
Institute of Information Security and Dependability (kastel)
Application-oriented Formal Verification

Prof. Dr. Bernhard Beckert

Bachelor / Master Thesis

Dependent Types for Java

@Interval(1,arg) int foo(int arg) {
if (arg <= 1) throw new Exception();
return arg - 1;

}

Background. Property types
are a Java type system develo-
ped at our chair. A property ty-
pe consists of a base type and
an annotation which is associated with a boolean property. In the example, the
annotation @Interval is associated with the property min <= v <= max. We have
developed a type checker that can prove the correctness of most simple parts of
the program. For the difficult-to-prove parts, it emits a translation of the types to
the Java Modeling Language (JML). This translated specification can then be proven
in KeY, a deductive verification tool for Java co-developed at KIT. Combining our
type checker with KeY allows our type system to be more powerful and expressive
than comparable systems, while still being faster and easier than just using KeY for
everything.

Task. Dependent types are types that depend on a program variable. For example,
a method with a parameter arg may have the return type @Interval(1,arg),
indicating that its result must be between 1 and arg.

The property type checker currently does not deal with such dependent types itself;
it just translates them into JML for KeY to deal with. This is inefficient, since many
uses of dependent types could be discharged using a faster, albeit less powerful,
SMT (“satisfiability modulo theories”) solver, which is a tool that can check the
satisfiability or validity of certain first-order formulas. To check the correctness of
the function foo() in the example, the SMT solver has to prove the validity of the
following formula: ¬(arg ≤ 1) → 1 ≤ arg − 1 ≤ arg

Your task is to implement this SMT integration as well as to formalize it and prove
its soundness in the theoretical type system.

Requirements. You have experience in Java programming and basic knowledge of
logic and formal verification, e.g., from the Formal Systems lecture. Knowledge of
type systems and dependent types is also useful.

Kontakt
Florian Lanzinger lanzinger@kit.edu Office 50.34R227

ausschreibung–17. Juli 2024


