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Abstract. Runtime verification allows validation of systems during their
operation by monitoring crucial system properties. It is common to gen-
erate monitors from temporal specifications formulated in languages like
MTL or LTL. However, writing formal specifications might be an obstacle
for practitioners. In this paper we present an approach and a tool for
generating software monitors for reactive systems from a set of Gen-
eralized Test Tables (GTTs)—a table-based, user-friendly specification
language specially designed for engineers. The tool is a valuable addition
to the already existing static verifier for GTTs since assumptions made
in specifications can thus be validated at runtime. Moreover, it makes
software and specifications amenable for formal validation that cannot be
verified statically. Moreover, the approach is particularly well-suited for
the specification of workflows as a collection of tables since it supports
dynamic, trigger-based spawning of monitors. The tool produces monitor
code in C++ for tables provided in an existing table definition format.
We show the usefulness of our approach using characteristic examples.
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1 Introduction

Motivation. Safety-critical systems are usually validated using testing or static
verification to ensure that they conform to their specification. Testing can usually
only cover a small number of possible scenarios, and static verification is infeasible
for many systems. One reason for that is that relevant information may not yet
be available during static verification. Another potential problem is that the
actual static verification engine may require too many resources (in terms of time,
memory, or effort needed to come up with suitably strong environment models)
to be feasible in practice. Runtime verification (or, synonymously, monitoring) [2],
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on the other hand, does not suffer from these problems. Monitors are software
systems, produced from specifications, that run in parallel to the production code
and raise an alarm if the system runs (or potentially runs) into a bad state. They
thus provide a sensible alternative to ensure the dependability and reliability of
software systems at production time.

The generation of runtime monitors from temporal specifications is a well-
studied problem (e.g., for Metric Temporal Logic [13], Bounded Linear Temporal
Logic [10], HyperLTL [11]). However, the temporal logics used in these approaches
were not originally designed with an engineer developing reactive systems in
the field as the intended user. Beckert et al. [4] propose to use Generalized
Test Tables (GTTs) as a practical temporal specification language for reactive
systems (i.e., embedded systems driving cyber-physical systems (CPSs) through
a periodically executed program that reads sensors and controls actuators). The
specification language picks up specification concepts that practitioners in the
engineering field are familiar with, and thus it is particularly user-friendly. By
design, they are well-suited for specifying sequential processes.

We present the approach behind the monitor generator tool TTMonitor
which generates efficient runtime monitors code in C++ from GTT specifications.
It implements new features (which we describe in this paper) that make it
particularly suitable for monitoring analysis for workflows where each process
step is specified as an individual test table. Trigger-based mechanisms spawn
monitors dynamically to allow this specification technique to work. The tool is
part of our formal analysis toolbox for PLC verification code.

Generalized Test Tables. Generalized test tables are a table-based specification
language for specifying reactive systems with a focus on practicability and
comprehensibility. A reactive system, in the context of this paper, is a piece
of software, which is periodically executed: reading input sensor signals and
producing output actuator commands. A single repetition of the code is called
an I/O cycle. The concept behind GTTs has been derived from concrete test
tables—a description language used in industry to formulate test protocols which
are written as sequences of concrete sensors and actuators signal values. A
GTT is a generalization of a concrete test table in which concrete values (or
durations) in table cells may be abstracted into constraints that can represent
many values. Hence, a GTT covers not only a single (concrete) test case, but an
entire family of test cases. Though a GTT thus covers a (possibly infinite) set of
concrete behaviors, it keeps its exemplary character since all concrete behaviors
are instances of the same ideal workflow description.

Usually a single GTT does not fully specify a system. It rather is a gener-
alized example, covering a certain situation or scenario, and a comprehensive
specification requires several tables. It is therefore important that the presented
runtime verification approach can efficiently operate on sets of tables. GTTs are
well-suited for an incremental specification process, where the specification grows
over time as experience on the system behavior is gathered (be it during the
design phase or later during testing, or even during production).
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GTTs are stateful contract specifications that have assumptions (precondi-
tions) and assertions (postconditions) in every I/O cycle. This distinction in the
conditions allows us to distinguish a monitor terminating because of a failed
assumption (uncovered case) from a monitor halting because of a failed assertion
(specification violation). The contract design of GTTs allows us to distinguish
four different modes of a monitor:

– running—system and monitor in operation, no violation;
– extraneous—the specification does not cover this concrete run;
– failure—the monitored run violates the specification;
– finished—the monitor has finished, the system continues, but cannot fail this

specification any longer.

