
Formal Verification of a Microkernel Used in
Dependable Software Systems?

Christoph Baumann1, Bernhard Beckert2, Holger Blasum3, and Thorsten Bormer2

1 Saarland University, Dept. of Computer Science, Saarbrücken, Germany
2 University of Koblenz, Dept. of Computer Science, Germany

3 SYSGO AG, Klein-Winternheim, Germany

Abstract. In recent years, deductive program verification has improved to a degree that
makes it feasible for real-world programs. Following this observation, the main goal of
the Verisoft XT project is (a) the creation of methods and tools which allow for the per-
vasive formal verification of integrated computer systems, and (b) the prototypical real-
ization of four concrete, industrial application tasks.
In this paper, we report on the Verisoft XT subproject Avionics, where formal verification
is applied to a commercial embedded operating system. The goal is to use deductive
techniques to verify functional correctness of the PikeOS system, which is a microkernel-
based partitioning hypervisor.
We present our approach to verifying the microkernel’s system calls, using a system call
for changing the priority of threads as an example. In particular, (a) we give an overview
of the tool chain and the verification methodology, (b) we explain the hardware model
and how assembly semantics is specified so that functions whose implementation contain
assembly can be verified, and (c) we describe the verification of the system call itself.
We also explain why this effort matters in regulatory dependability frameworks such as
DO-178B and IEC61508 for safety resp. Common Criteria for security.

1 Introduction

Background. In recent years, deductive program verification has improved to a degree that
makes it feasible for real-world programs. Following this observation, the main goal of the
BMBF-supported Verisoft XT project is (a) the creation of methods and tools which allow the
pervasive formal verification of integrated computer systems, and (b) the prototypical realiza-
tion of four concrete, industrial application tasks.

As correctness of the built-in operating system is a crucial requirement for the reliability
of safety- and security-critical systems, the goal of the Verisoft XT Avionics sub-project is
to prove functional correctness of the microkernel in the partitioning hypervisor PikeOS, a
commercial operating system for embedded systems [3].

For verification, we use tools like VCC (the Verifying C Compiler) developed by Microsoft
Research, which follows the verifying compiler paradigm, i.e., when all specifications and
other required information have been added as annotations to the source code (which is the
actual user effort required), the tool verifies the code automatically. First experiences with this
verification paradigm and the new tool are described in this paper.

? Work partially funded by the German Federal Ministry of Education and Research (BMBF) in the
framework of the Verisoft XT project under grant 01 IS 07 008. The responsibility for this article lies
with the authors.

This Paper. In Section 2, we describe the PikeOS system and motivate why the particular
system at hand and hypervisors in general are suitable targets for deductive program verifica-
tion. We also explain why this effort matters in regulatory dependability frameworks such as
DO-178B and IEC61508 for safety resp. Common Criteria for security. Then, in Section 3, we
give an overview of the tool chain and the verification methodology used in the Verisoft XT
Avionics project.

The goal of the project is the full functional verification of all system calls of PikeOS
(i.e., the functionality that the kernel provides to guest systems). In this paper, we present our
approach to verifying system calls using a system call for changing the priority of threads as an
example. While this particular call has a simple functionality, its execution spans all levels of
the PikeOS microkernel, from hardware-related levels to high-level kernel-functionality. Using
this example, we first give a detailed account of how we handle (inline) assembly code blocks,
which are needed to access hardware functionality that is not visible in plain C. We picture
how the PowerPC assembly semantics can be specified, such that assembly functionality and
especially the interaction with the C state can be verified (Sect. 4). Then, in Section 5 we use
the same example to show how the system call has been specified and proved to be functionally
correct using the VCC tool.

The same approach is being applied to verify system calls with more complex functionality
that still span the same levels in the kernel as a call with simple functionality.

Related Work. The Avionics subproject of Verisoft XT builds upon previous work in the pre-
cursor project Verisoft I, where the pervasive verification of an academic microkernel written
in the C0 dialect of C and running on verified DLX hardware was undertaken [14, 30]. Within
Verisoft XT, in another subproject, the European Microsoft Innovation Center, DFKI and Saar-
land Univ. are verifying Microsoft’s Hyper-V hypervisor.

Related work in kernel verification was already done in the ’70s and ’80s in the projects
UCLA Secure Unix [36] and KIT [4], and more recently at the Universities of Dresden and
Nijmegen (VFiasco project) [13] and in the EROS/Coyotos project [28]. A current project in
kernel verification is L4.verified at NICTA (Australia) [19]. An overview and comparison of
these and other related projects is given in [18].

2 A Hypervisor Approach to Dependability

Safety by Redundancy and Partitioning. Redundancy is a means for fault tolerance by error
compensation: the erroneous state of a system must contain enough redundancy to enable the
delivery of an error-free service from the erroneous state (of one component) [20]. In functional
safety standards such as IEC61508 [16], to achieve SIL4 (the highest safety integrity level of
that standard), each safety-related subsystem must be able to tolerate the occurrence of at least
one hardware fault.

In a world where resources were unlimited, it would be best to have physically separated
networks for each functionality. However, resources are limited in practice. While there is a
need for physical redundancy, one tries to integrate redundancy networks for different function-
alities. For example, in avionics (where weight constraints play an important role) this concept
is called Integrated Modular Avionics (IMA) and has been specified in standards [1, 26], see
also [7] for discussion. In the automotive sector, components have traditionally been more au-
tonomous. While the maximal impact of a single catastrophic system failure is less severe than
in avionics and virtualization does not have a long history of standards, virtualization has been
characterized as a prevalent safety and security technology for most upcoming automotive IT
architectures in the next decade [23].

Fig. 1. Exemplary structure of a running PikeOS system

Hypervisors for Shared Use of Hardware. Once we accept the idea that sharing redundant
hardware for different systems is a sensible trade-off, the problem is that almost all hardware
used in industry (e.g. x86, PowerPC, MIPS, ARM) is designed to run in (at least) two privilege
modes: privileged mode and user mode, where the privileged mode has a richer instruction
set (on PowerPC, for example, allowing changes to the machine status register including the
enabling and disabling of interrupts, memory address translation etc.). A well-known solution
to sharing (not necessarily redundant) hardware is to virtualize the hardware using a hypervisor
that runs several guest systems. It catches the guest system’s use of privileged instructions and
communicates with the hardware. Of course, it is an important feature for a hypervisor to
guarantee that the guest systems do not and cannot interfere with each other: each guest runs
as if it was running alone.

