
Integration of Bounded Model Checking and

Deductive Veri�cation

Bernhard Beckert, Thorsten Bormer, Florian Merz, and Carsten Sinz

Department of Informatics
Karlsruhe Institute of Technology (KIT), Germany

http://{formal|verialg}.iti.kit.edu

Abstract. Modular deductive veri�cation of software systems is a com-
plex task: the user has to put a lot of e�ort in writing module speci�-
cations that �t together when verifying the system as a whole. In this
paper, we propose a combination of deductive veri�cation and software
bounded model checking (SBMC), where SBMC is used to support the
user in the speci�cation and veri�cation process, while deductive veri�ca-
tion provides the �nal correctness proof. SMBC provides early � as well
as precise � feedback to the user. Unlike modular deductive veri�cation,
the SBMC approach is able to check annotations beyond the boundaries
of a single module � even if other relevant modules are not annotated
(yet). This allows to test whether the di�erent module speci�cations in
the system match the implementation at every step of the speci�cation
process.

1 Introduction

Deduction-based methods for software veri�cation and systematic debugging
have seen a tremendous progress in recent years. Up to the nineties, the main
focus in these areas was on fundamental research � the methods developed during
this period were applicable only to small, academic software systems. Since the
beginning of this century, a set of new techniques emerged that puts into reach
the application of these techniques to real-world software systems.

What is needed now are methods and tools to help the user in writing modu-
lar speci�cations for complex systems and support the veri�cation process. The
size of real-world systems, together with a large amount of interdependencies of
functions and data structures in the system make them hard to specify.

Modular speci�cation and veri�cation techniques are essential to be able to
verify large software systems for several reasons. On the one hand, current de-
ductive veri�cation tools do not scale to large systems if not taking advantage of
modularization. On the other hand, coming up with a requirement speci�cation
of a whole system at once is often a non-trivial task and better split up into
speci�cation of smaller modules. In addition, the reasons for a failed veri�cation
attempt are also di�cult to identify if modularity is not taken into account.

Therefore, in most cases, veri�cation tools require to decompose the speci-
�cation and veri�cation task into smaller modules, e.g., by using contracts for



each module in proofs instead of the module's implementation. Some veri�cation
tools allow the user to choose whether to use a module's contract or its imple-
mentation in a proof � however, inlining the implementation is only viable for
simpler modules, due to scalability issues.

The disadvantage of verifying each module in isolation is that the speci�ca-
tion of a module may not �t the other parts of the system where the module is
used. This may result in many iterations of changes to the speci�cation of all
modules until a �x-point is reached that allows veri�cation of the full system.

On the other hand, approaches like software bounded model checking (SBMC)
are able to analyze a system beyond module boundaries, though this ability does
not come for free: The speci�cation languages of SBMC tools are not as expres-
sive, and they have less precision as compared to deductive veri�cation systems.

In this paper, we propose a combination of deductive veri�cation and SMBC,
where SBMC is used to support the user in the speci�cation and veri�cation
process while deductive veri�cation provides the �nal correctness proof. For this,
auxiliary speci�cations that the user adds as annotations to the system are
translated into input for the SBMC tool. As the user's annotations are aimed
at deductive veri�cation, the SBMC tool may not be able to handle them, but
in many cases it can provide early feedback. In particular, SBMC can check the
appropriateness of the speci�cations beyond the boundaries of a single module
� even if other relevant modules are not speci�ed (yet). This allows to test
early on whether the di�erent module speci�cations in the system match the
implementation at every step of the speci�cation process.

In Section 2, we give a brief introduction to deductive veri�cation, followed
by a description of the problems encountered when deductively verifying soft-
ware systems in practice in Section 3. Section 4 contains a short explanation
of software bounded model checking and its relation to deductive veri�cation,
and Section 5 a brief description of how to translate from the annotation-based
speci�cation used in deductive veri�cation into input for the BMC tool. Sec-
tion 6 presents the main contribution of this work, namely the integration of
annotation-based deductive veri�cation and software bounded model checking.
In Section 7 an extended example is given describing the advantages of this
combination, and this example is then evaluated in Section 8. Finally, Sections
9 and 10 are concerned with related work, conclusion, and future work.

As the basis for the work presented in this paper, we used the deductive
veri�cation tool VCC [4] and the SBMC tool LLBMC [15]. Accordingly, our
veri�cation targets are C programs, and annotations are written in VCC's spec-
i�cation language. Nevertheless, the ideas presented here are not restricted to
procedural programming languages like C, and can also be applied to programs
written in object-oriented languages like Java or C++. Abstract types (inter-
faces), e.g., can be dealt with by providing suitable contracts for these interfaces
or by giving a set of concrete instantiations. Dynamic typing can be taken into
account by replacing method calls by case discrimination over the possible dy-
namic types. The fundamental problem of how to engineer suitable annotations
for veri�cation remains largely unchanged compared to procedural languages.

2



2 Basics of Deductive Veri�cation

2.1 The Annotation-based Veri�cation Paradigm

Annotation-based deductive veri�cation allows to obtain a rigorous mathemat-
ical proof for the correctness of a software system w.r.t. its formal functional
speci�cation. Veri�cation tools in this category are based on a speci�c style of
user interaction, called auto-active [10]. Proof construction is not interactive,
but all information needed for �nding a correctness proof, including auxiliary
speci�cations, have to be provided by the user before the tool is run � there is
no provision for manual intervention during the proof construction process.

Speci�cations are written directly in the source code as annotations in a
way that does not in�uence the execution of the software system. Often, these
annotations feature a syntax that is close to the syntax of expressions of the
target programming language, enriched by constructs of �rst-order logic.

