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Abstract—Often, an integrated mixed-criticality system is built
in an environment which provides separation functionality for
available on-board resources. In this paper we treat such an envi-
ronment: the PikeOS separation kernel – a commercial real-time
embedded operating system. PikeOS allows applications with
different safety and security levels to run on the same hardware.
Obviously, a mixed-criticality system built on PikeOS relies on
the correct implementation of the separation mechanisms. In the
context of the Verisoft XT [1] and TECOM [2] projects we apply
deductive formal software verification to the PikeOS separation
mechanisms in order to validate this security requirement.

In this work we consider formal verification of a kernel
memory manager which is one of the crucial components of
the separation functionality. The verification of the memory
manager is carried out on the level of the source code using the
VCC tool developed by Microsoft Research. Furthermore, we
present the overall correctness arguments needed to prove the
intended separation property, describe the necessary functional
correctness properties of PikeOS, and explain how to formulate
these properties in a modular way to be used by VCC.

In doing so we demonstrate how a proof of a non-functional
system requirement can be conducted based on results from
formal verification on the lowest possible level of human-written
artefacts, that is the source code level.

Keywords-deductive verification; microkernel; memory separa-
tion

I. INTRODUCTION

Modern electronic systems used in aircrafts, cars, or space
vehicles combine applications with different security, safety,
and real-time requirements. Systems with such mixed re-
quirements are often referred to as mixed-criticality systems.
Usually, integrated mixed-criticality systems are build on top
of an environment with separation functionality of on-board
resources. For example, a special purpose operating system
can provide required separation. Such an architecture allows
the system integrator to deploy applications with different level
of trust e.g. applications from different vendors, certified and
non-certified applications. Obviously, such a mixed-criticality
system works correctly only if the underlying operating system
does, too.

In this paper we treat such a real-time operating system:
the PikeOS [3] separation kernel. PikeOS is an L4-based
implementation of a separation kernel. It provides separated
partitions where user applications (note that they can be
another operating systems, too) run under supervision. PikeOS

is used in control systems, health-care, and especially avionics.
PikeOS is part of DO-178B [4] certifications for components
of the Airbus A350 and A400M [5].

While the separation functionality of PikeOS consists of
separation for CPU time, memory, external devices and inter-
faces, in this paper we treat the separation for memory. PikeOS
supports virtualization of memory such that user applications
run in their own virtual memory. In addition the kernel mem-
ory manager assigns to partitions pieces of memory which are
organized in pages. After boot-time initialization, the partitions
have been statically assigned memory pages. At run-time these
pages dynamically store data structures used by the partitions.

In this treatise we trace a proof of the strict separation of
kernel memory partitions at run-time. To this end we prove
that the memory manager does not violate the predefined
partitioning of memory, i.e. the run-time reallocations of pages
between data structures within a partition do not cause any
violation of the statical allotment of memory between parti-
tions. Thus, we show that there is no unintended information
flow between partitions, due to a misfunction of a partition’s
memory manager.

We formally verify the latter property on the code level with
the help of the verification tool VCC [6]. We employ an ”iter-
ative push button” approach that is 1) annotate implementation
(create specification; guide proof search), 2) push button (ap-
ply VCC), 3) if the verification failed, analyse why and repeat
the loop. The desired separation property is easy to describe
informally but infeasible to define directly in the specification
language supported by code annotation tools like VCC or
Frama-C. Therefore, we developed a verification methodology
that breaks down the high-level, non-functional requirement
into functional memory manager properties, which can be
proven by our tool and subsequently used in a paper-and-pencil
proof of the desired separation property.