Contributions. Our contributions in this paper are:

(1) We present an approach by which GTT specifications can be verified dynami-
cally using runtime monitors. It extends an earlier approach that was limited
to fewer language constructs. In particular, the presented extensions include
row groups, omega repetition, global parameters, and nondeterminism.

(2) We introduce the concept of Dynamic Monitors, by which monitors can be
restarted, and can have multiple instances running at the same time.

(3) We present an approach for hierarchical combination of monitors. This
approach allows adding and removing runtime monitors during operation.
The hierarchical combination enables a flexible aggregation of monitor results
using a variety of functions.

(4) We provide TTMonitor, a monitor-generation tool that creates monitors
from GTT specifications. The C++ code of the monitor produced by TTMon-
itor is highly portable as it does not depend on libraries. The tool sources
are publicly available under https://formal.iti.kit.edu/nfm2021.

This work extends and generalizes ideas of generating runtime monitors from
GTTs presented by Cha et al. [7], where the approach was tailored to the specific
needs of the domain of automated production systems and did not support row
groups, omega repetition, global parameters, and nondeterminism.

Outline. In Sect. 2, we briefly explain the syntax and semantics of GTTs. The
monitor generation and the supported features are presented in Sect. 3, followed
by the application scenarios of these features in Sect. 4. In Sect. 5 we discuss
some issues regarding our approach. Related work is presented in Sect. 6, and we
conclude and present further potential optimizations in Sect. 7.

2 Generalized Test Tables

A GTT is a temporal specification in tabular form for a reactive system, such
that every I/O cycle corresponds to one row in the table. In principle, the rows
are executed from top to bottom, in their natural order, but the specification
language possesses means to specify repeated lines or blocks.

https://formal.iti.kit.edu/nfm2021
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# ASSUME ASSERT �
Tc[°C] Tb[°C] P B

0 (Tc − Tb) > d [10, 60 + d] TRUE FALSE 30s
1 > Tb, < Tc[−1] > Tb[−1], < 60 + d TRUE FALSE —
2 ≤ Tb ≤ 60− d FALSE TRUE —
3 ≤ Tb ≤ 60 + d FALSE TRUE —
4 — > 60− d,≤ 60 + d FALSE FALSE [1min, —]p

[0, 1]

[0, 1]
—∞

Fig. 1. An example GTT for a solar thermal system

A full account on the syntax and semantics of GTTs can be found in [4, 8]; we
will briefly summarize it in the following section. The introduction is guided by
the concrete example in Fig. 1. The specified system is a solar thermal collector
that uses energy of the sunlight to heat water. The system is equipped with an
auxiliary gas burner which is activated when the solar energy is not sufficient.
The GTT in Fig. 1 specifies how the system should control its water pump (P )
and the gas burner (B) in response to the water temperature in the boiler (Tb)
and in the collector (Tc).

2.1 Syntactical Elements

Every signal and every actuator variable has its column in a table. Since each
table row describes a single step of the behavior, each cell constrains the value
of a variable in the corresponding I/O cycle. The set of columns is divided into
assumption columns and assertion columns. The former serve as preconditions for
the cycle and the latter as postconditions, in the sense that all postconditions need
to hold after the cycle if the preconditions were true before the cycle. Typically,
the input variables of the system are assumption columns as these are generated
by a physical environment and thus cannot be influenced by the system. The
output variables are usually the assertion columns.

In contrast to concrete test tables, GTTs may contain constraints instead
of concrete values in each cell. These constraints describe the set of admissible
values for the corresponding cell. Thus GTTs are more expressive than concrete
test tables. Syntactically, these constraints are a comma-separated list of Boolean
constraints. GTTs support several abbreviations for the constraints. The con-
traints within a GTT may refer to global parameters which are placeholders for
nondeterministically chosen, but fixed values. A system needs to conform to every
possible instantiation of a global parameter (in this sense they are universally
quantified over the entire GTT). The example has a global parameter d that is
used to make the specification parametric in the temperature span. For example,
the constraint “[60− d, 60 + d]” (in Fig. 1) restricts the boiler temperature Tb to
the depicted range and is an abbreviation for Tb ≥ 60− d, Tb ≤ 60 + d for any
arbitrary d. A “don’t-care” (—) constraint signals that the value may be chosen
arbitrarily. References to values of past I/O cycles can be made using square
brackets, e.g., “< Tc[−1]” specifies that the collector temperature is strictly de-
creasing compared to the last cycle. We denote global parameters with lowercase
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letters to distinguish them from program variables, for which we use uppercase
letters. To increase readability, we omit a cell constraint if it is identical to the
constraint of the cell directly above.