Hypervisors for Dependability. Besides separating the guest systems hypervisors administer
hardware resources (this includes CPU time, thus scheduling). Their interface, however, is
simpler than that of a typical desktop operating system. Hypervisors do not include higher-
level functionality such as networking services and protocols, display drivers, graphical user
interfaces, and user management.

This allows to have a small (trusted) hypervisor such as PikeOS running several less trusted
larger systems as guests. For example, one can run a Linux system in one partition and (in
avionics contexts) an ARINC-653 application or (in traffic control contexts) a POSIX or Java
runtime-environment in another [32–35].

With today’s state of the in deductive program verification, full functional verification is
not feasible for a large guest system (e.g. Linux) but is within reach for the smaller hypervisors.
The code size of the hypervisor PikeOS is smaller than that of Linux by several magnitudes.

In the areas of avionics, automotive, and automation, safety concerns (e.g., availability of
the system) traditionally carry more weight than security concerns (e.g., confidentiality of the
system’s data). It has been noted, however, that in complex (virtualized) systems both notions
are interconnected [24, 31]. In a Common Criteria context, this mix of safety and security
features is labeled robustness [15].

Features of the PikeOS Hypervisor. PikeOS (see http://www.pikeos.com/) consists
of a microkernel acting as paravirtualizing hypervisor and a system software component. The
PikeOS kernel is particularly tailored to the context of embedded systems, featuring real-time
functionality and orthogonal partitioning of resources such as processor time, user address
space memory and kernel resources. The PikeOS system software component is responsible
for system configuration. Thus the allocation of resources can be bound at compile-time, for

example to conform to partitioning requirements in the (aforementioned) Integrated Modular
Avionics. At the kernel level, the mechanisms for communication between threads are IPC,
events, and shared memory. High-level communication concepts such as Integrated Modular
Avionics ARINC ports can be mapped onto these kernel-level mechanisms. For a thorough
discussion of PikeOS and its evolution, see [17]. For an exemplary deployment of a running
PikeOS system see Fig. 1. For concrete examples we (again) refer to [32–35].

Most parts of the PikeOS kernel, especially those that are generic, are written in C, while
other parts that are close to the hardware are necessarily implemented in assembly. PikeOS
runs on many platforms, including x86, PowerPC, MIPS, and ARM among others and the
exact amount of assembly depends on the architecture one works on. The verification target we
have chosen for our project, is the PikeOS version for the PowerPC processor family, the OEA
architecture, and the MPC5200 platform [11, 12]. In this particular case, PowerPC assembly is
about one tenth of the codebase.

3 Verification Methodology and Toolchain

The Verifying C Compiler. In the verifying compiler approach, to check whether a program
to be verified performs according to its specification, a logical formula is automatically gen-
erated from the source of the program and the specification. This formula, called verification
condition, is rendered in predicate logic and has the property that, if it is valid, then the pro-
gram is correct w.r.t. its specification. Finding a proof for the validity of this formula, which
would serve as a witness for the correctness of the program, is then a task to be solved by a
theorem proving system.

In the Verisoft XT subproject Avionics, we use the Verifying C Compiler (VCC) devel-
oped by Microsoft Research [8] (see http://research.microsoft.com/vcc). VCC
uses a specification language tailored to C, which allows a verification engineer to write the
specification in a way close to the syntax and semantics of the programming language.

Given an annotated C program, the VCC tool performs three steps to conduct a correctness
proof (if possible). The reason for this breakdown into several steps is a better separation of
concerns and easy integration of different tools: (1) The annotated C code is compiled into
an intermediate imperative programming language called BoogiePL [10], which includes the
specified properties of the C program rendered as assertions. (2) The input for the following
translation step consists of two parts: (a) the BoogiePL code that results from compiling the
original C source (including annotations) and (b) axiomatic descriptions (in BoogiePL syntax)
of certain aspects of the C programming language, called the BoogiePL prelude. The annotated
BoogiePL program together with the prelude is then transformed into first-order predicate
logic formulas (verification conditions), which state that the program satisfies the annotated
specification. (3) These verification conditions are given to the automatic theorem prover Z3 [9]
to check whether they are valid, which then implies that the original C program is correct w.r.t.
the annotated specification.

The possible results Z3 may return are: (1) The formulas are valid (Z3 has found a proof).
(2) At least one of the formulas is not valid (Z3 has found a counter-example). (3) Z3 runs
out of resources (time or space). In Case (1) above, the program verification was successful.
In Cases (2) and (3), the verification engineer has to analyse the problem (using a possible
counter-example) and correct the error. In Case (3), he/she may also find that the program
indeed satisfies the annotations. Then new annotations (stronger invariants, helpful lemmas,
etc.) have to be added. This process is repeated until Z3 finds a proof.

The annotation language of VCC is guarded by C macros. When verifying, a flag is set
so that these macros evaluate to functions specific to VCC, which in turn generates the corre-
sponding BoogiePL code out of them. If a normal C compiler is used (without this flag), all

annotations evaluate to the empty string, so that the annotations are transparent for the compi-
lation process. Also, VCC itself can be used as a C compiler (compilation mode).

Specification Language. In this section, we give a brief overview of VCC’s specification lan-
guage, focusing on those language features occurring in the examples of PikeOS code used
throughout this paper (loop invariants, for example, are part of the language but are not dis-
cussed here).