Related Work: A wide body of research in operating
system verification in general exists [7]. Although method-
ologically quite different, in particular the seL4 verification [8]
is a very impressive undertaking. In comparison, from a purely
quantitative point of view, the proof presented here is more
modest in scope. However, unlike the translation approach in
seL4 our proof is based on code annotations directly embedded
into the code, and thus, it offers a very good traceability to
the optimized production code and an easy integration into



existing development/certification processes.
There are different kinds of memory managers. The one

we presented here suits well separation kernels. There are
also memory managers for user-space allocations, e.g. to
implement the C language construct malloc. Such a man-
ager has been formally treated in context of virtual memory
managers [9], [10] although not from a code annotation point
of view.

Our work is comparable to the demonstration of a global
memory manager correctness by Tuch [11] in the sense that
a part of it is to show the functional correctness of a memory
manager. In contrast to Tuch, we apply an automated verifica-
tion methodology which replaces the interactive proof effort
in Isabelle/HOL. As a result, the size of the proof is reduced
from 108 pages to about 850 lines of code. Moreover Tuch’s
work is not concerned with the utilization of the memory
manager in a virtualizing environment where several partitions
are requesting chunks of memory and the separation of these
resources is an issue.

The remainder of the paper is organized as follows. In
Section II we describe our case study: a separation kernel and
a memory manager. Section III presents the overall separation
argument and a proof based on the artifacts verified on the
code level. Section IV introduces the reader to the core con-
cepts of code-level annotation and verification with VCC. We
demonstrate the application of these principles to the memory
manager in Section V. In Section VI we further discuss
our approach and present “lessons learned”. We conclude in
Section VII.

II. SEPARATION KERNELS

The purpose of a separation kernel is to keep apart different
applications with either no interference at all or at most a
controlled interference. In this work we only examine the
first case – security policies for controlled interference are
not within the scope of this paper.

To ensure application memory disjointness, on most existing
computer systems the hardware memory management unit
(MMU) separates virtual memory assigned to processes (ad-
dress spaces) by maintaining data structures for look-up (page
tables) that map virtual addresses within different address
spaces to physical addresses. For a running user process, this
creates the illusion that the entire address range is available and
allows to keep address spaces used by different applications
separate.

Separation kernels add another layer: they can group several
address spaces together. As the system can be configured so
that the address spaces are kept cleanly apart, such sets of
address spaces are called partitions. Conforming to common
separation kernel usage we define a thread as an executing
unit, and a task as an abstraction of the hardware that con-
tains a virtual address space, threads, and (potentially) other
allocated resources. In a kernel with strict separation policy a
thread is only allowed to access resources belonging to tasks
in his own partition. Separation kernels are also referred to as
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Fig. 1: Kernel objects in a partition of a separation kernel. The
enclosing rectangle is a partition. Circles are sets of pages
labeled STx for state x. Arrows labeled TRx indicate that
one page at a time can be moved between the sets, a page
transition. The starting point is the page pool marked by a
double circle.

MILS (multiple independent levels of security) kernels [12],
[13].

A. Kernel Memory Management in Separation Kernels

In order to mirror the strict per-partition separation of user
resources also into kernel memory, it is a natural kernel
design choice to collect and encapsulate the partition’s kernel
resources in dedicated partition objects. That is, each partition
holds separate kernel data structures facilitating the execution
of the partition’s threads. These structures are allocated and de-
allocated dynamically by the kernel memory manager, which
is administrating disjoint pools of memory on the heap.

In Figure 1 we show a snapshot of an abstracted kernel
memory heap structure of a separation kernel within one
partition. It describes the assignment of memory via a memory
manager, between an initial “page pool” (ST1, that keeps
pages as nodes of a linked list data structure) and run-
time production kernel data structures, e.g. thread (ST4), task
(ST3) or other objects (ST5). The form of “other objects”
(ST5) depends on other implementation-provided features, e.g.
interrupt handling, user space memory management structures.

The correctness of the memory manager in this setting is
constituted by requirements concerning the correct implemen-
tation of its functionality, i.e. that a contiguous (and possibly
aligned) region of memory with the desired size is taken out
of or returned into the correct page pool. In addition, for
separation, one has to show, that the functions of the memory
manager in themselves preserve the partitioning of memory.
Moreover it must be assured that the allocation or deallocation



functions are never abused by a caller to transfer memory from
or to a “foreign” partition.