To make GTTs more expressive than mere sequences of I/O cycles, an indi-
vidual line or multiple lines (a block) may be annotated with a repetition scheme.
The repetition of rows is defined in the special table column duration (�), and
the repetition of blocks is marked by a vertical bar. For example, the duration
specification of 30 seconds in the first row of Fig. 1 states that for the first
30 seconds the system should adhere to this row. The stated time spans are
converted into equivalent numbers of I/O cycle iterations. For a cycle time of 10
seconds, the first row is repeated three times, and the last row for at least six
times. For the specification of durations, the set of expressions is limited: the
cells may contain concrete values, concrete intervals of natural numbers, “—”
(nondeterministic, finite repetition) and “—∞” (infinite repetition). They specify
the number of iterations that the respective row (or block) may be repeated.

2.2 Semantics: Table Conformance

The semantics of a GTT as a temporal specification is a set of admissible concrete
behaviors. A generalized table T essentially corresponds to the set B(T ) of all
concrete table expansions in which table rows (and blocks) have been rolled out
in accordance to their duration annotations, and all table cells have been replaced
with concrete values that satisfy the constraints.

We model a reactive system S : (I×Σ)→ (Σ×O) as a function which takes a
signal input in I and an internal state in Σ of the system, and computes the new
state and the output in O. Thus, a reactive system is causal and deterministic.
An (infinite) trace of S is a sequence ((i1, o1), (i2, o2), . . .) ∈ (I ×O)ω, such that
the output values ok are the result of the repeated application of function S to
the input values ik.

A trace tr of S conforms to T if there exists a concrete table c in the expansion
set B(T ) such that the i-th element in tr satisfies all assumptions and all assertions
in the i-th row of c. A trace violates T if there is no such satisfying witness c,
but there exists a table d ∈ B(T ) whose assumptions are satisfied while at least
one assertion fails. It is also possible that there is no concrete table for which all
assumptions are satisfied by the trace. In this case the trace is not covered by
the specification. A system S conforms to a GTT T if every trace of S conforms
to T .

Beckert et al. [4] provide a formal definition of GTT conformance as a two-
party game between the software system and its environment that also covers
cases that we omitted here. In each turn, the environment of the system under
test chooses the input values and the system responds with the computed output.
A party loses if it emits a value that violates the current assumptions (for the
environment) or assertions (for the system). This conformance condition can be
encoded into an automaton which is described in the following section.
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Fig. 2. Sketch of the automaton generated for the GTT of Fig. 1.

2.3 Automaton Generation

For (static) conformance verification, a GTT is translated into a nondeterministic
automaton as described in the following such that when a trace tr of the system
S is accepted by the automaton, it conforms to the GTT. Later this automaton
is translated into a transition system encoded by Boolean formulas; see Sect. 3.

Automaton. Figure 2 sketches the generated automaton for the example shown

in Fig. 1. A state s
(k)
i represents the k-th iteration of the i-th row of the table

and expresses that the i-th row is currently a possible step of the test protocol.

Hence, if s
(k)
i is active, the assumption and assertion of i-th table row define a

valid turn for the challenger and the system in the conformance game. The state
serror represents a violation of a row assertion, and the state sassum represents a
violation of a row assumption. The state sfinal represents the end of the table. If
this state is reached, the system conforms to the GTT.

There are three kinds of transitions: An α edge from a state s
(k)
i to the state

serror is triggered if the assumption of the i-th row is satisfied, but the assertion
of the same row is violated. A β edge to the state sassum is triggered if the
assumption of the i-th row is violated. In this case it does not matter whether
the assertion holds or not. A γ edge is taken when both the assumption and the
assertion hold, leading to the next possible steps in the test protocol. Note that
due to the strong-repeated row group in Fig. 1, the end-of-the-table and thus the
final state sfinal is not reachable. We model this situation by labeling the edge to
sfinal with the contradictory guard false.

Acceptance Condition. A state may have more than one successor state with
transition γ which makes the automaton nondeterministic. The acceptance
condition for a trace tr ∈ S is that it must never reach a situation where only
the error state serror can be reached. This would imply that the assertion did
not hold and there is no possible continuation.
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More formally: Introducing a Boolean variable per state (and considering
that multiple variables may be true at the same time due to nondeterminism),
the condition that the system does not fail can be encoded as

serror → sfinal ∨
∨
i,k

s
(k)
i . (1)

which requires that at least one other state is possible (either a state s
(k)
i inside

the table or the final state sfinal) whenever an error has been recognized.

3 Monitor Generation

We now explain how a runtime verification monitor is created from a GTT.