Annotations, Implementation Variables and Ghost Variables. Annotations are written in the
form keyword(block) where keyword gives specifies the specification constraint to be en-
forced. In a block the verification engineer writes (depending on the keyword) an expression
or statements (statements again may contain expressions). Expressions are written in a C-like
syntax and may use implementation variables. They also may use object variables that are
not part of the implementation state (called “ghost variables”). Declarations of ghost variables
are guarded by spec(), and statements changing values of ghost variables are guarded by
speconly(). Expressions in annotations also may use implementation variables and ghost
variables simultaneously. Note that annotations must not affect the actual behavior of the pro-
gram (for example, unlike in C, it is not allowed to write assert(++x==1) which would
change the value of x). They merely express what the program is supposed to do. They make
explicit those (implicit) restrictions that a program adheres to anyway.

Object Invariants and Ownership. One way to capture global properties of a software sys-
tem is to define invariants for data structures (i.e., structs in the case of C) used in the
program. With VCC, such invariants can be given by annotating a struct with (arbitrarily
many) invariant clauses. To enable modular reasoning about properties of complex data
structures (e.g., pointer structures or nested structs), and to capture relations between data
structures, the concept of ownership between structured data is used (VCC’s ownership model
is an extension of the one used in the Spec# methodology [21]). Every struct has exactly one
“owner” and can itself own arbitrarily many structures. At the top of the ownership hierarchy,
structs can be owned by executing threads. The ownership relation is provided explicitly
in annotations by the verification engineer, and it reflects his/her abstract knowledge about the
data structure and how it is used.

It would not be efficient to always check all invariants on all data structures. Hence, a
data object can have two states, open and closed. The convention is that a thread only
may change objects it owns and that it may force a check on all invariants by wrapping an
object, that is by moving it from open to closed. Ignoring volatile variables, a property that
VCC enforces in verification is that members of a closed struct cannot be modified by the
program. In addition, if an object is closed, its invariant is guaranteed to hold. That is relevant
in a concurrent setting when a context switch may occur.

Function Pre- and Postconditions. The specification of a C function can be seen as a contract
between the caller of the function and the function itself and is given by pre- and postcondi-
tions. These are inserted between the function head and the function body, as shown in the
following example:

1 int max(int a, int b)
2 requires (a >= 0 && b >= 0)
3 ensures ((result == a || result == b) &&
4 result >= a && result >= b)
5 { if (a > b) return a;
6 return b;
7 }

The precondition of a function is labeled with the keyword requires, and the postcondition
is labeled with ensures. The keyword result represents the return value of the function.
In the examples of the following sections, the reader will also encounter ownership relations
asserted at the function level.

Further Specification Constructs. For convenience, maintains can be used for a property
that a function both requires and ensures. writes can be used to denote the set of
memory locations to which a function (at most) writes. returns is shorthand for ensures
on a result. Objects that are closed and owned are called wrapped, objects that are open,
owned and typed are called mutable, which means that they may be modified. keeps de-
notes that an object owns a certain set of objects only (and nothing else).

Guidance for the Automatic Proving Engine. The verification engineer may have to give some
hints to the prover: this is achieved by bv_lemma for bitvector related lemmas, assert for
intermediate assertions to be enforced and several other annotations (e.g., on the conservation
of properties throughout function calls), which are excluded from the listings for clarity.

4 Verification of Assembly Code and Low-Level Functions

A peculiarity that distinguishes real-world microkernels from other C programs is the high
percentage of assembly code which is found in separate assembly files (macro assembly) as
well as inlined into the C code using the __asm__ keyword. Moreover this assembly contains
privileged mode instructions which are commonly neglected in formal definitions of instruc-
tion set semantics for user space programs [2, 5]. Because of the ubiquity of assembly in the
near-hardware layers of PikeOS and the inability of VCC to interpret machine instructions, we
have to define our own machine and assembly model. In this paper we especially focus on the
inline assembly portions, where C and hardware semantics are mixed and data is interchanged
between the models. To our best knowledge only the Verisoft I project [14, 30] achieved sub-
stantial progress in this specific field. However our approach is different in that we chose an
industrial microprocessor (Freescale MPC5200) as the target architecture for the Verisoft XT
avionics subproject. In addition the syntax and semantics of inline assembly in compilers like
gcc is more complex than in the one used in Verisoft I and we lack formal compiler semantics.
Nevertheless in some places (e.g. inline assembly, memory and branch instructions) we have
to simulate the behavior of the compiler assuming its correctness.

In the following, we introduce our approach to modeling the hardware and the semantics
of assembly instructions. Furthermore we exemplify how this methodology is applied to actual
PikeOS functions in the second part of this section.

4.1 Defining the Semantics of Privileged Mode PowerPC assembly

We establish the semantics of assembly instructions as a transition relation over hardware
configuration. First we have to make an abstraction and identify the hardware components
that must be represented. Then the effect of each PowerPC instruction can be stated writing a
specification function which reflects the corresponding impact on the hardware configuration.

Modeling Hardware Components in the Global PowerPC Ghost State. The PowerPC core
of the MPC5200 microprocessor comprises a variety of different components, such as general
purpose registers (GPRs), special purpose registers and other user and system registers, caches,

translation look-aside buffers (TLBs). Also the physical memory must be taken into considera-
tion. When building a hardware model for a modern processor on the C level, several questions
arise.

Where is the model defined and how does it interact with the kernel implementation? In fact
there are two options. One could either add the model to the kernel implementation and replace
all assembly commands with their representative model functions. However, this would modify
the structure of the C state and thus corrupt the verification effort. The alternative is to keep the
whole hardware model in the specification-only ghost state. At first sight, with this approach
one would face the problem to transfer data between the hardware ghost state and the C state,
which VCC forbids. However, one can circumvent this issue via specification functions that
indirectly “assign” some value to a C variable by assuming their equality as a postcondition
(an example of such a function will be shown later).