B. Memory Manager Implementation

In the context of this paper we consider a simplified
implementation of a run-time memory manager, abstracted
from a more complex PikeOS memory manager, which we
also verified applying the methodology described here. The
abstracted manager keeps track of free fixed-size memory
objects. From a verification perspective the value the size has
been fixed at does not really matter, but for clarity of the
following exposition let us assume that we deal with blocks
of (depending on the hardware’s MMU) typically 4096 bytes,
called pages. Our manager allows to allocate and free memory
regions of variable sizes that fit within a page. However, the
verification approach does not rely on this fact and would also
apply to implementations which allow allocation of objects
that are composed of multiple pages. The source code of the
memory manager and its functions including all annotations
for the formal proofs is available online [14].

In Figure 2 we follow the life-cycle of a memory page over
typical use period where it is allocated as an object of type
task. Phase 1 depicts the memory layout at boot-time. Then
the partition objects which hold the partitions kernel memory
resources at run-time are created. In the next step the boot
memory manager distributes kernel memory pages among the
partitions P1 and P2. Phase 4 shows the state after allocation
of a task object via the kernel manager. A kernel thread of
P2 has called the allocation function of the memory manager,
requesting a page of memory from its partition’s page pool.
Then the memory is casted into an object of type task. Note
that only a part of the page is used by the allocated object
and the remaining chunk is depicted as rest. These rests
are implicitly split off the page by the type cast and must
be considered in the separation proof as well. In the final
step the task is deallocated again using the memory managers
free function. The memory it occupied is merged with rest,
resulting in a page that is returned in to the page pool of P2.

The manager functions alloc and free essentially
manipulate the organisation of memory chunks in the pages
pools. In our example, the pages are stored using a standard
doubly-linked list implementation. The aforementioned type
casts were a tricky part in the verification of the manager
function use cases because of the implicit splitting of the pages
and the reinterpretation of plain memory chunks as typed
objects. However, the primary challenge was not proving the
functional correctness of the memory manager, but translating
the desired separation properties into the annotation language.

III. MEMORY SEPARATION THEOREM AND PROOF

There is a multitude of concepts addressing the formula-
tion of security properties. A classic approach in restricting
information flow is to aim for a process non-interference
property [15], which basically states that the execution of
a low sensitivity thread is not influenced by the actions of
other threads affecting high sensitivity data. The Bell-LaPadula

Fig. 2: Life-cycle of a page. Initialization (steps 1 and 2) is
only done once at boot-time.

model [16] on the other hand focuses on a hierarchy of security
levels and the adherence to an access policy in every state of
the system. For separation kernels Greve, Wilding and Vanfleet
introduced a formal security policy [17].

However, considering our strict separation scenario, these
models appear to be too fine-grained. We follow a more
straight-forward approach in formulating the security property.
We present a paper & pencil proof to derive a global separation
property from the formally proven property that separation is
preserved by the memory manager.

Separation property: G: All memory accesses in the
kernel preserve an initial disjoint partitioning of memory, and
obey a security policy where a thread is only allowed to access
memory from its assigned partition.

Correctness of the memory manager:

• M1: The memory manager has the desired functionality,
i.e. it provides pages from the page pool and puts the
pages back when it is requested.

• M2: A thread may only allocate or free memory belong-
ing to its partition.

• M3: A call to the memory manager does not alter the
partitioning of memory locations.

M1, M2 and M3 are proven with the help of VCC and are
the outcome of the verification engineer’s work: to have made
explicit the memory each function is allowed to operate on and
to have selected annotations that are appropriate for the code
under verification. Our choices will be given in Section V.

Assumptions for the proof:

• A1: Encapsulation – Only the kernel functions operating
on the memory manager access memory manager data
structures. The kernel data structures are not accessible
to user-space applications.