A typical example for an annotation-based veri�cation system is VCC [4], a
deductive veri�cation tool for concurrent C programs. It uses the Boogie tool [1]
to generate veri�cation conditions in �rst-order logic. The generated FOL for-
mula has the property that it is unsatis�able i� the program ful�lls its speci�-
cation. An automated theorem prover, in this case Z3 [5], is then used to show
unsatis�ability of the formula. If the formula is satis�able, Z3 can often �nd
models for it, which can be translated back to traces of the program that violate
the speci�cation [12].

2.2 Veri�cation Targets

In the following, we consider the veri�cation targets to be C programs, containing
a set of function de�nitions. We consider these functions to be the modules
of the program. We say that a C function fA depends on a function fB i�
the function body of fA (syntactically) contains a function call to fB . This
dependency relation, together with the set of functions of the system forms a
directed graph. These graphs may contain arbitrary cycles depending on the
implementation of the functions. In the following, for simplicity, we assume the
graphs to be acyclic. In practice, mutually recursive functions would have to be
speci�ed together in one step and the veri�cation methodology has to ensure
that no cyclic reasoning occurs. For longer cycles in the call graph, techniques
such as program slicing would allow us to split the graph and consider acyclic
parts separately.

Similar to the notion of a root in a tree, we de�ne as the roots in the depen-
dency graph any node without a parent. The depth of a node is de�ned as the
length of the longest path from this node to any of the roots in the graph. The
set of all functions that a function f depends on is called children(f); conversely,
the set of all functions that depend on f is called parents(f).

The depth of a node can be used to introduce a (topological) ordering ≺ on
the nodes of the graph: f1 ≺ f2 i� depth(f1) < depth(f2). In the following, we
identify functions with their corresponding nodes in the dependency graph, and
we use the terminology of order theory for functions where appropriate.

3



2.3 Annotations and Their Semantics

In modular deductive veri�cation, the speci�cation SPEC of a software system S
is composed of the speci�cations of its modules (C functions) and data structures.
We assume that SPEC is a set of annotations, where each annotation consists of
(a) one or more expressions of the speci�cation language (pre-/post-conditions,
invariants, assertions, etc.) and (b) the position of the annotation in the program.
We further assume that each annotation is local to a single function of the
speci�ed system, i.e., SPEC is the disjoint union SPEC = SPEC 1∪ . . .∪SPECn

of speci�cations SPEC i for each of the functions fi of which S consists.
The binary relation |= between programs and (sets of) annotations denotes

the semantics of speci�cations, i.e., S |= SPEC i� the software system S satis�es
the speci�cation SPEC according to the de�nition of the speci�cation language.
Since the speci�cation languages we consider are modular, we have

S |= SPEC i� f1 |= SPEC 1, . . . , fn |= SPECn .

Also, the relation |= is monotonic w.r.t. adding annotations:

S |= SPEC ∪ SPEC ′ implies S |= SPEC .

This monotonicity condition requires, for example, that a pre-condition is not
considered to be an annotation on its own but only in combination with a post-
condition. Adding a lone pre-condition may weaken a speci�cation while adding
a pre-/post-condition pair always strengthens it.

2.4 Deductive Veri�cation Systems

To prove that a software system satis�es its speci�cation, we use a veri�cation
system V (in our case the VCC tool). The relation S `V SPEC denotes that V
is able to prove that S satis�es SPEC . We assume the veri�cation system to be
sound, i.e., S `V SPEC implies S |= SPEC .

Any such sound veri�cation system has to be incomplete as any non-trivial
system property is undecidable due to Rice's Theorem. Instead, veri�cation sys-
tems are supposed to be relatively complete, in the sense that they would be
complete if there was available an oracle for validity of �rst-order formulas with
arithmetic. In practice, this is rarely an issue: the amount of veri�cation prob-
lems where there doesn't exist a proof is negligible compared to the far larger
class of problems where the performance of the veri�cation system is the reason
a proof is not found in time. For the latter case, the user of a veri�cation tool
is prepared to give the prover further hints in form of auxiliary annotations in
order to be able to verify a software system to satisfy its speci�cation.

Moreover, all of today's deductive veri�cation systems presuppose certain
types of additional, non-requirement annotations to be given by the user. It
is neither given nor expected that an annotation-based veri�cation system is
relatively complete. In practice, completeness of a veri�cation system means
that if the program is correct w.r.t. its given requirement speci�cation REQ ,

4



then some auxiliary speci�cation AUX exists allowing to prove this. In our
terminology, SPEC covers both types of annotations, thus in the following SPEC
is a synonym for REQ ∪AUX .

2.5 The Veri�cation Task

Given a software system S, consisting of the functions f1, . . . , fn and a require-
ment speci�cation REQS , such that S |= REQS , the task of the user is to �nd
a set of annotations AUX S , s.t. S ` REQS ∪AUX S .

Typically, these auxiliary annotations include loop and object invariants,
lemmas, as well as program code that updates a separate speci�cation memory
(which is not visible from the C program during execution).

We tacitly assume that an already proved auxiliary annotation a ∈ AUX S

can be used in subsequent proofs for other annotations in REQS and AUX S .
Thus, by using such auxiliary annotations as lemmas, proofs for elements of
REQS may be greatly simpli�ed or may even become possible at all in a given
veri�cation system.

Note that both REQS and AUX S are composed of speci�cations for each of
the functions fi in S, i.e.,

REQS = REQ1 ∪ . . . ∪ REQn and AUX S = AUX 1 ∪ . . . ∪AUX n .