Following these thoughts we defined the global hardware configuration PPC_c in ghost
state, which then can be modified by assembly instructions only:

1 spec(struct PPC_config_struct {
2 // exemplary components:
3 PPC_B32_t stackPtr; // stack pointer
4 PPC_MSR_t msr; // Machine State Register
5 invariant(keeps(&msr)) // ownership invariant
6 } PPC_c;)

As C code runs on the underlying hardware, how can these effects be captured? Basically
this is impossible as there is no formal C and compiler semantics available to project the
execution of C statements to the machine level. Nevertheless assembly code should not rely on
the effect of preceding C statements on the processor state (this would imply the programmer
applies knowledge about the C and compiler semantics). Hence we simply divide the hardware
components into those that are not changed by C statements (like system and special purpose
registers) and those that are affected by the execution of C (basically the user-visible registers).
The former ones are comprised in the PPC_c structure while the latter ones only become
visible as local variables in the context of assembly code. In case compiler properties were
assumed about one of these globally invisible components, it can be initialized accordingly at
the beginning of the assembly block (cf. Sect. 4.2 for an example).

How should caches and TLBs be handled? In a single-processor setting caches and TLBs
(which are in fact also just caches for page address translations) are invisible to the programmer
under certain realistic assumptions. Therefore we do not need to model caches and TLBs.
However, separate proofs to validate these claims are in order.

How do we model the physical memory? As we are lacking a formal compiler semantics
which would define the memory allocation of C variables and code, modeling the complete
data and instruction memory is also impossible. Hence memory does not belong to our global
hardware model. For memory and branch instructions special measures are taken locally.

Specifying PowerPC Assembly Instructions. Based hardware model we can specify the
effect of the execution of assembly code. For each instruction we define a specification function
which is equipped with pre- and postconditions that reflect the functionality of the particular
instruction. For plain register transfer operations this is easy. E.g. there are privileged mode
instructions mfmsr and mtmsr, which move GPR contents from resp. to the machine status
register (MSR). The specification function for MFMSR is given below:

1 spec (void PPC_MFMSR(PPC_B32_t *dest)
2 maintains(wrapped(&PPC_c))
3 maintains(mutable(dest))

4 writes(dest)
5 ensures(*dest == PPC_c.msr.reg);)

The first two maintains-clauses refer to the memory resp. ownership-model of VCC. The
writes-clause specifies that the destination register is written by the instruction. The last
line states the postcondition of MFMSR. In this way, most of the PowerPC instructions can be
handled. However, for memory and branch instructions there may be access to the kernel and
user address spaces, which requires additional handling. How to model these instructions is
outside the scope of this paper, though.

Assembly Code Translation. After having defined the hardware configuration and instruc-
tion semantics, the remaining question is how to integrate the hardware model into the PikeOS
code. As VCC does not recognize assembly code, these commands have to be replaced by the
corresponding specification function calls, which then simulate the execution on the model.
The translation of the assembly instructions to our specification functions can be done auto-
matically using a parser. This has already been proposed for x86 assembly in the Verisoft XT
Microsoft hypervisor (Hyper-V) subproject [22].

The methodology pictured above applies to the simulation of macro assembly. Fortunately,
the semantics of inline assembly does basically not differ from macro assembly semantics.
The main additional effort is to establish an interface between the context of a C function and
the general purpose registers in the contained assembly code. To this end one has to examine
the PowerPC ABI and compiler specifics concerning the syntax and semantics of an __asm__
statement. An important feature is the aliasing of registers to which the values of C variables are
assigned. The compiler can essentially choose an arbitrary register that is not yet occupied to
store the C data for the assembly computation. Thus it is hard to exactly determine the registers
that will contain the respective data without looking into the compiled code (one would require
a formal compiler specification). However, it is not necessary to know the exact distribution of
data over the registers. We can just choose any free registers for that purpose. Then the registers
have to be initialized with the respective data and after execution of the inline assembly block
the results have to be written back.

4.2 Verifying Low-Level PikeOS Functions.

We now want to demonstrate the application of our PowerPC assembly model to three ex-
emplary functions which are called from p4syscall_fast_set_prio, a PikeOS system
call function that shall be examined later on. The three helper functions contain inline assem-
bly code, which is translated according to the methodology pointed out above. Afterwards the
resulting functions are subject to annotation and automated verification with VCC.

Translation of Inline Assembly Code. Firstly we look at the translation from (inline) assem-
bly language to hardware model functions. To do so we introduce the first auxiliary function
called by p4syscall_fast_set_prio, namely p4arch_disable_int:

1 static inline P4_cpureg_t p4arch_disable_int(void)
2 {
3 P4_cpureg_t ret;
4 P4_cpureg_t val;
5 __asm__ volatile("mfmsr %0" : "=r"(ret));
6 val = ret & ˜MSR_EE;
7 __asm__ volatile("mtmsr %0" : : "r"(val) : "memory");
8 return ret;
9 }

This function disables the signaling of external interrupts by clearing the corresponding EE bit
in the CPU’s machine status register (MSR). It returns the old value of the MSR.

The translation is done in two steps, where the first one is only needed for inline assembly.
Here we insert definitions of the local specification variables that establish the hardware con-
text. Moreover the syntax of the __asm__ statement is parsed and the corresponding pairs of
register aliases and C variables are extracted. A free hardware register is determined and set to
the value of the C variable it was allocated to. After the assembly block the results are written
back to the variables when necessary. This is achieved by assigning the register values to an
intermediate local variable using the specification function PPC_assign.

In the second step the assembly syntax is parsed and the commands are translated to their
hardware model counterparts, which are specification functions operating on the ghost hard-
ware state. The resulting annotated C code for p4arch_disable_int looks like this:

1 static inline P4_cpureg_t p4arch_disable_int(void)
2 {
3 P4_cpureg_t ret;
4 P4_cpureg_t val;
5 // inline asm variables and initialization
6 spec(PPC_B32_t gpr[32];) // step 1
7 void * PPC_ret; // step 1
8 // start inline asm block
9 PPC_MFMSR(spec(&gpr[3])); // step 2

10 PPC_assign(spec(&PPC_ret,gpr[3])); // step 1
11 ret = (P4_cpureg_t)PPC_ret; // step 1
12 // end inline asm block, assigning return values
13 val = ret & ˜MSR_EE;
14 // start inline asm block, passing parameters
15 speconly(gpr[4] = val;) // step 1
16 PPC_MTMSR(spec(gpr[4])); // step 2
17 // end inline asm block
18 return ret;
19 }

The new lines resulting from the translation are printed in bold face and labeled with the
translation step in which they are produced. Ghost code and ghost variable declarations are
included using the speconly and spec keywords (Sect. 3). Functions and data belonging to
the hardware model are labeled with the PPC_ prefix. Registers 3 and 4 are used as they are
the first available registers according to the ABI. Note that the translated version of the code
does not replace the original functions at run-time. Using ifdef case distinctions it is only
visible to the compiler when the verification mode is enabled.