• A2: Rely-guarantee methodology – The preconditions of
the functions operating on the memory manager hold



when they are called, e.g. relevant kernel data structures
are in a well-defined state. These functions are executed
atomically.

• A3: Remaining proof effort – Kernel thread memory
accesses outside the slice of functions part of memory
manager functionality are restricted to locations assigned
to the thread’s partition.

• A4: Low level assumptions – The kernel code is compiled
by a correct compiler and runs on hardware that imple-
ments its specification correctly. We assume the absence
of errors due to physical hardware faults or bit glitches.

• A5: Soundness of the tool’s methodology – The verifica-
tion approach of VCC, its axiomatization of C as well as
its memory and concurrency model are sound, so that any
property holding in the framework of VCC holds also for
the running C program.

• A6: Soundness of annotations – The formal specifications
we devise are adequate, encoding the properties we have
in mind correctly. Moreover our annotations are consis-
tent, thus they neither contradict themselves nor introduce
unsoundness into the proof VCC conducts. Further, we
only add specification constructs and do not alter the
original implementation by our annotations.

• A7: Tool correctness – Our toolchain (VCC/Boogie/Z3)
implements its code verification methodology correctly.
The verification conditions that VCC generates imply the
semantics of corresponding annotation constructs.

Theorem: M1 ∧M2 ∧M3 ∧A1 ∧ ... ∧A7 → G.
Proof: We prove the theorem by induction on steps of a

kernel execution sequence.

1) Induction base: The partitioning is established by the boot
memory allocator before the first induction step. Cur-
rent work considers a (simplified) initialization example,
showing that the separation property G not vacuously
holds.

2) Induction step: Assume G holds for the previous state. In
principle there are many ways of splitting the execution
sequence into induction steps. Here, without limitation
of generality, an induction step consists either (a) of a
run through an atomic function operating on the memory
manager function, or (b) a run through something else.
a) The induction step consists of a function that operates

on the memory manager. By A1 this function must be
a memory manager function. Also, we can rely on the
preconditions for executing this function to hold (A2).
Finally, VCC has proved the function’s implementation
to respect its specification, thus it is guaranteed that
the properties M1, M2 and M3 we encoded in our
annotations hold within VCC’s framework. Assump-
tions A4 to A7 give that these properties also hold for
the running C program. From M2 and M3 our desired
property G follows directly.

b) The induction step consists of a run exclusively con-
sisting of a slice through functions that are not part of
the memory manager. Then the mapping of memory

is preserved and memory accesses obey the security
policy, regardless whether we speak of user space (A1)
or invocations of other kernel functions (A3). So after
this step, G still holds.

Therefore, G holds for all kernel execution sequences.

Justifications for the assumptions: In principle, A1 to A3

given enough verification engineer resources, also could be
proved from within VCC. Assumptions A5 to A7 are about
VCC, its methodology and our annotations.

• A1: The absence of interference from userspace can be
shown by checking that privilege separation between
kernel mode and user based on hardware address space
separation (MMU) and the usage of hardware supervisor
mode is implemented correctly. It is a strong assumption
that only the memory manager operates on memory
manager data structures. Practically, the operations of
the memory manager are the most likely cause for a
misfunction of the memory manager. In the system under
verification we have formally verified non-memory man-
ager functions of the core security architecture and shown
that they do not operate on the partition data structures.
For other functions in the system, where due to lack of
time resources a formal verification has not been done
yet, we can justify this property from the design (e.g.
interprocess communication is not intended to access the
memory manager data structures), and verify it by code
inspection. In this respect, formal verification is not a
“magic bullet” but gives us incremental evidence for the
functions formally verified.

• A2: Rely-guarantee methodology – This is also a lemma
that can be proved in VCC. However, function require-
ments may be propagated to the caller functions, so
that one might need to verify an increasing number of
functions in order to discharge the memory manager’s
preconditions. As we consider a single processor setting,
guaranteeing atomic execution boils down to preventing
any interruption of the program, e.g. by disabling inter-
rupts before entering these functions.