Assuming soundness of the veri�cation system,

S ` REQS ∪AUX S implies S |= REQS ∪AUX S ,

and due to the requirement that |= is monotonic w.r.t. adding annotations, a
solved veri�cation task (i.e. S ` REQS ∪AUX S) implies S |= REQS .

If, on the other hand, S does not satisfy REQS , the veri�cation task has no
solution, i.e., no appropriate AUX S exists. In that case, the veri�cation system
may still give the user feedback that helps to correct the requirement speci�cation
and/or the implementation.

2.6 The Modular Veri�cation Process

The set of annotations of a function f consists of two parts: one part can be used
in the correctness proof for calling functions of f (e.g., pre-/post-conditions of f),
while the rest can only be used in the veri�cation of the function f itself (e.g.,
loop invariants). We call the former set of annotations the external speci�ca-
tion f , while the latter is named the internal speci�cation of f . Which kind of
annotation belongs to which of these categories is determined by the veri�cation
methodology built into the veri�cation tool and the veri�cation task at hand.

When verifying a function f using a modular veri�cation approach, the ex-
ternal speci�cations of the children f ′ of f are used in the correctness proof of f
instead of their implementation. Thus, the external parts of the auxiliary speci-
�cation AUX ′ of f ′ are not only relevant for the veri�cation of f ′ but can also

5



be used as lemmas in the proof of other functions, which in some sense breaks
the modularity of the veri�cation process. There exist dependencies between the
auxiliary annotations for the di�erent functions, which makes �nding a complete
set of auxiliary annotations to solve a veri�cation task a di�cult problem.

2.7 Top-down and Bottom-up Veri�cation

The user of a deductive veri�cation system may chose di�erent orders in speci-
fying and verifying the modules of a system. The extreme cases are:

Top-down veri�cation The process starts with specifying and verifying
the top-level functions with minimal depth in the dependency tree, before pro-
ceeding to verify functions with greater depth.

Bottom-up veri�cation The process starts with specifying and verifying
functions with maximal depth (leaves in the dependency tree) and proceeds to
functions with smaller depth.

In an ideal world, given a prover that never fails due to time-outs, the modular
software veri�cation process would proceed top-down, starting with the require-
ment speci�cation of a top-level function f . All children of f are then speci�ed
using the strongest possible contract (which by de�nition must be su�cient if
any annotation is su�cient). Then, f can be proven to be correct with the help
of auxiliary internal annotations given by the user. The process repeats with the
children of f , until all functions of the system are veri�ed to be correct w.r.t.
their speci�cations. Similarly, this process could also be performed bottom-up.

Unfortunately, using strongest contracts is not a good idea in practice. They
are (a) hard to �nd and (b) hard to prove. So, in practice, the solution to a
veri�cation task is a set of auxiliary annotations that are just (barely) strong
enough. To support the user in the process of �nding a solution and making the
search less chaotic is the goal of the work presented.

3 Deductive Veri�cation of Large Software Systems

In practice, a veri�cation attempt may fail for a number of reasons. One signi�-
cant problem is the performance of available veri�cation tools, which may lead
to time-outs. A veri�cation attempt can have the following possible outcomes:

1. Veri�cation of the program w.r.t. its speci�cation succeeds.
2. Veri�cation fails and a counterexample is returned by the prover. In this

case, either the program does not satisfy the speci�cation or the auxiliary
annotations are not su�cient for the existence of a proof.

3. Veri�cation fails because of a lack of resources (memory or time) and no
indication is given whether the program is correct w.r.t. its speci�cation.

Recall that in modular veri�cation a function is veri�ed using the external
speci�cations of its children. If the veri�cation of a function f succeeds (Case 1
above), then that does not imply that its children are correct w.r.t. their speci-
�cations. In case a child function f ′ does not satisfy its speci�cation, there may

6



or may not be a di�erent auxiliary speci�cation for f ′ that is both satis�ed by f ′

and su�cient to verify f .
In a similar manner, in Case 2 above, the external speci�cations of a child f ′

may be insu�cient to verify f . Again, there may or may not be an alternative
speci�cation for f ′ that solves the problem.

When adhering strictly to a bottom-up veri�cation process, one will never
encounter the case that one of the children does not satisfy its speci�cation, but
it may very well happen that the speci�cation of a child is insu�cient to verify its
parent. On the other hand, when verifying top-down, one will never end up with
insu�cient speci�cations of the children, but a speci�cation of a child f ′ that is
not satis�ed by f ′ may very well occur. That is, independently of the order in
which functions are speci�ed and veri�ed, one of the two problems remains.

Even always using the strongest possible contract for all functions is not an
option here: while providing a stronger contract for a function f ′ may help in
the veri�cation of the parents of f ′, it also makes verifying f ′ more di�cult. In
practice, the user has to provide a speci�cation for f ′ that is strong enough to
verify all parent functions of f ′ and weak enough to verify f ′ itself.

Moreover, the logical strength of a contract is not its only relevant prop-
erty but its syntactic form is just as important. As it is hard to foresee which
speci�cation of a function f is the most appropriate without paying attention
to all call sites in the parents, in practice, neither a strict top-down nor a strict
bottom-up approach is applied. Instead during the process a continuous adapta-
tion of the speci�cation takes place during which the speci�cations of calling and
called functions are changed in alternation until veri�cation of the software as a
whole succeeds � this process is shown in Fig. 1a. A further possibility, which is
not shown in the �gure, is that the veri�cation process fails because the imple-
mentation does not satisfy the requirement speci�cation (in which case re�ning
the annotations cannot help). Then, the implementation and/or the requirement
speci�cation need to be changed and the veri�cation process restarted. The it-
erative process shown in Figure 1a is often applied locally, i.e., only one pair
of caller and callee is considered at a time. As other functions may also use
the callee and depend on its contract, changes in this contract may have to be
propagated to various other parts of the system.