Annotation and Verification. Replacing the assembly commands by calls to their represen-
tative functions in the hardware model enables us to discuss the functionality of the code. We
can now add annotations to the code which specify the behavior that each particular function
is supposed to implement. These assertions on the code are then validated by VCC and may be
assumed to hold on the caller functions at higher levels of the call graph.

As an example for the verification of function-level annotations and introduce the counter-
part to p4arch_disable_int, we consider the function p4arch_restore_int, which
restores the bit MSR.EE from a given value msr.

1 static inline void p4arch_restore_int(P4_cpureg_t msr)
2 {
3 unsigned ret;

4 unsigned val;
5 __asm__ volatile("mfmsr %0" : "=r"(ret));
6 val = ret | (msr & MSR_EE);
7 __asm__ volatile("mtmsr %0" : : "r"(val) : "memory");
8 }

For simplicity, here we concentrate on two properties of the function: (1) MSR.EE is set to
the value of the corresponding bit in parameter msr. (2) All other MSR bits (e.g., the current
privilege mode MSR.PR) are preserved. The translated code is shown below with all necessary
annotations to specify these properties (in bold face).

1 static void p4arch_restore_int(P4_cpureg_t msr)
2 writes(&PPC_c)
3 ensures(PPC_c.msr.fld.EE == (old(PPC_c.msr.fld.EE)|GET_BE(msr,16)))
4 ensures(PPC_c.msr.fld.PR == old(PPC_c.msr.fld.PR))
5 {
6 unsigned ret;
7 unsigned val;
8 spec(PPC_B32_t gpr[32];)
9 void * PPC_ret;

10 PPC_MFMSR(spec(&gpr[3]));
11 assert(gpr[3] == (P4_cpureg_t)PPC_c.msr.reg);
12 PPC_assign(spec(&PPC_ret,gpr[3]));
13 ret = (P4_cpureg_t)PPC_ret;
14 val = ret | (msr & MSR_EE);
15 bv_lemma(forall(unsigned int x,y;
16 (GET_BE(x|(y & MSR_EE),16) == (GET_BE(x,16)|GET_BE(y,16)))));
17 bv_lemma(forall(unsigned int x,y;
18 (GET_BE(x|(y & MSR_EE),17) == GET_BE(x,17))));
19 speconly(gpr[4] = val;)
20 PPC_MTMSR(spec(gpr[4]));
21 }

As the global hardware model is modified by the assembly portions it has to be included in the
writes clause. Using the macro GET_BE we access certain bits of the msr parameter in big
endian order. The properties of the function as stated in the ensures clauses are specifying
a transition relation between the old (marked old) and new state of the data structures (the
hardware configuration PPC_c in this case).

To split the complexity of the problem of proving the postcondition, intermediate asserts
like in line 15 are helpful. A problem for automated provers is the handling of non-linear
arithmetic, such as bit vector operations. Here VCC offers an extended axiomatization via
bv_lemma, which can be used to introduce and validate bit-vector-related lemmata where
they are necessary to verify corresponding C code.

With the few additional assertions as “step stones” for the verification, VCC is able to prove
the two postconditions of the function shown above in about 5 seconds on an AMD Athlon 64
X2 Dual Core 4000+ processor. Adding the postconditions and additional annotations for the
other 15 relevant MSR bits increases verification time to roughly 9 seconds.

Reading the Stack-Pointer. A special problem concerning the combination of C and inline
assembly arises with the following function.

1 static inline void *p4arch_runner(void)
2 {
3 register unsigned long sp __asm__("r1");

Implementation state
(kglobal)

ghost state(gpr)
Local PowerPC

ghost state(PPC_c)
Global PowerPC

Kernel ghost state
(abstractModel)

Thread executing
p4syscall_fast_set_prio

ghost state(gpr)
Local PowerPC

ghost state(PPC_c)
Global PowerPC

Thread executing
p4arch_disable_int

Fig. 2. Verification setups for the exemplarily low-level function p4arch disable int introduced
in Sect. 4 (left) and the entire system call introduced in Sect. 5 (right). Straight arrows indicate VCC
ownership relations (Sect. 3), dashed arrows indicate implicit dependencies.

4 return (void *)(sp & ˜(P4_PROCESS_SIZE - 1));
5 }

p4arch_runner reads the stack pointer which by default is stored in general purpose regis-
ter 1 [37]. Then the base address of the current process is computed from the value by removing
its offset and returned to the caller as a void pointer. However, the value of the stack pointer is
unknown as it is a concept introduced by the compiler and not visible on the C level. To solve
this problem, we use the knowledge that the pointer lies in a certain address range, whose base
address is determined during process switch, when register 1 is set to point to a stack frame of a
specific process. Then, we keep track of these assignments using a global variable stackPtr
that is part of the hardware model. When necessary, the helper function set_stackptr is
used to assign the value of stackPtr to a general purpose register. Although we only specify
a range for the stack pointer we still obtain an exact value (i.e. the base address of the pro-
cess) by clearing the offset bits. The postcondition of p4arch_runner can be written as:
returns((void *)(BASE_ADDR(PPC_c.stackPtr,P4_PROCESS_SIZE))),
where BASE_ADDR(x,2i) is a macro computing the bit vector consisting of the high 32− i
bits concatenated with i zeroes for unsigned integers x, i with x < 232 and i < 32.

5 System Call Verification

In this section, we show how a system call of PikeOS can be verified based on the hardware
model and the specification and verification of hardware-related layers of the kernel presented
in the previous section.

