Eﬁ ECEASST

Lessons Learned From Microkernel Verification

Bernhard Beckert' and Thorsten Bormer>*

I beckert@kit.edu, http://formal.iti.kit.edu/~beckert/
2 bormer @kit.edu, http://formal.iti.kit.edu/~bormer/
Institute for Theoretical Informatics
Karlsruhe Institute of Technology, Karlsruhe, Germany

Abstract: Software verification tools have become a lot more powerful in recent
years. Even verification of large, complex systems seems feasible, as demonstrated
in the L4.verified and Verisoft XT projects. Still, functional verification of large
software systems is rare. In this paper we hint at some issues that may impede
widespread introduction of formal verification in the software lifecycle process.

Keywords: software specification, software verification

Here we report on lessons learned from microkernel verification: within the Verisoft XT
project, core parts of the embedded hypervisor PikeOS (see http://www.pikeos.com) have been
verified [BBBB09] using the VCC tool (see http://vcc.codeplex.com). While PikeOS is sev-
eral orders of magnitude smaller than, e.g., the Linux kernel, for verification purposes this is a
substantial code size.

Specification and verification of large software systems does not scale linearly with the number
of methods, i.a., due to the interactions between methods operating on parts of a shared program
state. There are several ways to simplify verification: (a) reduce the cost of specifying and veri-
fying a single property of a single function, (b) decompose the verification task by verifying one
module of the system at a time and (c) abstracting from details of the system’s implementation.

All three of these points have already been addressed to a certain extent by current deductive
verification tools. Regarding goal (a), verification tools have made a leap forward in recent years,
enabling users to verify individual functions once considered challenging with ease. Towards
feature (b), annotation-based verification tools like VCC already make use of decomposition of
the verification task by verifying methods, as well as threads, in a modular fashion. Concerning
the last point (c), abstraction is possible using a separate specification state and support for
abstract data types. Still, support for modularization and abstraction has to be better supported
by the verification systems in order to be helpful for the verification of large software systems.

In the following, we will illustrate why verification of a system like PikeOS is still challenging,
despite all support by the verification tool and methodology. Although some characteristics of
PikeOS are prominent for microkernels, they are in no way exclusive for this type of software.

Modularization. Modularization reduces verification effort by decomposing the verification
task, but it does only help to a limited amount in finding the right auxiliary specifications needed
for verification. In addition, architectures such as microkernels feature some inherent character-
istics that restrict the extent to which the specification task can be modularized.

* Work partially funded by the German Federal Ministry of Education and Research (BMBF) in the framework of the
Verisoft XT project under grant 01 IS 07 008. The responsibility for this article lies with the authors.

1/2 Volume X (2012)


mailto:beckert@kit.edu
http://formal.iti.kit.edu/~beckert/
mailto:bormer@kit.edu
http://formal.iti.kit.edu/~bormer/
https://www.pikeos.com
http://vcc.codeplex.com

Lessons Learned From Microkernel Verification Eﬁ

In the case of PikeOS, single C functions are deliberately kept simple to facilitate maintain-
ability and certification — the functionality of the kernel is rather implemented by interaction of
many of these functions, operating on shared data. Microkernels, as all operating systems, have
to keep track of the overall system’s state, resulting in large and complex data structures. As a
result, method specifications have strong dependencies on each other, with several consequences:

(1) Finding the right annotations for a single method requires the verification engineer to
consider several methods at once. Feedback given by annotation-based verification tools in case
of a failed verification attempt so far only focuses on the method currently being verified. Further
measures are needed to help the user in case of analyzing problems with dependent specifications.

(2) Dependencies between methods obfuscate module boundaries and thus makes finding the
right module interfaces difficult. In addition, even if larger modules can be identified, there is
no particular support for a hierarchical modularization in annotation based verification systems
in order to specify properties of such a module, e.g., on the system architecture level. Also
for concurrent systems, a fixed modularization granularity may not be appropriate: parts of the
implementation to be executed in an atomic fashion may span across several methods.

Abstraction. To find the right abstraction for data structures in the system the source code
alone is often not sufficient in practice. Gathering the important properties of the data structure
is crucial in order to find the right abstraction. While some techniques such as CEGAR exist
that may help in some cases in finding the right abstractions, these methods are not sufficiently
supported in deductive annotation-based systems. Again, dependencies between methods that
operate on shared data complicate finding the right abstraction — apart from support by verifica-
tion tools information from system developers and architects is vital in this case.

Conclusion. For efficient verification of large software systems, we claim that better support
from verification tools is needed to scale verification from individual modules to whole software
systems. This would have to include support in finding the right modularization and abstraction.
A first step is to provide the user with feedback in case of interdependent method specifications,
so that mismatching contracts are discovered early in the specification process [BBMS11].
Besides annotation-based specifications that are well suited for description of functions on
code level, there is need for further specification constructs tailored for description of the system
properties on higher levels of abstraction. These formalisms should also allow to integrate knowl-
edge of system developers. On the code level, we propose to use existing formalisms for abstract
data types like CASL, to be able to concisely specify commonly used data structures [BBK12].

Bibliography

[BBBB09] C. Baumann, B. Beckert, H. Blasum, T. Bormer. Formal Verification of a Microker-
nel Used in Dependable Software Systems. In Buth et al. (eds.), SAFECOMP’09.
LNCS 5775, pp. 187-200. Springer, 2009.

[BBK12] B. Beckert, T. Bormer, V. Klebanov. Improving the Usability of Specification Lan-
guages and Methods for Annotation-Based Verification. In Aichernig et al. (eds.),
Formal Methods for Components and Objects. LNCS 6957, pp. 61-79. 2012.

[BBMS11] B. Beckert, T. Bormer, F. Merz, C. Sinz. Integration of Bounded Model Checking
and Deductive Verification. In FoVeOOS’11. Pp. 86—-104. 2011.

Proc. AVoCS 2012 2/2