3.1 Object Orientation

Our proposed approach may also help with specifying and verifying object-
oriented programs. In the following, support of our method for two particular
features of OOP is examined, namely polymorphism (through class based inheri-
tance with method overriding) complying with the Liskov substitution principle,
as well as class invariants.

Polymorphism. For this, consider a class A implementing a method m and n sub-
classes of A called B1, . . . ,Bn, each overriding A's implementation of method m.

Regardless of whether specifying bottom-up or top-down, when specifying the
contract of the method m in A, two problems may occur. One is concerned with

7



the issue already described previously: to come up with the contract for A.m, the
user has to consider all call sites of A.m. However, in our object-oriented setting,
also all overridden implementations (or contracts) of A's subclasses B1, . . . ,Bn

have to be taken into account. For each Bk, the precondition of A.m has to
imply the precondition of Bk and the postcondition of Bk has to imply A.m's
postcondition to satisfy the behavioral subtyping principle.

The last problem can be mitigated by using a technique called lazy behavioral

subtyping described by Dovland et al. [7]: instead of using the contract of A.m
as a constraint for the contracts of m in subclasses, only the properties of A.m
that are actually used at the call sites in the program are required to be ful�lled
by subclasses of A. To generate those properties, requirement speci�cations of
the methods containing calls to A.m are required. In contrast, our proposed
approach focuses on an earlier state in the speci�cation process, where most
requirement speci�cations may not yet be available.

Already while the user speci�es A.m, our method would be able to give an
indication whether the contract of A.m is su�cient for all call sites of A.m, as
well as whether the contract is compatible to the implementations of all de-
rived classes. The latter is implemented by inserting the appropriate method
bodies of derived classes for calls to A.m in several runs of our tool. Likewise,
in a bottom-up speci�cation approach, after specifying m in any of A's derived
classes Bk, this contract can be checked against the call sites and implementa-
tions of the superclass A, as well as the siblings Bj . A successful check against
the siblings of Bk suggests that the contract of Bk is also a suitable contract for
the implementation of the method in the superclass.

Class invariants. Another means to express functional properties of object-
oriented programs are class invariants. Although the C programming language
has no concept of objects, in VCC, structured data types are treated similarly
and also can be annotated with invariants.

In the VCC methodology, for our purposes, such an object may have one of
two states: it is either open or closed. Invariants of a closed object are known
to hold throughout the execution of a (sequential) program, until it is opened,
which is a prerequisite to being able to modify it. Establishing invariants in this
methodology is only needed when closing an object.

Our proposed method could be extended to handle class invariants in the
scope of the VCC methodology as follows: if the locations in the program are
known where objects are being closed, checking invariants is reduced to checking
an assertion (of the same property) at these locations. To identify these loca-
tions in the program is non-trivial in general, but for simple cases this could be
approximated with the help of heuristics, e.g., always opening (closing) objects
at method boundaries; or before (after) the �rst (last) modi�cation to the ob-
ject in a method. In cases where an invariant check fails due to wrongly placed
open (close) annotations, the user may annotate the program with open (close)
statements, overriding the automatically generated annotations.

8



(a) (b)

Fig. 1: (a) Normal VCC work�ow and (b) counterexample guided manual anno-

tation re�nement (CEGMAR).

4 Software Bounded Model Checking

In contrast to deductive software veri�cation techniques, software bounded model
checking (SBMC) is based on an exhaustive search for a counterexample to the
desired properties, rather than on constructing a deductive proof.

The SBMC implementation used in this work is LLBMC [15], the Low-Level
Software Bounded Model Checker developed at the Karlsruhe Institute of Tech-
nology. It implements software bounded model checking of C and C++ programs
and provides bit-precise reasoning, comprehensive support of the C language and
a precise memory model supporting dynamic memory allocation. In the follow-
ing, when we say SBMC we mean SBMC as implemented in LLBMC.

LLBMC takes an LLVM bitcode1 �le as input and �rst performs loop un-
rolling on all relevant loops, and function inlining on all called function calls.
After this transformation, the resulting bitcode is translated into an interme-
diate logic representation (ILR). Function calls are inlined on the �y during
conversion, and logic encodings of the properties to be proven are inserted into
the formula. The resulting ILR formula is then simpli�ed, translated to the logic
of bitvectors and arrays and passed to an SMT solver. If the formula is satis�-
able, the SMT solver's model is translated back into a readable counterexample
on the LLVM level2.

While unrolling and inlining are essential for the high performance of SBMC,
they also make SBMC non-modular. Furthermore, because a �xed upper bound
for loop iterations and call depths is required for the unrolling and inlining to
terminate, SBMC is in general incomplete3. If SBMC is used for bug �nding,
it has been observed that low bounds are usually su�cient to detect bugs and

1LLBMC uses the LLVM (http://llvm.org) compiler's front-end to translate C code
to LLVM-bitcode and starts bug �nding on this level.

2See http://llbmc.org for examples and further information.
3SBMC is indeed complete, if the code is guaranteed not to exceed the given bounds.

9



incompleteness is not an issue. For the same reason, and because we use VCC
for the full veri�cation later on, we do not care for completeness yet.

LLBMC, like most SBMC tools, provides only limited support for expressing
speci�cations. In order to still check VCC speci�cation with LLBMC it was
therefore necessary to translate VCC speci�cation to LLBMC input.