Monitor. A monitor is a software module that runs alongside the monitored
reactive system and is executed at the end of each I/O cycle—after the output of
the reactive system has been computed. It checks whether the trace (comprising
of input, output, and internal state values) observed thus far (i.e., the current
system state together with previously observed system states) satisfies the given
specification. In the case of a monitor derived from a GTT T , the monitor can
report one of four cases:

(1) The trace adheres to the specification, i.e., there is at least one sequence of
rows in T such that all assumptions and assertions are satisfied (running).

(2) There is no sequence of rows in T such that all trace assumptions are satisfied
(extraneous input), i.e., the specification does not cover the observed trace.

(3) There is a sequence of rows in T such that all assumptions of the trace are
satisfied, but no sequence satisfies all assertions (failure).

(4) The trace adheres to the specification for a sequence of rows in T such that
the end of T has been reached (finished).

The state finished is a special case of running, but it is particularly interesting
since the monitor can idle as it can no longer change its state (in particular it
can no longer fail the specification).

Definition 1 (Monitor). Let S : (I × Σ) → (Σ × O) be a reactive system
with input space I, output space O, and state space Σ. A monitor M with
internal state space ΣM is a reactive system M : (I × O × Σ) × ΣM → ΣM ×
{run,extra, fail, fin} that takes as input the current input, output, and state
values of S and returns as output a verdict. The verdict may be run (for running),
extra (for extraneous), fail (for failure), or fin (for finished).

From an Automaton to a Monitor. We use the automaton definition from Sect. 2.3
to build a monitor M(T ) from a GTT T that realizes such an automaton. Since
the automaton can be nondeterministic,M(T ) needs to consider all possible runs,
and hence has to maintain in its state space ΣM a set of current automaton states
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S ⊆ {serror , sassum , sfinal , . . . s
(i)
k . . .}. The automaton construction is suitable for

GTTs which do not use global parameters. We derive the verdict mT (S) ofM(T )
from the current automaton states S as follows:

mT (S) :=


run : S ∩ Srow 6= ∅
extra : S = {sassum} ∨ S = ∅
fail : serror ∈ S ∧ Srow ∩ S 6= ∅
fin : sfinal ∈ S

(2)

where Srow = {sfinal , . . . s
(i)
k . . .} is the set of automaton states representing a

table row or the end of the table. If the invariant (1) that encodes conformance
to a GTT specification is violated by a system trace, then the verdict function (2)
returns fail for that trace. In case that the invariant is satisfied for a (finite)
trace, the verdict function can make a more fine-grained statement and return
one of the three other verdicts, distinguishing between situations in which the
specification does not cover the trace (extra), the end of a specification has
been reached (fin), or the trace runs according to the specification (run). The
monitor construction is designed to maintain conformance (Sect. 2.2).

Proposition 1 (Relation to Conformance). Let S be a reactive system, T
a GTT, and M(T ) the generated monitor. S conforms to T if and only if M(T )
does never produce the verdict fail in any I/O cycle step for any possible behavior
of S.

From [4], we know that S conforms to the GTT T if and only if the constructed
automaton AT (Sect. 2.3) never violates its invariant (1). As the generated
monitor M(T ) simulates the execution of the automaton AT and the verdict
fail corresponds to the violation of the invariant, the monitor M(T ) will emit
fail if and only if a system does not conform to the specification.

Challenges. One challenge of the monitor is to determine the instantiation of
the global parameters from the observable system state. In contrast to static
conformance verification, where a system needs to adhere to all global parame-
ters’ instantiations, the monitor supervises and assesses only the current trace,
where the instantiations (along with the input and output values) of the global
parameters are determined by the environment and by the system.

In the remainder of this section, we explain how we tackle the following
challenges: handling global parameters, especially in combination with a non-
deterministic row choice (Sect. 3.1); combining multiple GTTs into a single
monitor (Sect. 3.2); restarting after bailing out (Sect. 3.3); and monitoring con-
current events and their effects (Sect. 3.3). These topics have solutions for static
verification which cannot be transferred to the case of runtime verification.

3.1 Global Parameters and Nondeterminism

Global parameters within a GTT are considered universally quantified, which
works out fine for static verification which can deal with uninterpreted symbols.
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But during runtime monitoring, the monitor needs to determine the instantiation
of global parameters by observing the current input-output trace. Hence, we need
to decide when and to which value a global parameter is to be bound.

