Skill-based layer implemented as the
Executive layer.

As a first step, we present an early-stage analysis of recent Skill-based architectures making use of
the ONERA Robot Skill Toolchain1 with a focus on identifying best practices, common pitfalls, and
offering guidelines for future developments. To this end, we focus on three research questions (RQs):

RQ 1. To which extent is the level of abstraction proposed by the Skills suitable for different applications?
Metrics: Assessment of the Reusability and adaptivity of Skills both across missions and across systems.

RQ 2. In what ways does the abstraction level of Skills influence the management of system complexity?
Metrics: Assessment of the Mission-level complexity and architecture-level complexity

RQ 3. Does the use of Skills facilitate the integration of error detection and handling mechanisms?
Metrics: Nature and localization of the error handling mechanisms in the Skill-based architecture.

With these three research questions set, we present the sources and methods used for the experiment
in Section 2. Section 3 then summarizes our observations and results before concluding with Section 4.

2. Materials and methods

First, lets us point out that the studied Skill-based approach is an open-source research project, with a
limited community of developers. Nevertheless, over the past few years, numerous works using this
technology have been conducted. Discarding versions form before 2022, the 22 most recent projects
involving a Skill-based architecture have been investigated in the present work. Data ranging from
interpretations of the code to interviews with the developers has been collected. These projects were
conduced by several French laboratories, namely ONERA and LAAS-CNRS in Toulouse as well as the
LIRMM in Montpellier. The data is diverse, as are involved a wide variety of robot types: Manipulator
Arms, Unmanned Aerial Vehicles (UAVs), Unmanned Marine Vehicles (UMVs), Unmanned Ground
Vehicles (UGVs) and Legged Robots, sometimes working all together to achieve the same goal. Each
project is treated as an individual case study and each Skill-based architecture is assessed, following
the research questions, on how the Skills were designed, reused and adapted. Thirteen individuals
(including Ph.D. students and senior researchers) involved in these projects were interviewed. In
addition to code analysis, semi-structured interviews were conducted to elucidate the mission contexts,
rationale behind design decisions, and practical challenges faced during the implementation of the Skills.
The interview protocol was meticulously designed to address the three primary research questions.

1Robot Skills documentation
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Developers provided valuable insights into the process of implementing Skill-based architectures,
specifically focusing on strategies for managing system complexity, Skill correctness, and integrating
error-handling mechanisms.

3. Results

3.1. RQ 1: Suitability of Skill Abstraction

First, we investigated the reusability and genericity of Skills. The analysis of the 22 project codes shows
that while Skills are theoretically meant to be reusable and platform-independent, they tend to only be
reused within the same robot type (e.g., UAVs, UGVs). Generic Skillset models have been developed for
each type and the crossing of a Skill model between different robot types is rare. This is mainly due
to diverging functional needs. For example, while UGVs and UAVs may share the same capability of
reaching a specific waypoint, UAVs need to process additionnal information such as altitude values,
flight status or safety requirements. Therefore, distinct movement-related Skills have been implemented.
This observation leads to the matter of adaptivity of the Skills. Due to the lack of modularity and
specific project needs, developer teams adopted diverging solutions. Some directly modified generic
Skillsets to fit mission-specific needs, while others created new, dedicated Skillsets for a precise robot
type. We observe an unbalance between genericity and adaptivity of Skill models: On the one hand,
the more a Skill is generic, the more difficult it is to implement for specific needs. On the other hand,
highly adaptive Skillsets are bound to their initial robot type and cannot easily be adapted elsewhere.
The framework does not currently propose explicit, documented solutions on the matter. However, we
observe significant similarities between the existing models and argue that the creation of a truly generic
Skillset model is possible. To this end, an unified framework for designing Skill-based architectures is
needed.

The key takeaways regarding RQ 1 are:

- The framework does not currently propose an explicit and documented list of generic Skills.
- The framework does not include a built-in extension mechanism (such as inheritance in object-
oriented programming) to ease the redefinition and specialization of Skillsets.

- There is currently no training material on generic Skill reuse.

3.2. RQ 2: Effect on Complexity Management

Complexity management can be tackled in many ways. First insights from the interviewed participants
concerned mission complexity. In this context, the Skill abstraction helps simplify interactions with
non-experts and stakeholders by focusing on what the robot does rather than how it operates at a low
level. This approach was particularly useful in projects with non-technical stakeholders, such as marine
biologists in one of the case studies.