• A3: Remaining proof effort – The separation properties
for other kernel functionality can be proved using the
our verification methodology instantiated here for the
memory manager.

• A4: Low level assumptions – The correctness of compil-
ers and hardware is usually ensured via extensive testing
and often part of the trusted environment. Nevertheless
the pervasive formal verification of realistic systems is a
feasible task [18].

• A5: Soundness of the tool’s methodology – Concerns
like these are easily risen and in general difficult to
assuage. Trust into the verification methodology of VCC
can be gained from the papers released by Microsoft
Research (e.g. [19]) describing the underlying approach.
In addition the axiomatization of VCC’s specification
constructs is openly available and can be checked for
unsoundness using formal methods. Mathematically justi-



fying the computational model and C semantics suggested
by VCC is ongoing work at Saarland University.

• A6: Soundness of annotations – Firstly, we only add
specification constructs and do not alter the original
implementation by our annotations. Moreover, this is
partly a matter of experience in working with the tool.
Having excessively used VCC in close cooperation with
the developers, we have high confidence that we chose
the right annotations for our specification. Concerning
possible unsoundness VCC offers checks to test for
inconsistencies. Moreover VCC has built-in checks that
rule out specification code to affect the implementation.

• A7: Tool correctness – Here classical software engineer-
ing techniques are applied to ensure tool correctness. For
this, the software testing methods have to be adapted
towards testing formal verification tools, amongst others,
by defining appropriate coverage criteria [20]. Proving the
verification condition generation to be correct would also
be possible, albeit costly, given formal VCC semantics.
Another approach would be to employ (and formally
verify) proof checkers for the output generated by the
Z3 theorem prover.

IV. DEDUCTIVE CODE-LEVEL VERIFICATION WITH VCC

Before going into the details of the actual specification
and verification effort, a brief introduction of our code-level
verification tool VCC is in order. For more details, see [21].

Specifying functional properties of programs is possible
with VCC by using contracts on methods of the implementa-
tion as well as invariants on the state of the program.

Function contracts may contain pre- and postconditions
(given by requires and ensures) as well as writes-
clauses. A precondition of a method defines properties of the
state of the program that have to hold before executing the
method (in the pre-state). If these conditions are met, the
postcondition captures the effect of the method by describing
properties of the state after execution (the post-state) of said
method. Postconditions may refer to the pre-state of a method
by enclosing access to data by the keyword old.

Methods are only permitted to modify global state that is
mentioned in a writes-clause. This allows the prover to deduce
that all other global data structures are left unchanged when
executing a method. To express that certain data mentioned in
the writes clause do not change between pre- and poststate,
they can be specified to be unchanged.

Compared to function contracts, invariants capture prop-
erties of the state of the program throughout its execution
and are defined in the context of objects. For this, the VCC
methodology superimposes the notion of objects on top of the
C memory model. For example, C structs are considered to
be objects, as well as user defined groups within such structs.
Invariants on such objects may define valid or consistent states
of an object or describe relationships between data of different
objects.

Within specifications a separate specification state (or ghost
state) is available that is not observable from within the

executing C program. This ghost state can for example be used
to keep track of intermediate values of variables or to record
abstractions of the program’s state, e.g. abstracting from details
of data structure implementations. Such abstractions can be
attached to data structures via coupling invariants, that state
the relation between the abstraction and its implementation.

Another feature of VCC that we use extensively for the
specification of our separation property is the notion of own-
ership. Each object in the program (directly or transitively
through other objects) belongs to exactly one owner. Only the
owner of an object is allowed to access its contents and VCC
checks this condition automatically for all variable accesses.

With the help of ownership we are thus able to structure
the memory of the program in a way to enforce the intended
separation properties.