A global parameter may occur in a GTT at an arbitrary position. The
first occurrence of a global parameter g could, for instance, be in the contraint
g div 2 = In (where “In” is a program variable of the reactive system and
div denotes integer division). In general, constraints could have zero, one, or
multiple solutions for g, hence the value of g may be ambiguous. In our example,
the constraints has two solutions for each given input value: g = 2 ∗ In and
g = 2 ∗ In + 1.

We tackle this problem by introducing a syntactical restriction: the first
appearance of a global parameter g needs to be in a binding equation, where g
stands alone on one side of the equation. In the above example, the user needs to
rewrite the equation, and make the solution bound to g explicit, e.g., “g = 2∗ In”.
In Sect. 5 we present two approaches to eliminate this syntactical restriction.

Since time constraints allow rows (and blocks) to be skipped, it cannot
be guaranteed that the syntactically first occurrence of a global parameter is
evaluated. However, it can be statically ensured that the first evaluation of a
global parameter during a run is within a binding equation. Alternatively, this
check can also be performed at runtime by the monitor.

Another challenge for global parameters is potential ambiguities induced
by nondeterministic tables as multiple rows (automaton states) with different
assignments for the same global parameter could be active at the same time
and thus force a binding to different values. To resolve this challenge, we use a
token-based evaluation of the automaton, where each token represents a possible
run of the automaton. Each token carries an assignment of the global parameters
together with its current automaton state. A token is always in a single state,
and therefore the value bound to a global parameter is unambiguous. If there are
multiple possible successor automaton states for a token, the token is duplicated
and each copy obtains a different successor state. Because the automaton can
be in multiple states, there might be multiple tokens. Furthermore, it is also
possible that there are two tokens at the same automaton state with different
assignments of the global parameters. Two tokens at the same state with identical
assignments can be reduced to a single token as both behave identically.

3.2 Combined Monitors

Since GTTs are designed to describe a set of similar system behaviors, it is
oftentimes not possible to describe the complete system behavior in one table.
Hence, the specified behavior of a GTT is only a partial view of the complete
system and a more comprehensive specification can be gained by using several
GTTs to specify a system. To support such multi-table specifications, we need to
support monitoring of several GTTs at the same time. We now show how the
generated monitors of GTTs can be stitched together into one combined monitor.

A combined monitor MT1,...,Tn
is a reactive system which monitors a set

{T1, . . . , Tn} of GTTs by using the monitors M(Ti) for 1 ≤ i ≤ n. The combina-
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tion essentially runs the monitors in parallel, and the combined monitor state is the
tuple of the states of the individual monitors: S1,...,n = (S1, . . . ,Sn). The most rel-
evant part of the combined monitor is the aggregation function mT1,...,Tn(S1,...,n)
which combines the verdicts mTi(Si) of the sub-monitors M(Ti) (for 1 ≤ i ≤ n)
into a single verdict mT1,...,Tn

(S1,...,n) = agg(mT1
(S1), . . . ,mTn

(Sn)). There are
two canonical aggregation functions: agg∧ and agg∨.

For the aggregation, we filter out the bail-out results from the sub-monitor
verdicts (filterextra(·)), and then the functions agg∧ and agg∨ can be defined
as the minimum and the maximum functions with respect to the order fail <
run < fin on the results. Formally,

agg∧(a1, . . . , an) = min(filterextra(a1, ..., an))

agg∨(a1, . . . , an) = max(filterextra(a1, ..., an))

with the special case that max(∅) = min(∅) = extra. The aggregation functions
agg∧ and agg∨ correspond to the conjunction and disjunction in a three-valued
logic with the given order.

The agg∧ function corresponds to the conjunction of the monitors returning
run if there is no sub-monitor that returns fail and at least one monitor is
run. Similarly, agg∨ represents the disjunction returning run if at least one
sub-monitor signals run. The value extra expresses that a monitor has diverged,
and this value is ignored in both aggregations.

In general, aggregation functions can be user-defined functions which are
fine-tuned for the given tables and the automation system based on gained
experience. For example, we allow complex aggregation functions which compute
histograms of the given monitor results and aggregate their results based on
a given threshold for each category (e.g., a combined monitor indicating run
implies that at least a given percentage of the sub-monitors are fine (run) and
the number of errors (fail) is below a threshold).

Note that combined monitors themselves can be subject to a combination,
which allows the construction of sophisticated combinations. For example, imagine
one GTT emerg which describes the emergency behavior of a system, and two
mutually exclusive GTTs man and auto covering the manual and automatic
operation modes. We can compose a comprehensive specification by logically
combining the corresponding monitors for the GTTs, expressing that “emerg and
man or auto” should always be satisfied. The corresponding combined monitor is
M∧(Memerg ,M∨(Mman ,Mauto)).