Verification Setup. Recall that to structure a complex state space, VCC supports the use of
an ownership relation between data structures (see Sect. 3). The right part of Fig. 2 shows the
situation for a system call in PikeOS.

Because system calls are at the user’s interface to the kernel and the PikeOS system is
multi-platform, the kernel’s specification has to hide any PowerPC implementation details to
ensure proper encapsulation. In our modeling this simply means that the abstraction of the
kernel’s state in ghost state, specified as abstractModel, thus owns the PowerPC machine
model PPC_c as formalized by the invariant keeps(currentThread, &PPC c).

1 spec(struct absModel_str {
2 bool interruptsEnabled;
3 invariant(interruptsEnabled == (PPC_c.msr.fld.EE == 1))
4 struct P4k_thrinfo_t *currentThread;
5 invariant(keeps(currentThread, &PPC_c))

6 invariant(currentThread != NULL)
7 } abstractModel;)

The specifications of the C methods on the upper layers of the kernel, like system calls, can
now be written in terms of the elements of the abstract model.

An Exemplary System Call. As a first target for verification we have chosen the system
call p4syscall fast set prio, which changes the priority of a thread. The parameter
newprio of the system call may not exceed the user-configured Maximum Controlled Priority
(MCP).

This call has a rather simple functionality, but it serves very well as an example because
its execution spans all levels of the PikeOS microkernel, from high-level kernel functional-
ity to hardware-related levels and the user-level interface (system calls are invoked via user
interrupts). Systems calls with more complex functionality still span the same levels.

For verifying the p4syscall_fast_set_prio system call, two components of the
abstract model are needed, namely interruptsEnabled, which indicates whether the sys-
tem currently allows external interrupts to occur, and a pointer to the thread currently running in
kernel mode that is given by currentThread. These two elements of the abstract model are
related to the underlying hardware and hence its representation as the ghost structure PPC_c.
This relation is explicitly stated as invariants of the abstractModel data structure (to save
space we only show the invariant for interruptsEnabled).

Whether external interrupts are allowed or disallowed in the kernel is indicated by the
EE bit in the MSR register of the hardware. In the global ghost state model of the PowerPC
hardware as described in Sect. 4.2, this flag is represented by the field PPC_c.msr.fld.EE.
In abstractModel, interrupts are then defined to be enabled, iff this bit in the hardware
model is set to 1, as stated by the invariant in line 3 of the specification of absModel_str:
interruptsEnabled == (PPC c.msr.fld.EE == 1).

We now consider the actual C and annotation code for the system call under consideration.
Setting the new priority values in the data structures of the thread and, for the purpose of
faster look-up, in a global info data structure of the kernel, is done by the helper function
p4_runner_changeprio:

1 P4_prio_t p4_runner_changeprio(P4k_thrinfo_t *proc,
2 P4_prio_t newprio)
3 writes(&abstractModel, &kglobal)
4 requires(proc == abstractModel.currentThread)
5 maintains(wrapped(&abstractModel) && wrapped(&kglobal))
6 ensures(proc->schedprio == newprio &&
7 kglobal.kinfo->currprio == newprio)
8 returns(old(proc->userprio))
9 {

10 P4_prio_t oldprio; P4_cpureg_t oldstat;
11 unwrap(&abstractModel);
12 oldstat = p4arch_disable_int();
13 speconly(abstractModel.interruptsEnabled = 0;)
14 unwrap(proc);
15 oldprio = proc->userprio; proc->userprio = newprio;
16 proc->schedprio = newprio;
17 wrap(proc); wrap(&abstractModel);
18 unwrap(&kglobal); unwrap(kglobal.kinfo);
19 kglobal.kinfo->currprio = newprio;
20 wrap(kglobal.kinfo); wrap(&kglobal);

21 unwrap(&abstractModel);
22 p4arch_restore_int(oldstat);
23 speconly(abstractModel.interruptsEnabled = PPC_c.msr.fld.EE;)
24 wrap(&abstractModel);
25 return oldprio;
26 }

First, this function disables handling of external interrupts by calling p4arch disable int
(line 12), so that from here on concurrency does not need to be considered. Before this, the
struct abstractModel has to be unwrapped (line 11) because p4arch_disable_int
writes to the struct PPC_c, which is owned by the abstractModel.

After p4arch disable int has set the EE bit of the MSR variable in PPC_c to 1,
the invariant of abstractModel does not hold anymore. Before abstractModel can
be wrapped again (line 17), its invariant has to be restored. This is achieved by updating the
interruptsEnabled flag of abstractModel (line 13). After the interrupts are dis-
abled, the different updates on the priority values of the thread and kernel information data
structure (kglobal.kinfo) can be performed (lines 14–20). Restoring the interrupt-enabled
state (lines 21–24) and returning the old priority of the thread complete this method.

Using VCC it is now possible to prove that the function satisfies its specification given
in lines 3–8. For this, in fact, several intermediate assertions before and after calls to helper
functions are necessary to let the verification system validate that certain properties have been
preserved during method calls (we have omitted these “lemmas” for brevity).

Following our bottom-up verification scheme we arrive at p4syscall fast set prio
which calls p4_runner_changeprio (see above) among other functions. The implemen-
tation of the system call (not shown here), uses the helper methods p4_runner, which re-
turns the thread data structure for the current thread, and p4_runner_changeprio, which
changes the priority values of the thread. The method p4_runner is a wrapper for the func-
tion p4arch runner (see Sect. 4.2). The specification of p4_runner abstracts from the
concrete return value of p4arch_runner, i.e., the address of the page to which the stack
pointer points, and instead returns the ghost variable abstractModel.currentThread.
This abstraction is valid as it is a system invariant that the stack pointer for the kernel stack
always points to the page corresponding to the current thread. The thread data structure of the
current thread is placed at the beginning of this particular page.