V. MEMORY MANAGER CORRECTNESS IN VCC

To be able to formulate and verify the intended separation
properties with VCC, three major components of the specifi-
cation are necessary:
(A) Abstract representation of the implementation’s data

structures.
(B) Specification of memory separation between partitions

with the help of VCC’s ownership model.
(C) Function contracts of the memory management functions

of the kernel stating that global memory distribution
between partitions is left unchanged.

In the following, we will describe how each of these
components are implemented in our example with the help
of the VCC methodology.

A. Abstraction of Implementation Data Structures

Our implementation uses doubly-linked lists which are a
common operating system design pattern. To be able to reason
efficiently about the contents of a doubly-linked list, the list
is abstracted to a set in ghost state containing all elements
of the list. Consistency between the list contents and its
ghost state counterpart is ensured by several invariants on
both representations. Our work illustrates how to use list
annotations provided with the VCC distribution [22], which
we had to adapt for our use case.

B. Representing Memory Partitioning via Ownership

In order to keep apart and restrict access to the memory
chunks of each partition, we need to keep an account of
the set of memory pages as allocations and deallocations
are performed on the partition’s memory pool. Using VCC,
a natural candidate to encode the set of memory blocks
belonging to each partition is ownership.

For each data type A that can be allocated and casted from
the memory pool of a partition, we introduce a ghost-state
manager object that owns all allocated objects of type A. As
the size of these data types is often smaller than the size of
the smallest allocatable memory chunk (a page), an unused
memory block remains (cf. Fig. 2, named rest).



This rest is not explicitly taken care of in the implementa-
tion. For verification purposes, we have to introduce a pointer
to this memory block to be able to maintain the ownership
property between the block and the associated partition –
ensuring that no thread belonging to another partition may
access these memory locations.

In our example, we used a straight-forward and concise
way to specify and reason about the partition’s memory state
based on the ownership relations: by encoding ownership into
a map from pointers to partition identifiers. Invariants on the
partition structure ensure consistency between this map and
the ownership relations between the partition and associated
memory blocks.

Moreover it is a system invariant, established at kernel entry
and thread switch, that the currently running kernel thread
owns its partition data structure. Hence it transitively owns
and can access the memory assigned to its own partition.
Conversely, a thread never owns a partition that it does not
belong to and therefore all accesses to corresponding memory
locations will be detected by VCC as ownership violations.

C. Function Contracts

We have the following code-level verification goals:
C1 Functional correctness. The correctness is expressed as

function-specific annotations. For the run-time memory
manager functional correctness ensures that an object that
has been created after successful casting is owned by the
appropriate manager and that proper accounting of the
manager’s size (i.e., the number of owned elements) is
done.

C2 Objects and local memory map. Each partition can own
different objects (that are in different containers). It needs
to ensure that these objects do not overlap, this is realized
by a map embedded into the partition data structure
itself (partition-local map). The coupling invariant may
be relaxed for the object under memory reinterpretation
while running through the function but it is guaranteed
to hold always at function entry and exit. As we require
the partition object to hold and because only threads can
only own their associated partition, we ensure also that
threads can use the memory manager allocation functions
to access memory from their partitions only.

C3 Conservation of the global partitioning map after boot.
For the memory manager verification, the most important
property is that the initial assignment of memory to
partitions remains unchanged. We do this by a defining
a global memory map and requiring that there exists
a coupling between the global memory map and each
partition-local memory map. Moreover, we specify that
after booting the global memory map stays unchanged.

The goals C1, C2 and C3 correspond to M1, M2 and
M3 from Section III. The goal C2 allows us efficient usage
of VCC’s object-oriented approach. Figure 3 presents the
verification goals (C1, C2, and C3) as ascertained in the
function contract annotations of function task_alloc in a
simplified syntax. We require the partition-local pointer map

to equal the invariable global memory map before and after
the function call. Also the ownership invariants of the partition
must hold and the current thread must own the partition object
it is accessing. From these properties follows the preservation
of memory partitioning. Functional correctness is expressed
by the claim that either a page of memory was transformed
into a task object owned by the partitions task manager or the
allocation was unsuccessful and the partition is unchanged.