Performance Considerations. The monitor combination could have been imple-
mented as a single product automaton construction combing all constraints of
a set of GTTs. We decided against this product automaton construction, as
the implementation effort would be higher and there are no clear performance
benefits. States and tokens of and in the product automaton can be saved if the
GTTs share initial rows, but this effect is negligible for long-running systems.

On the other hand, if a global parameters occur in the GTTs, the approach
with several individual monitors (and, hence, a separate token for each GTT) is
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more flexible as each monitor can consider a separate global parameter binding.
Moreover, the approach of combining individual monitors allows the user to
include handwritten monitors and supports dynamic monitors (Sect. 3.3).

3.3 Triggered Restarts and Dynamic Monitors

Triggered Restarts. If a monitor M runs into a situation where its monitored
table does not cover the current run, i.e., the assumptions of all currently possible
rows are violated, M does not need to be continued since it cannot recover from
that state. Let us call such a monitor diverging. Consider a situation where a GTT
describes the normal behavior of a system. If an (abnormal) emergency situation
has been triggered for the system, the monitor diverges when the abnormal
situation occurs since this behavior is not covered by the table. After recovery, it
can no longer be used to monitor the system.

This problem was already identified in [7], and a solution which allows a
simple and precise monitoring of event-triggered processes has been proposed
there. An additional specification can be provided which triggers a restart of a
monitor for a GTT. A restart trigger is a condition φ on the current state in the
constraint language of the table cells. A monitor M restarts if it has diverged,
i.e., once it results in a verdict of extra, and the observed system trace meets φ.
The restart resets the monitor to its initial state.

Dynamic Monitors. We generalize the idea of restarting further by allowing—
beside a restarting condition—a starting condition ψ for a GTT T . Whenever ψ
is met by the current system trace, a new instance of the monitor MT is created
and started. Note that, unlike the restart condition φ, the trigger ψ is not bound
to another diverged monitor being stuck in the extra state.

Dynamic monitors can be used to compose event-triggered specifications,
where the expected system reaction to the event is described. For example, they
can be used to specify the flow of work pieces and tracking the correct processing
of each work piece in the software of production systems. Whenever a work piece
appears at the beginning of the conveyor belt, this event triggers the spawning
of a new monitor which monitors that particular work piece. With dynamic
monitors, it is not necessary to globally formalize the entire work process chain,
but rather one can focus locally on each process step for a single work piece.

A starting condition ψ is evaluated before the execution of the sub-monitors.
Therefore, the newly created monitor instances start in the same I/O cycle in
which ψ has been satisfied. At the end of a cycle, dynamic monitors which have
diverged are discarded to avoid growing memory consumption. As a best practice
to keep the memory consumption low, every dynamic monitor should eventually
terminate, e.g., the end of specification is reachable.

The concept of dynamic monitors seems to subsume the concept of restarting
monitors. But there is a subtle difference: with restarting, there always exists
only one monitor instance which can be restarted after it has diverged, whereas
a dynamic monitor can have multiple active instances at the same time.
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# ASSUME ASSERT �
On Off Resume Set QuickDecel QuickAccel Accel Brake Speed CruiseSpeed CruiseState
bool bool bool bool bool bool bool bool float float enum

0 FALSE FALSE FALSE — — — — — — 0 Off ≥ 0
1 TRUE FALSE — > SpeedMin = Speed On 1
2 — FALSE FALSE FALSE FALSE ≥ 0

Restart: CruiseState = Off

Fig. 3. Generalized Test Table for the cruise control system.

4 Application Scenarios

In this section we demonstrate the specification of reactive systems with GTTs
and show how the TTMonitor tool can generate monitors from the GTTs
using the presented approach. The chosen examples demonstrate the benefits of
the approach in different application contexts for reactive systems. Due to space
restrictions, the table input files and monitors generated from them can be found
on the companion website.4

4.1 Cruise Control System

A CCS is a driver assistance system found in cars that accurately maintains
the speed set by the driver by controlling the throttle-accelerator pedal linkage
without driver intervention. If the driver uses the accelerator or the brake pedals,
the system releases its control over the velocity. CCSs have already been formally
studied [1, 12, 15]. We follow the specification and Esterel implementation in [19].
There are nine input parameters to the system: On, Off, Resume, Set, Speed,
QuickDeccel, QuickAccel, Accel, and Decel. The CCS returns three output values:
the current operation mode (on, off, stand-by, disabled), the current target speed,
and the value of the throttle. The GTT in Fig. 3 describes those scenarios in
which the CCS is switched on and should maintain the current speed until either
the brake or the accelerator pedal are pressed. This monitor becomes obsolete
(i.e., it diverges) if the CCS is switched off, and restarts once the system is
switched on.