This, finally, allows us to verify the following method contract for our exemplary system
call p4syscall_fast_set_prio:

1 P4_uint32_t p4syscall_fast_set_prio(P4_uint32_t prio)
2 writes(&abstractModel, &kglobal)
3 maintains(wrapped(&abstractModel) && wrapped(&kglobal))
4 ensures(prio <= abstractModel.currentThread->mcprio ?
5 abstractModel.currentThread->schedprio == prio
6 && kglobal.kinfo->currprio == prio
7 : abstractModel.currentThread->schedprio ==
8 abstractModel.currentThread->mcprio
9 && kglobal.kinfo->currprio ==

10 abstractModel.currentThread->mcprio)
11 { ... }

The postcondition of this method (ensures clause in lines 4–10) directly matches the in-
formal specification in the kernel reference manual: “This function sets the current thread’s
priority to newprio. Invalid or too high priorities are limited to the caller’s task MCP. Upon
success, a call to this function returns the current thread’s priority before setting it to newprio.”

Besides this postcondition, the contract specifies that the method is (only) allowed to write
to abstractModel and kglobal (line 2), and that these two data structures are required to
be wrapped according to the ownership methodology of VCC, i.e., the thread that is currently
executing the method is in possession of these data structures, all their non-volatile fields re-
main unchanged and all their invariants hold.

6 Conclusion

Verification Setup for a System Call. We have presented the use of deductive program verifica-
tion in the Verisoft XT Avionics subproject. The formalization of PowerPC assembly semantics
enables us to verify kernel functionality spanning all levels of the PikeOS microkernel. In par-
ticular, we have shown how interrupts are disabled and then restored again to ensure that the
bulk of the system call is in non-concurrent mode. The same approach can be applied to verify
system calls with more complex functionality as these still span the same levels in the kernel
as a call with simple functionality (this is ongoing work).

Pervasive Verification in Industrial Dependability. PikeOS is developed to the DO-178B [25]
avionics safety standard, which requires structural coverage of both high-level and low-level
(function- or module-level) requirements. In the practice stipulated by the current (1992) ver-
sion of DO-178, this enforces the generation of a very large amount of test cases (e.g., the
amount of PikeOS test-case code by far exceeds the amount of PikeOS system code). How-
ever, due to the combinatorial explosion of states, for any moderately complex system truly
exhaustive testing becomes impossible. For instance, to supplement test cases, for DO-178B
level A flight-control software, Airbus has developed the concept of “unit proofs” [29], which
can be used to gain assurance for low-level requirements of modules (in analogy to unit tests).
A formal methods appendix that is (in particular) compatible with the deductive program veri-
fication approach is under development for the upcoming DO-178C [27], again not only target-
ing high-level but also low-level requirements. Here we expect the output of the deductive pro-
gram verification approach to be of value. Similarly, for the highest level SIL4 in the functional
safety standard IEC61508, formal methods are highly recommended for software design down
to the individual modules. In the area of security, it is labor-intensive and expensive to produce
evidence for the fulfillment of (structural) security assurance requirements such as FDP FSP.6,
ADV IMP.2 and ADV TDS.6, which are required by the highest Common Criteria EAL level.
In cooperation with another branch of the Verisoft XT Avionics project, we have come to the
conclusion that such evidence could be derived from deductive program verification artefacts.

Future Work. It is current work to apply the verification approach presented in this paper to
all the system calls and interrupt handlers of PikeOS to get a full functional verification of the
kernel. In a next step, we will then consider the effects of concurrency when parts of the kernel
are executed without disabling of interrupts. Support for verifying concurrency has recently
been added to VCC by its developers [6].

Acknowledgments. We are very grateful to Matthias Daum (Saarland Univ.) for his help
and many fruitful discussions, and to Markus Wagner (Univ. of Koblenz) for his work in
Verisoft XT Avionics. We also thank Alexander Züpke, Jacques Brygier, Knut Degen, Tobias
Stumpf, Stephan Wagner (SYSGO AG), the Verisoft XT ES.1 group, Dirk Leinenbach, Mark
Hillebrand (DFKI), Marko Wolf (escrypt) and the VCC research team at Microsoft Research
(EMIC), in particular Markus Dahlweid, Michał Moskal, Thomas Santen, and Stephan Tobies,
and the participants of the RTCA SC-205/EUROCAE WG-71 formal methods (SG06) group
meeting (Cologne, Feb 2009).

References

1. Aeronautical Radio, Inc. Avionics application software standard interface. ARINC specification
653.

2. J. Alglave, A. Fox, S. Ishtiaq, M. O. Myreen, S. Sarkar, P. Sewell, and F. Zappa Nardelli. The
semantics of Power and ARM multiprocessor machine code. In DAMP ’09: Proceedings of the 4th
Workshop on Declarative Aspects of Multicore Programming, Savannah, GA, USA, pages 13–24.
ACM, 2009.

3. C. Baumann, B. Beckert, H. Blasum, and T. Bormer. Better avionics software reliability by code
verification. In Proceedings, embedded world Conference, Nuremberg, Germany, 2009.

4. W. R. Bevier. KIT: A study in operating system verification. IEEE Transactions on Software Engi-
neering, 15(11):1382–1396, 1989.

5. S. Blazy, Z. Dargaye, and X. Leroy. Formal verification of a C compiler front-end. In FM 2006:
Int. Symp. on Formal Methods, volume 4085 of Lecture Notes in Computer Science, pages 460–475.
Springer, 2006.

6. E. Cohen, M. Moskal, W. Schulte, and S. Tobies. A practical verification methodology for concurrent
programs. Technical Report MSR-TR-2009-15, Microsoft Research, 2009. Available at http:
//research.microsoft.com/vcc.

7. P. M. Conmy. Safety Analysis of Computer Resource Management Software. PhD thesis, University
of York, 2005.

8. M. Dahlweid, M. Moskal, T. Santen, S. Tobies, and W. Schulte. VCC: Contract-based modular
verification of concurrent C. Available at http://research.microsoft.com/vcc.

9. L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In Tools and Algorithms for the Construc-
tion and Analysis of Systems, Proceedings of the 14th International Conference, Budapest, Hungary,
LNCS 4963, pages 337–340. Springer, 2008.

10. R. DeLine and K. R. M. Leino. BoogiePL: A typed procedural language for checking object-oriented
programs. Technical Report MSR-TR-2005-70, Microsoft Research, 2005.