1 task_t *task_alloc(partition_t *p, unsigned int id)
2 requires
3 ∀i. i > 0 → p->memmap[i] = memmap_g.memmap[i] //C3
4 ∧ p->relax == 0 //C3
5 ∧ p∈owns(current_thread)∧invariant(p) //C2
6

7 ensures
8 unchanged(memmap_g.memmap) //C3
9 ∧ unchanged(p->memmap) //C3

10 ∧ ∀i. i > 0 → p->memmap[i] == memmap_g.memmap[i] //C3
11 ∧ result →
12 ( result∈owns(p->man_task) //C1
13 ∧ p->man_node.Manager->size ==
14 old(p->man_node.Manager->size) - 1 //C1
15 )
16 ∧ ¬result → p->man_node.Manager->size ==
17 old(p->man_node.Manager->size) //C1
18 ∧ result/∈owns(p->man_node.Manager) //C1
19 ∧ unchanged(p->id) //C2
20 ∧ p->relax == 0 //C2
21 ∧ p∈owns(current_thread)∧invariant(p) //C2
22

23 writes(p) //C3

Fig. 3: The verification goals C1, C2, and C3 are represented in
the assertions for a function contract (explanation of technical
details can be found in the README.txt of [14]).

VI. DISCUSSION

A. Security Property Assurance Gained

What has been shown: We have a proof that it never hap-
pens to the memory manager to misallocate memory from one
partition to another. In addition we ensure for an exemplary
set of use cases that via the memory manager threads can only
access memory locations belonging to their own partition.

The separation property we have shown is non-functional:
we have shown that during run-time of the separation kernel,
there is no unintended run-time information flow between par-
titions, due to misfunction or misuse of the memory manager.
As we are talking about the absence and not the presence
of a behavior in this form such a non-functional property is
generally hard to prove [23].

Limitations: It is important to understand the limits of
what has been verified and what not. In our case, other
functions than the allocation functions could impair the use
of the memory manager or there may be memory manager
function invocations in the kernel which do not fulfill the
ownership requirements. These issues either can be ruled out
by traditional human source code inspection or in future by
also having all other functions and use cases verified by VCC.



In our separation property we cover one source of errors, i.e.
the run-time memory manager correctness. In this demonstra-
tion we have not covered all possible scenarios which could
breach memory separation in the kernel. However we have
addressed the assumptions of our approach and pointed out
the remaining challenges that must be met to complete the
separation proof.

Another possible drawback of our approach is the focus
on a strict separation property. Currently systems allowing
controlled communication are not supported. Nevertheless
from our experience we see no major obstacle to extend
the approach and find ownership structures incorporating the
permitted shared data accesses.

For such systems that allow to share data between partitions,
however, focussing on information flow may be an alternative
approach. Note that one can trace information flow by labeling
all pieces of information appropriately (and VCC is also being
extended to support this [24]).

B. How the Approach Scales

The meaning of “scaling” in this context is twofold. On
the one hand it can refer to the scalability of our code-level
annotations to a bigger set of use cases or more complex code.
In general all functions of our example verify in a relatively
short time (about 3 minutes on average on a 2 GHz single
CPU 1 GB RAM machine) which still allows for an interactive
verification process. When increasing the complexity of the
example, e.g. by increasing the number of object types that
could be allocated and held by a partition, no real performance
loss was observed, although a quadratically growing number
of disjointness invariants, stating that elements in one object
manager structure do not occur in another, had to be proved.

From a proof development point of view we believe the
approach to scale as well, though there is no empirical
data available supporting this claim. Devising the ownership
structure and memory map for the example and completing
the formal proofs took an effort of approximately 2 person
months. Given that the overall ownership specification is now
already fixed, transferring the experience from the memory
manager to another kernel component in order to prove the
separation property appears to be be an easy task.