5 Translation of Speci�cation into LLBMC Input

LLBMC, like most other SBMC tools, has extensive support for build-in checks,
e.g., division-by-zero checks or memory access checks, but only limited support
for specifying user-provided properties. For this, LLBMC provides support for
assert statements in the C code, which can be used just like C's assert, though
LLBMC checks that the assertion is not violated for all possible executions.

In addition to these assertions � and in contrast to C � LLBMC provides
so-called assumptions (assume). These can be used similarly to assertions, ex-
cept that violations of assumptions are not considered bugs, but instead those
execution paths are simply pruned and not analyzed any further.

Both of these in combination provide basic means for expressing speci�ca-
tions, where assumptions are used to express pre-conditions and assertions are
used for post-conditions, though compared to VCC's speci�cation language, this
method is obviously restricted. It only allows what is expressible in C, which
means, e.g., that quanti�ers are not (directly) supported. For an existential quan-
ti�er it is often possible, however, to mimic its behavior by providing an explicit
construction of the element satisfying the given property. Finite universal quan-
ti�ers might be replaced by a loop ranging over all elements. If such a translation
is not possible, our proposed method can not be applied, and the user has to use
VCC alone for verifying this property and all properties depending on it.

When translating speci�cations, usually, a veri�cation driver function is writ-
ten which �rst executes the assumes corresponding to the pre-condition, then
the function itself, and �nally the asserts corresponding to the post-condition.
LLBMC is then applied to this veri�cation driver function.

To determine feasibility of an automatic translation, we developed a proto-
type of tool for generating asserts, assumes, and veri�cation drivers and used
it in the evaluation described in Section 8. The tool also supports loop invari-
ants, inserting appropriate assert statements before the loop, and at the end
of each copy of the loop body. Invariants of data structures are currently not
handled, though one possible option to implement this feature is discussed in
Sec. 3.1. Currently work is being done on LLBMC to allow expressing additional
properties supported by VCC, e.g. by VCC's mutable or writes.

Figure 2 shows an exemplary excerpt from the VCC speci�cation of the
function copyNoDuplicates (from the example in Section 7) and the result of a
manual translation of that speci�cation into LLBMC input. We expect to be able
to estimate better how well translation of speci�cations is possible in general,
and to what degree it can be automated, once our prototype has matured and
once LLBMC comes closer to VCC expressiveness in speci�cation.

10



//no ’new’ items in result
_(ensures \result != NULL ==>

∀ uint i; i < \result->count ==>
(∃ uint j; j < source->count ∧
\result->items[i] ==
source->items[j]))

cnt = result->count;
//no ’new’ items in result
if (result != NULL)
for (i = 0; i < cnt; ++i) {
int found = 0;
for (j = 0; j < cnt; ++j)
if (result->items[i] ==

source->items[j])
result = 1;

assert(found == 1);
}

Fig. 2: Exemplary excerpt from the requirement speci�cation of the function
copyNoDuplicates (left) and its translation into LLBMC input (right).

6 The Integrated Veri�cation Process

In the following, we describe how to integrate software bounded model checking
into the annotation-based deductive veri�cation process, thereby taking advan-
tage of the strengths of both methods. As said above, we use the tools VCC
and LLBMC to illustrate our approach.

The central idea of our method is to use SBMC to support the process of
�nding a set of auxiliary annotations, AUX , for a given system S that allows
the deductive veri�cation tool to prove that S satis�es its requirement speci�ca-
tion REQ . The resulting integrated process is illustrated in Fig. 1b. The name
CEGMAR is inspired by the counterexample-guided abstraction re�nement (CE-
GAR) technique [3] used in model checking � though in CEGMAR annotations
are re�ned instead of abstractions.

Note, that we do not use the term re�nement in its strict mathematical
meaning here. Instead we have a more colloquial interpretation in mind, where
re�nement simply means iterations towards a speci�cation which is �t for its
purpose. Also note that this kind of re�nement contains a manual component,
which makes CEGMAR a machine-supported veri�cation process, not a fully
automatic algorithm.

CEGMAR aims at �nding suitable auxiliary speci�cations for the full sys-
tem S, but at any given point in time, some function f is in the focus of the
process. The process starts from the given requirement speci�cation REQf for
a function f and a (possibly empty) set AUX f of auxiliary annotations.

In Step 1 (Fig. 1b), the annotated C code relevant for proving f correct w.r.t.
its (requirement and auxiliary) speci�cation is passed to VCC for veri�cation.
The result of VCC's veri�cation attempt for f is given to LLBMC (Step 2
in Fig. 1b). Then, in case both VCC and LLBMC agree that f satis�es its
speci�cation, the re�nement-loop for f ends successfully (Step 3b). After this,
some other function moves into focus or, if all functions have been veri�ed, the
veri�cation task has been successfully completed.

11



Otherwise, if one of the tools (or both) fails to verify f , the user has to
re�ne some of the auxiliary annotations (Step 4), using the feedback of VCC and
LLBMC (from Step 2 resp. 3a). After re�ning the auxiliary annotations in Step 4,
the next iteration starts with Step 1. If changing the auxiliary speci�cations is
not su�cient according to the feedback from the tools, i.e., there is a problem in
the implementation or the requirement speci�cation, then the re�nement loop
for f terminates and can only be restarted after the implementation and/or the
requirements have been �xed.