4.2 Linear Regression

Here we demonstrate the feature of global parameter binding. The Linear Regres-
sion function block implements a commonly needed functionality for implementing
CPSs, namely the calibration of sensor values. The evaluated software module
origins from [18], where it is used to demonstrate static verification of GTTs
using model checking. The state space of this function block, which uses floating
point arithmetic, is relatively large and its state transition function relatively
complex, which limits the applicability of static verification tools.

Linear Regression maps actual sensor values to a defined range of calibrated
values. This mapping is internally represented as a linear interpolation curve

4 https://formal.iti.kit.edu/nfm2021/

https://formal.iti.kit.edu/nfm2021/
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# ASSUME ASSERT �
TPy TPSet Mode X Y

0 — — Op — 0 —
1 — 0 Teach — 0 [1, to]
2 y1 1 Teach x1 0 1
3 — 0 Teach — 0 [1, to]
4 y2 1 Teach x2, 6= x1 0 1
5 — — Teach — 0 1
6 — — Op — = y1 + y2 − y1/x2 − x1(X − x1) —

ω

Fig. 4. Generalized test table of a system which maps sensor values to their physical
representation by a taught linear curve. Originally presented in [18].

# ASSUME ASSERT �
CranePos CraneWP WP@Magazin StampState WP@Conveyor Crane Vaccum Stamp Conv.Belt Pusher1 Pusher2

enum bool enum enum bool enum bool bool bool bool bool

0 magazine FALSE metal ready — — stop — — — — — 1
1 — pickup TRUE [1, T1]
2 TRUE empty free stop 1
3 — — move cw [1, T2]
4 stamp stop 10
5 release 5
6 — FALSE 1
7 FALSE occupied TRUE 1
8 — — — FALSE FALSE — —
9 stamp FALSE ready pickup TRUE [1, T3]
10 TRUE free move ccw TRUE —
11 conveyor stop TRUE —
12 release 5
13 — FALSE — FALSE TRUE FALSE 1
14 — T4
15 TRUE 5

Fig. 5. A GTT for describing the material flow in the PPU plant, which is instantiated
when a new work piece appears at the magazine (WP@Magazin 6= EMPTY).

whose parameters are learned during operation. To this end, the function block
can be operated in two modes: the calibration mode (“Teach”) and the operation
mode (“Op”). After learning, the block performs the linear interpolation in the
operation mode, mapping the incoming sensor values to values according to the
calibrated curve. The system receives the selected mode (Mode) and the sensor
value input (X ), and two additional inputs needed for the calibration: TPy for
the reference value and TPSet to trigger teaching. The system has only a single
output Y, which is zero during teaching or for improper reference points. If the
reference points are proper values, then the output Y is defined by the linear
curve at position X. This behavior is described by the GTT in Fig. 4.

4.3 Conveyor Belt Process

In this scenario we demonstrate the features of dynamic monitors by specifying
the material flow inside an automated manufacturing plant. The example is
based on the Pick-and-Place-Unit (PPU) developed at the TU Munich [17].
The PPU was developed to demonstrate methods to manage the evolution of
long-running hard- and software. More than 20 scenarios have been designed,
and they demonstrate a variety of evolution scenarios typical for an automated
production system. We use one scenario (scenario number 13) in which the PPU
picks up work pieces from a deposit with a crane. If a work piece is metallic,



14 A. Weigl et al.

it is transported to the stamp to be engraved. Then the engraved work piece
is picked up again and is moved to the conveyor belt, where the work pieces
are finally sorted on different ramps. Non-metallic work pieces are not engraved,
and are directly moved to the conveyor belt. For optimization, the crane moves
non-metallic pieces to the conveyor belt while a metallic piece is being stamped.

Due to the parallel processing (stamping, transporting, and sorting) within the
plant, a global specification of the input and output variables is hard to achieve.
Instead, we can describe the plant by following the work pieces individually.

Note that the assumptions in Fig. 5 encode the expected physical behavior of
the environment. If they are violated, e.g., if a work piece is not detected in time,
the monitor raises the signal (bail-out), and this should be interpreted as a flag
for an error in the environment. One possibility to deal with this is to deliver
more explanations why a monitor diverges, as discussed in Sect. 5.