C. Verification Engineering Aspects

A general challenge that we discovered while dealing with
a complex system like the PikeOS kernel, was the modelling
of the global state of all kernel data structures. This is usually
not necessary in projects that aim at a verification of “local”
algorithms.

Partitioning via ownership: We have found the ownership
feature of VCC very appropriate to model the desired strict
separation of memory in our annotations. Since ownership of
an object is exclusive and VCC checks all memory accesses for
compliance with its ownership policy, illegal memory accesses
are easily detected.

Finding the right reification into specification objects:
The innocuously simple Figure 1 we had started out with in
this form actually is not taken from any design document but
the result of working out the proof in VCC (e.g. the reification
of “pages as bytes”). We think that this representation adds
maximal clarity for thinking about the footprint scope of
the memory management functions. Further reifications were
the specification state rest fields, and the different contain-
ers (“managers”) assigned to a partition, and of course the
memmap representation of the otherwise implicit memory
state.

Also finding the right place to put invariants and assertions
needed some experience, an example was the decision to bind
some properties of the rest field of the node_t to the
partition and not the node, because the size of the rest depends
on where the list is used (e.g. it is different in a scheduler
queue) and is thus better kept at the partition level.

Recurring annotations: In the verification of similar
use case of the memory manager functions, e.g. allocation
functions for different types, it was discovered that certain
blocks of annotations repeated themselves and could be made
generic using parametrized macros.

Testing the specification: The proof meta-argument and
the code annotations given here have evolved after a good
amount of experimentation with the VCC tool. In case the
verification engineer distrusts his/her specifications that might
have overlooked something, he/she has evidence at hand that
the transformation was successful and the annotations are
adequate, when she can use the result, e.g. for the low-
level page allocation function TR2 in Fig. 1, we gain as-
surance because it is used by the high-level task allocation
function task_alloc (TR3 in Fig. 1; Fig. 3). Again, in
the example, the task_alloc function is checked against
by a lifecycle function that repeats the idea of the life-
cycle example from Figure 2. Moreover, we have enabled a
VCC heuristic that searches for unsound specifications such
as cycles in an ownership graph or inconsistent statements
(“smoke-checking”). While this is not needed for running the
examples, in general we also recommend to enable testing for
inconsistencies by the “/b:/smoke” switch.

Harnessing the Proof State: In the current VCC (or
Frama-C) approach the verification engineer only interacts
with the proof state via choosing invariants and asserts. At
least from our experience, it would be desirable to have more
fine-grained control over it. For example, being able to flush (a
part of) the proof state would be desirable to avoid cluttering
the prover with unnecessary information.

Certification aspects: DO-178B/C: The use of formal
methods in avionics is encouraged in the DO-178C formal
methods supplement [25]. In particular, the supplement re-
quires the use of a formal model which in our case is encoded
as annotations for properties to be shown. Moreover, in the
accompanying discussion paper [26], there is an example
where code annotations are matched to low-level requirements
(Airbus “unit proofs”, the annotations in the tool Caveat [27]
look very similar to those in VCC) and another example where



low-level requirements are matched against high-level require-
ments (Rockwell Collins). In this setting, the challenge we
have answered here, (although only for exploitation of faulty
implementation or use of a memory manager) is to span from
code annotations all the way up to a high-level requirement,
for example the partition separation evidence gained here for
an integrated modular avionics (IMA) setting [28].

VII. WRAPPING UP

We have shown that the memory manager is well-behaved,
and that no interference between partitions can appear. Based
on Hoare-style code annotations we have derived a global non-
functional security requirement. We have presented how to
prove this separation property conceptually in Section III and
formally proven the correctness of the memory manager with
the VCC tool in Section V, using the ownership mechanism
of VCC. We also successfully realized part of our concept in
another verification tool Frama-C which is one more fact for
generality of our approach. Future work includes the comple-
tion of the overall separation proof as well as the application
of code level verifcation to validate other requirements on the
PikeOS microkernel.
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