11. Freescale Semiconductor. Programming Environments Manual for 32-Bit Implementations of the
PowerPCTM Architecture, 3rd edition, September 2005. Available at http://www.freescale.
com/files/product/doc/MPCFPE32B.pdf.

12. Freescale Semiconductor. MPC5200B User’s Manual, Rev. 1.3, Sep 2006. Available at http:
//www.freescale.com/files/32bit/doc/ref_manual/MPC5200BUM.pdf.

13. M. Hohmuth, H. Tews, and S. G. Stephens. Applying source-code verification to a microkernel: The
VFiasco project. In Proceedings, 10th ACMM SIGOPS European Workshop. ACM, 2002.

14. T. In der Rieden and A. Tsyban. CVM: A verified framework for microkernel programmers. In
G. K. R. Huuck and B. Schlich, editors, 3rd International Workshop on Systems Software Verification
(SSV08), volume 217 of ENTCS, pages 151–168. Elsevier Science B.V., 2008.

15. Information Assurance Directorate. U.S. government protection profile for separation kernels in
environments requiring high robustness. Version 1.03, June 2007. Available at http://www.
commoncriteriaportal.org/files/ppfiles/pp_skpp_hr_v1.03.pdf.

16. International Electrotechnical Commission. Functional safety of electrical/electronic/programmable
electronic safety-related systems - Part 2: Requirements for electrical/electronic/programmable elec-
tronic safety systems. CEI/IEC 61508-2:2000. ISO/IEC, 1st edition, 2000.

17. R. Kaiser and S. Wagner. Evolution of the PikeOS microkernel. In I. Kuz and S. M. Petters, editors,
MIKES: 1st International Workshop on Microkernels for Embedded Systems, 2007. Available at
http://ertos.nicta.com.au/publications/papers/Kuz_Petters_07.pdf.

18. G. Klein. Operating system verification: An overview. Technical Report NRL-955, NICTA, Sydney,
Australia, June 2008.

19. G. Klein, M. Norrish, K. Elphinstone, and G. Heiser. Verifying a high-performance micro-kernel. In
Proceedings, 7th Annual High-Confidence Software and Systems Conf., Baltimore, USA, 2007.

20. J. Laprie, editor. Dependability: Basic Concepts and Terminology. Springer-Verlag, 1992.
21. K. R. M. Leino and P. Müller. Object invariants in dynamic contexts. In Proceedings, Object-

Oriented Programming, 18th European Conference, Oslo, Norway, LNCS 3086. Springer, 2004.
22. S. Maus, M. Moskal, and W. Schulte. Vx86: x86 assembler simulated in C powered by automated

theorem proving. In Proceedings, 12th International Conference on Algebraic Methodology and
Software Technology (AMAST), Urbana, USA, LNCS 5140. Springer, 2008.

23. J. Pelzl, M. Wolf, and T. Wollinger. Virtualization technologies for cars: Solutions to increase safety
and security of vehicular ECUs. In Proceedings, embedded world Conference, Nuremberg, Germany,
2009.

24. A. Pfitzmann. Why safety and security should and will merge. In M. Heisel, P. Liggesmeyer, and
S. Wittmann, editors, SAFECOMP, LNCS 3219, pages 1–2. Springer, 2004.

25. Radio Technical Commission for Aeronautics. Software Considerations in Airborne Systems and
Equipment Certification. DO-178B/ED-12B. Radio Technical Commission for Aeronautics (RTCA),
Inc., 1828 L Street NW, Suite 805, Washington, D.C. 20036, Dec. 1992.

26. Radio Technical Commission for Aeronautics. Integrated Modular Avionics (IMA) Development
Guidance and Certification Considerations. DO-297. Radio Technical Commission for Aeronautics
(RTCA), Inc., 1828 L Street NW, Suite 805, Washington, D.C. 20036, Nov. 2005.

27. RTCA SC-205/EUROCAE WG-71. Discussion and development site for Software Considerations
in Airborne Systems, 2009. At http://forum.pr.erau.edu/SCAS/.

28. J. S. Shapiro and S. Weber. Verifying the EROS confinement mechanism. In Proceedings, IEEE
Symposium on Security and Privacy, pages 166–176. IEEE Computer Society, 2000.

29. J. Souyris and D. Favre-Félix. Proof of properties in avionics. In R. Jacquart, editor, IFIP Congress
Topical Sessions, pages 527–535. Kluwer, 2004.

30. A. Starostin and A. Tsyban. Correct microkernel primitives. In G. K. R. Huuck and B. Schlich, edi-
tors, 3rd International Workshop on Systems Software Verification (SSV08), volume 217 of ENTCS,
pages 169–185. Elsevier Science B. V., 2008.

31. V. Stavridou and B. Dutertre. From security to safety and back. In Conference on Computer Security,
Dependability and Assurance, pages 182–195, 1998.

32. SYSGO AG. PikeOS selected for traffic control system. Press release on Aug 07, 2008, available at
http://www.sysgo.com, 2007.

33. SYSGO AG. AIRBUS selects SYSGO’s pikeos as DO-178B reference platform for the A350 XWB.
Press release on Nov 18, 2008, available at http://www.sysgo.com, 2008.

34. SYSGO AG. Flight management system will run on SYSGO’s PikeOS in the DIANA project. Press
release on Jul 17, 2008, available at http://www.sysgo.com, 2008.

35. SYSGO AG. Rheinmetall selects DO178B certifiable PikeOS from SYSGO for A400M project.
Press release on Dec 10, 2008, available at http://www.sysgo.com, 2008.

36. B. J. Walker, R. A. Kemmerer, and G. J. Popek. Specification and verification of the UCLA Unix
security kernel. Communications of the ACM, 23(2):118–131, 1980.

37. S. Zucker and K. Karhi. System V Application Binary Interface: PowerPC Processor Supple-
ment. SunSoft, Mountain View, CA, USA, 802-3334-10 edition, Sept. 1995. Available at http:
//refspecs.freestandards.org/elf/elfspec_ppc.pdf.