In Step 2, using VCC, the correctness of f is only proven locally, i.e., the
external speci�cations for children(f) are used without checking that they are
satis�ed. Feedback from VCC is either (a) the statement that f is correct w.r.t.
its speci�cation or (b) a list of annotations that cannot be proven (possibly
together with counterexamples). In contrast, LLBMC is used in our integrated
approach to check correctness of a function f globally, i.e., the implementation
of all functions called by f (directly or indirectly) is taken into account. We
identi�ed three di�erent properties to be checked with LLBMC:

A. f satis�es its speci�cation;
B. all functions in children(f) satisfy their external speci�cations;
C. the pre-condition of f holds at all points where f is called in parents(f)

(invocation contexts).

Each of the three checks A�C has three possible outcomes: either (a) the property
in question holds up to a certain bound on the length of traces, or (b) LLBMC
provides an error trace falsifying the property, or (c) there is a time out.

The three checks di�er in which part of the implementation and annotations
are given to LLBMC, as well as the consequences of the check for the veri�cation
process, as described in the following.

A: Checking that f satis�es its speci�cation. For this, the implemen-
tations of f and all descendants of f are passed to LLBMC for model checking.
The implementation of f is checked w.r.t. all annotations of f that VCC reports
to be violated. LLBMC can provide the user with feedback on which unproven
speci�cations are indeed violated by the implementation and which are likely
satis�ed (because no counterexample was found within the given bound), but
just not provable by VCC without re�ning the annotations.

Even if VCC could verify that f is correct (based on the external speci�cation
of functions called by f), LLBMC is still applied. This allows to discover cases
where VCC's correctness proof for f only succeeded due to an erroneous external
speci�cation of a child of f .

B: Checking that child functions satisfy their external speci�ca-

tion. The implementations of all descendants of f are passed to LLBMC for
model checking. The functions in children(f) are checked to satisfy their exter-
nal speci�cations. This check helps to rule out correctness proofs for f that are
erroneous because they rely on faulty speci�cations of f 's children.

C: Checking Invocation Contexts. For each function g ∈ parents(f), the
implementations of g and all descendants of g are passed to LLBMC. Here, the
property to check is the pre-condition of f . Checking the invocation contexts

12



helps to avoid writing speci�cation for f that cannot be used in the proofs for
other functions in the system.

Note that in all these cases, LLBMC is not used to check whether a function
satis�es an annotation in general, but to check that the function satis�es the
annotation in the context in which it is called. The context may be de�ned by
the function's pre-condition or by the context in one of its parents.

The bene�t of the proposed integration of SBMC into deductive veri�cation
results mainly from the fact that SBMC is not modular. During the veri�cation
of a function f , LLBMC uses the implementation of the children and parents of
f instead of (only) using the external speci�cation of the children as VCC does.
Because of this di�erence, LLBMC and VCC can provide the user with di�erent
information about the functions and their annotations (e.g. counterexamples).
For the veri�cation process, the information provided by LLBMC is a valuable
addition to the information provided by VCC.

7 A Typical Speci�cation Scenario

7.1 The System to be Veri�ed

In the following we present an example that demonstrates the issues of modular
veri�cation mentioned before and how integration of software bounded model
checking into the veri�cation process can help attenuate these.

Consider the following C data structure implementing a sequence data type:

1 typedef struct queue_t {
2 int *items;
3 int count, capacity;
4 } queue, *pQueue;

Here, count denotes the length of the sequence and capacity the �xed size
of memory that has been allocated to store the items of the sequence. In our
case, the items of the sequence are integers and are stored in the array that
starts at the memory address items.

The top-level function we want to verify is copyNoDuplicates (see Fig. 3),
but in total there are three functions involved in the veri�cation process:

� pQueue copyNoDuplicates(pQueue dst, pQueue src)
Given a queue dst and a queue src, this function modi�es dst so that it is a
copy of src, except that duplicate elements of src occur only once in dst.

� pQueue initQueue(int capacity) (not shown)
Allocates memory for a new queue structure as well as the appropriate
amount of memory for storing capacity number of items. It also initial-
izes the queue data structure to correspond to the empty sequence. This
function is called by copyNoDuplicates.

� void insert(pQueue q, int val) (shown in Fig. 3)
Inserts an item val into a queue q in such a way that if the queue is in ascend-
ing order, it remains ordered. This function is called by copyNoDuplicates.

13



1 pQueue copyNoDuplicates(pQueue dst, pQueue src) {
2 dst->count = 0;
3 for (int i = 0; i < src->count; i++) {
4 int sVal = src->items[i];
5 int j = 0, contained = 0;
6 while(j < dst->count && dst->items[j] <= sVal) {
7 if (dst->items[j] == sVal) {
8 contained = 1;
9 break;

10 }
11 j++;
12 }
13 if (!contained) insert(dst, sVal);
14 }
15 return dst;
16 }
17

18 void insert(pQueue q, int val) {
19 if (q->count == q->capacity) return;
20 int i,j;
21 for (i = 0; i < q->count && val > q->items[i]; i++) {}
22 for (j = q->capacity-1; j>i; j--)
23 { q->items[j] = q->items[j-1]; }
24 q->items[i] = val; q->count++;
25 }

Fig. 3: Implementation of copyNoDuplicates and insert.

There are two peculiarities about this implementation of copyNoDuplicates
that the veri�cation engineer might not be aware of:

1. The implementation relies on insert retaining sortedness of the queue dst.
This is because the algorithm stops searching for a matching element as soon
as a greater element is encountered. Note that sortedness is not an invariant
of the queue data structure, so queue src may be unsorted.

2. Inserting into a queue fails silently if the capacity of the queue is reached.

In the following, we will use the example to show why a user who is not
supported by software bounded model checking will have trouble identifying
these problems during veri�cation, independently of whether a top-down or a
bottom-up approach is chosen.