5 Discussion: Generalizations

Counting Repetitions. The automaton for constructing the monitors is generated
from a normalized (unrolled) test table. Therefore, a row with a duration [m,n]
ends up in an automaton with n ·d states, where d denotes the number of unrolled
overlying row groups. Basing the evaluation of automata on tokens would allow
us to use integer counters in the tokens for counting the repetition of rows and
row groups, thus reducing number of states in the automaton and the code and
data size of the monitor. Moreover, we can get rid of the restriction of nonrigid
duration constraints and allow the use of state or input variables in the duration
column. Their use also enables using a clock time instead of I/O cycle numbers
and makes the generated monitors applicable for interactive systems.

Symbolical Representation of Global Parameters. In Sect. 3.1 we restricted the
first occurrence of global parameters to a form which describes an unambiguous
value to bind. This restriction could be lifted, with a negative impact on the
performance, by using a symbolic representation, e.g., a BDD or a CNF formula.
Instead of a concrete value, a token would hold a symbolic representation for
each global parameter. The constraints of a global parameter in the monitored
table cells are added to the token’s symbolic representation and limit the value
range of the global parameter. The symbolic representation must be satisfiable
(describing at least one possible value of the global parameter) during monitoring.
Moreover, every monitored constraint needs to be checked symbolically.

A simpler solution can be the use of multiple tokens. Instead of forcing the
user to decide on one solution, we create a token for each adhering binding of the
global parameters of the equation. Back to our example of a quadratic equation,
we know there are at most two possible solutions, thus we will create zero to
two tokens with different assignments. Note, this solution is only possible if the
number of solutions is limited and rather small.

Assumptions as Assertions on the Environment. The presented approach reports
violated assumptions as extraneous situations and bails out without reporting an



Runtime Verification of GTTs 15

error. There are situations in which an assumption violation is an indicator for
a serious error occurring in the environment, not only a situation not covered
by the specification. An error should be reported. We observed this in Sect. 4.3,
where a disappearing work piece on a conveyor belt is an unexpected event and
indicates either a broken sensor or a plant standstill. It needs to be distinguished
from a violated assumption for a work piece not covered by the specification. To
this end, the specification mechanism can be extended to support more assertion
levels than the two presented in this paper.

6 Related Work

The generation of runtime monitors from formal specification is well-studied;
see, e.g., [6]. The most closely related topics are the monitoring of reactive
systems and the monitoring of engineer-friendly specification languages. Two
prominent examples for the latter are LoLA [9] and Copilot [14]. Both are stream-
based languages which allow for and claim to be more user-friendly than the
underlying temporal logics. Copilot focuses more on the real-time aspect of the
created monitors while LoLA can additionally provide statistical measurements for
system profiling (rather than pure Boolean verdicts). Both monitoring approaches
do not explicitly support dynamic spawning or restarting of monitors.

Bloem et al. [5] propose the construction of shields—runtime monitors with
the ability to alter the output of the monitored system when a violation is
detected. Their monitor construction therefore also requires the synthesis of a
reactive system, which computes the alternative correct outputs. They introduce
a new notion of k-stabilization which captures the idea that a system can alter
the output of a system for k steps, to avoid the violation of given properties.

Bauer et al. [3] present a framework which allows to identify the faulty sub-
component in a reactive system (in addition to monitoring). This is achieved by
first monitoring components locally (according to a Timed LTL specification [16])
and then using first order logic to describe the overall system behavior. Thus, it
is possible to detect which components may be responsible for an observed error.

7 Conclusion

In this paper we presented an approach for generating runtime monitors from
GTTs, which are a table-based specification language for the behavior of reactive
systems. In contrast to earlier work, the presented approach can deal with
nondeterminism and global parameters in tables. Moreover, we introduced the
concept of dynamic monitors which are created/launched at runtime whenever a
specified trigger event occurs. They make possible a local specification of parallel
and multi-step processes. We show the applicability of the monitoring approach
on concrete examples from the domains of automated production systems and
embedded controllers. The approach has been implemented in TTMonitor, an
open-source tool which generates monitor code in C++ from GTTs specifications.
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GTTs have two distinct kinds of constraints: assumptions and assertions.
Depending on the type of constraints that fails, a failing trace is reported to
either diverge (i.e., the specification does not cover it) or to reveal a flaw in
the implementation. This principle can be refined further in future work that
will allow the introduction of several different constraint categories. This will
allow the monitor to elaborate the nature of failures even further, as feedback
to the engineer. For instance, for each hardware component a category could be
introduced for the assumptions on its physical response behavior. If a failure is
reported in this category, this will directly indicate that the hardware component
has failed. Analogously, also for the assertions on software components.

We plan to evaluate our monitor generation approach and the example
monitors in simulation and in (real-time) operation in their environment.
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