Another perspective is at the architecture level, where Skills may also play a role for managing
complexity. According to the interviewed participants, without a Skill-based architecture, the develop-
ment process would be longer and significantly more complex. Indeed, the abstraction of the robot’s
capabilities into Skills prevents the developers from making direct connections between high level tasks
and low-level functional components: The Deliberative layer only reasons in term of Skill activation
while the Skills manage the execution of the lower-level components. This modular approach also
simplifies the integration of new functionalities. The use of ROS2 as the middleware distributing the
Skill-based architecture may also influence the architecture-level complexity. The Executive layer uses
ROS2 to harvest and propagate useful information to the whole system. Furthermore, robots from
different projects (e.g., Boston Dynamics®Spot and Kinova®manipulator) were able to communicate
and coordinate Skills effectively thanks to the shared middleware.

Key takeways regarding RQ 2 are:

- The abstraction of the robot’s capabilities allows for simpler and clearer mission definitions.
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- The abstracted Skills simplify the implementation and/or modification of the architecture by
allowing for clear connections between modular components.

- Thanks to the ROS2 middleware, the Skillset Manager is able to centralize and spread information
internally as well as externally, in multi-agent scenarios.

3.3. RQ 3: Effect on Error Detection and Handling

The Skillset manager is C++ code generated from a Skillset model which has been formally verified
beforehand [1, 9]. This approach reduces the occurrence of faults within the Executive layer and ensures
the Skills behave as intended. Furthermore, Skills provide error detection and handling mechanisms
through the definition of preconditions, invariants, and postconditions which prevent a failure from
the neighboring layers to propagate further. The Skillset implementation, making the link with the
functional layer, is user defined and allows developers to integrate custom error detection and recovery
mechanisms. However, what has transpired through both the interviews and the code reviews is
the absence of method to identify error conditions and reactions and how to include them into the
architecture. A work was done by Medina et al. [13] using Fault Tree Analysis (FTA) to create Skill
fault models and help identify the potential causes of failures of the system. Albore et al.[1] made use
of these Skill fault models to implement fallback modes onto a Behavior Tree and identified missing
detection mechanisms within the Skillset implementation. However, we observed no unified practice
for including error detection and handling within the 22 projects, apart from the mandatory formal
verification of the Skillset model.

Key takeways regarding RQ 3 are:

- There is a lack of method to bind fault propagation analysis to Skill models
- There is a need for documented good practices to help developers choose the nature and location
of the error detection and recovery mechanisms

- There is a need for tools to identify scenarios in which multiple (possibly incompatible) recovery
actions are simultaneously triggered.

4. Conclusion

The present study has demonstrated, through an examination of 22 projects, the benefits and challenges
inherent to the use of Skill-based architectures. Our findings indicate that, while Skills offer a robust
mechanism for modular programming and rapid reconfiguration, they have yet to meet all their promises.
Indeed, due to a lack of genericity and adaptivity, such implementations are currently not fully accessible
to non-experts, because applications to specific robotic types, with specific functional needs, necessitate
a process of careful consideration and adaptation. Regarding the genericity and adaptability of Skills,
we posit that the development of truly generic Skill models is feasible. While this endeavor is beyond
the scope of the current Ph.D. research, future studies should be conducted in this direction.

This study has highlighted a clear benefit of implementing Skill-based architectures into increas-
ingly complex autonomous systems: A list of benefits in term of mission-level and architecture-level
complexity management has transpired from the interviews while no significant downsides have been
observed. On top of the the previously mentioned aspects, complexity management can therefore be a
reason why developers choose to use Skills.

Our study also underscores the need of a clearly defined framework for the development of both the
Skillset models and the Skillset implementations. The absence of formal guidelines allows for significant
flexibility in the approach taken by the developer. This may result in inconsistencies within the
implementations and could eventually compromise the safety and robustness of the system. The same
lack of precise guidelines applies for the implementation of error detection and handling mechanisms.

In this context, the Future works related to the Ph.D. will be focusing on Skill-level error handling as
well as a multi-level recovery framework with the aim of addressing the need for guidelines to safer,
more robust implementations. To this end, we currently investigate the capabilities of BDI agents in term
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of failure handling [14]. A BDI-based Deliberative layer coupled with a Skill-based Executive layer could
indeed prove interesting in term of failure handling, and multi-level recovery [15]. Furthermore, the
formal aspect of both paradigms may allow for the creation of robust formal verification tools [16, 17, 18].
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