7.2 Bottom-up Veri�cation of copyNoDuplicates

When verifying bottom-up, the �rst two functions that are to be veri�ed correct
in our case are initQueue and insert. Because we are mainly interested in

14



interaction between copyNoDuplicates and insert, from now on we assume
that initQueue has been veri�ed and does not need to be considered further.

The second issue mentioned in the previous subsection (�nite capacity of the
queue) is identi�ed quickly with a bottom-up approach and therefore not further
discussed. The �rst issue (sortedness) is considerably harder to identify, though.

Suppose that no requirement speci�cation is given for insert, so any spec-
i�cation of insert is auxiliary. It is likely that the user correctly speci�es that
the item passed to insert is indeed inserted in the given queue. However, it
is also likely that the veri�cation engineer on the �rst try is not aware of the
importance of sortedness and, consequently, the speci�cation does not mention
that insertion of elements retains sortedness of the queue. In that case, the spec-
i�cation of insert is not strong enough and veri�cation of copyNoDuplicates
will fail. But that is only noticed after insert has been successfully veri�ed and
the veri�cation process has moved on to copyNoDuplicates.

Once copyNoDuplicates could not be proven correct, the veri�cation engi-
neer has to identify the cause for this. The too weak speci�cation of insert is
hard to spot, and the user may be tempted to believe copyNoDuplicates is not
correctly implemented. The counterexample provided by VCC usually does not
contain all necessary information to understand the issue.

LLBMC on the other hand states, using Check A from Section 6, that
copyNoDuplicates does indeed satisfy its requirement speci�cation and the
relevant loop invariants � at least up to a certain size of the queue4. This indi-
cates to the user that copyNoDuplicates is likely correct and the problem is
either that the speci�cation of insert is too weak or the auxiliary annotations
are not enough to allow VCC to verify the property. This is an important cue
towards the right direction and can therefore speed up the veri�cation process.

7.3 Top-down Veri�cation of copyNoDuplicates

In a top-down veri�cation approach, the top-level function copyNoDuplicates
is the �rst to be veri�ed. The �rst issue (sortedness of the queue) is found early
in the process, as the veri�cation of copyNoDuplicates will already uncover it.
Instead, the second issue (�nite capacity of the queue) is now causing problems.

Consider a requirement speci�cation of copyNoDuplicates consisting of an
empty pre-condition and the following post-condition stating that all elements
of the source queue are also contained in the resulting queue (in fact, this is only
part of the actual requirement speci�cation because it does not state that the
result should not contain duplicates):

1 ∀i; i ≥ 0 ∧ i < source->count =⇒
2 ∃j; j ≥ 0 ∧ j < \result->count ∧
3 source->items[i] == \result->items[j]

In order to verify the implementation of copyNoDuplicates to satisfy this re-
quirement, the user has to provide auxiliary speci�cations for the helper functions

4This size is determined by the bound applied during model checking.

15



initQueue and insert. The veri�cation of these auxiliary speci�cations is post-
poned in the top-down approach until after the contract of copyNoDuplicates is
proven. Nevertheless they are already used in the proof for copyNoDuplicates.

If the user annotates insert he/she may easily overlook the case where
the queue has reached its capacity and insertion of yet another element fails
(signaled by insert by returning an error code). Now, because of this omission,
the speci�cation of insert is too strong, which allows VCC to prove the contract
of copyNoDuplicates � even though it is in fact not satis�ed. Only when the
veri�cation of the contract of insert fails, this error is detected.

Then, after �xing the speci�cation of insert, the veri�cation engineer has to
go back to copyNoDuplicates and re-verify that function, taking the modi�ed
speci�cation of insert into account. In practice, the top-down approach results
in numerous iterations until a function and all of its children are veri�ed.

Using LLBMC can help resolve this issue early on, as LLBMC directly takes
the implementation of insert into account, and not just its (too strong) speci�-
cation. LLBMC uncovers the problem as soon as copyNoDuplicates is checked
� even though VCC cannot detect any problem at this point.

8 Evaluation

In order to evaluate the proposed methodology for non-trivial programs, and
because manual translation of speci�cations is too labor-intensive, a tool for
automatically translating VCC speci�cations to LLBMC was needed. Therefore,
we implemented a prototype for such a tool, based on a modi�ed version of the
clang compiler front-end5, which currently supports a very small, though already
useful, subset of the VCC speci�cation language.

Given the tool's translation of the speci�cation in the above example, it was
su�cient to supply a manually written veri�cation driver to LLBMC, coming in
at 19 lines of C code and consisting mostly of code initializing a valid, though
inde�nite instance of a queue. Further automation is easily possible and should
eliminate manual translations completely.

LLBMC was applied on this example and the tool found, as expected, a
discrepancy between code and speci�cation, which comes into e�ect when the
capacity of the destination queue is smaller than the capacity of the source queue.
Because of the way SBMC works, this was possible even though no invariants
for the involved loops were speci�ed yet. VCC, lacking these invariants, could
not yet be used to check the properties.

While this proves the concept, the time LLBMC took for �nding the coun-
terexample in this example is somewhat long (12 minutes).6 Times for other
examples are similar. The use case for our tool is to run it in the background
while the user develops a speci�cation. This requires feedback within seconds.
The next step in our research is to optimize LLBMC for this kind of application,
so that larger and more complex examples can be handled.

5The clang compiler front-end is available at http://clang.llvm.org
6We also tried CBMC-3.8 on this example, but it choked on the input �le.

16



9 Related Work

Our work is related to previous work about combinations of model checking and
deductive veri�cation, improvements to the software veri�cation process, as well
as to tools and techniques that help understand failed veri�cation attempts.

Various combinations of model checking and deductive veri�cation have been
proposed and studied in the past, e.g., [2, 9]. An extensive overview of the work
published until 2000, with a focus on the veri�cation of reactive systems,7 is
given in [17]. Since then, research in this area seems to have slowed down.

Some papers use a combination of model checking and deductive veri�cation
techniques to improve performance and generality of existing veri�cation tools,
such as [14]. Others use deductive methods speci�cally to extend model checking
approaches to in�nite-state systems, e.g. [11, 16, 6].

Most of these papers focus on improving performance of the tools or cre-
ating more powerful veri�cation tools. In contrast to this we focus entirely on
improving the process of annotation-based deductive software veri�cation.

On a di�erent note, Müller and Ruskiewicz use debuggers to address the
problem of understanding failed veri�cation attempts [13]. They, too, provide
concrete counterexamples that illustrate why veri�cation did not succeed. While
error traces are an important part of our contribution to the deductive veri�ca-
tion process, the proposed process is not restricted to counterexamples.

Similarly, Vanoverberghe et al. use symbolic execution techniques to generate
test cases when the prover fails [18]. They also generate test cases that can be
executed in a debugger to analyze the failed veri�cation for a concrete example.

Alex Groce et al.'s tool explain [8] provides additional information about
counterexamples generated by the bounded model checker CBMC. The tool itself
uses CBMC's software bounded model checking engine to generate executions
similar to an existing counterexample that do not fail, and additional counterex-
amples that are as di�erent as possible but do still fail. The approach does not
seem to be directly applicable to deductive veri�cation techniques due to the
lack of a concrete counterexample to start with.

10 Conclusion and Future Work

Integrating software bounded model checking into the deductive veri�cation pro-
cess can give the user of deductive veri�cation tools early feedback, thereby de-
creasing the veri�cation e�ort and improving the overall veri�cation process.
We showed that SBMC can help in �nding insu�cient or wrong annotations.
An example was provided showing that SBMC can help both in top-down and
bottom-up veri�cation. It can also help in identifying speci�cations that are ei-
ther too weak or too strong. In the future we plan to further integrate VCC and
LLBMC, so that speci�cations in VCC can be fully automatically translated

7The combination of temporal logic properties and an in�nite-state system makes
reactive systems a �tting application for combinations of model checking and deductive
veri�cation.

17



into to LLBMC input, so that larger case studies can be carried out. Ideas from
the area of instrumenting code for run-time checking speci�cations will be useful
here. Furthermore, we're already working on extend LLBMC's speci�cation lan-
guage in order to allow for a more complete translation of VCC speci�cations.
In the long term, LLBMC could also be used to automatically derive simple
annotations � such as non-nullness of pointers and simple ownership relations �
thereby speeding up the speci�cation process.

References

1. M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie:
A modular reusable veri�er for object-oriented programs. In FMCO 2005, pages
364�387, 2005.

2. S. Berezin, K. McMillan, and C. B. Labs. Model checking and theorem proving: a
uni�ed framework. Technical report, Carnegie Mellon Univ., 2002.

3. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction re�nement. In CAV'00, pages 154�169, 2000.

4. E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, T. Santen, M. Moskal,
W. Schulte, and S. Tobies. VCC: A practical system for verifying concurrent C.
In TPHOLs'09, pages 23�42, 2009.

5. L. de Moura and N. Bjørner. Z3: An e�cient SMT solver. In TACAS'08, pages
337�340, 2008.

6. G. Delzanno and A. Podelski. Constraint-based deductive model checking. Software
Tools for Technology Transfer, 3(3):250�270, 2001.

7. J. Dovland, E. B. Johnsen, O. Owe, and M. Ste�en. Lazy behavioral subtyping.
Journal of Logic and Algebraic Programming, 79(7):578 � 607, 2010.

8. A. Groce, D. Kroening, and F. Lerda. Understanding counterexamples with ex-
plain. In CAV'04, pages 453�456, 2004.

9. Y. Kesten, A. Klein, A. Pnueli, and G. Raanan. A perfect veri�cation: Combining
model checking with deductive analysis to verify real-life software. In FM'99, pages
173�194, 1999.

10. K. R. M. Leino and M. Moskal. Usable auto-active veri�cation. Technical Report
Manuscript KRML 212, Microsoft Research, 2010.

11. Z. Mann, A. Anuchitanukul, N. Bjorner, A. Browne, E. Chang, M. Colon, L. de Al-
faro, H. Devarajan, H. Sipma, and T. E. Uribe. STeP: The Stanford Temporal
Prover. Technical report, Stanford Univ., 1994.

12. M. Moskal. Satis�ability Modulo Software. PhD thesis, Univ. of Wrocªaw, 2009.
13. P. Müller and J. N. Ruskiewicz. Using debuggers to understand failed veri�cation

attempts. In FM'11, pages 73�87, 2011.
14. A. Pnueli and E. Shahar. A platform for combining deductive with algorithmic

veri�cation. In CAV'96, pages 184�195, 1996.
15. C. Sinz, S. Falke, and F. Merz. A precise memory model for low-level bounded

model checking. In SSV'10, 2010.
16. H. Sipma, T. E. Uribe, and Z. Manna. Deductive model checking. Formal Methods

in System Design, 15(1):49�74, 1999.
17. T. E. Uribe. Combinations of model checking and theorem proving. In FroCoS'00,

pages 151�170, 2000.
18. D. Vanoverberghe, N. Bjørner, J. D. Halleux, W. Schulte, and N. Tillmann. Using

dynamic symbolic execution to improve deductive veri�cation. In SPIN'08, pages
9�25, 2008.

18


