
Tutorial

Integrating Object-oriented Design and
Deductive Verification of Software

Bernhard Beckert
Reiner Hähnle

Vladimir Klebanov
Peter H. Schmitt

www.key-project.org

Integrated Formal Methods 2007

Oxford, UK
July 2nd, 2007

Integrating Object-oriented Design and Deductive Verification of Software: 1 / 115

Part I

Introduction

Integrating Object-oriented Design and Deductive Verification of Software: 2 / 115

What is this Tutorial about?

Design

Formal specification

Deductive verification

of

Object-oriented software

This tutorial has been developed in the KeY project.
The demos will use the KeY tool.

Integrating Object-oriented Design and Deductive Verification of Software: Topic of the Tutorial 3 / 115

KeY Project Partners

University of Koblenz
Bernhard Beckert

University of Karlsruhe
Peter H. Schmitt

Chalmers University
Reiner Hähnle

www.key-project.org

Integrating Object-oriented Design and Deductive Verification of Software: Topic of the Tutorial 4 / 115

Integrated Formal Methods

Specification

UML + Object Constraint Language (OCL)

Java Modeling Language (JML)

Verification

Dynamic Logic

Decision procedures

And . . .

Static analysis

Test case generation

Integrating Object-oriented Design and Deductive Verification of Software: Topic of the Tutorial 5 / 115

Different Approaches

Checking
Model

Deduktive
Verifikation

Static
Analysis

KeY:
Goal

Quality and Strength
of Verified Properties

Effort

Integrating Object-oriented Design and Deductive Verification of Software: Topic of the Tutorial 6 / 115

Architecture of the KeY Tool

KeY Prover

Rule Base

Synthesis of Proof Obligations

OCL/FOL
Translation

JML/FOL
Translation

KeY Plugin

Borland
Together CT

KeY Plugin

Eclipse

IDE

JML
Browser

OCL/NL
Tool

English UML/OCL JML Logic

Taclets

Integrating Object-oriented Design and Deductive Verification of Software: The KeY Tool 7 / 115

Choices for the Rule Base

In this tutorial:
100% JavaCard

Other rule bases:

ODL, a minimal abstract object oriented language

A subset of the C language

ASM, Abstract State Machines [Stanislas Nachen, ETH Zürich]

HyKeY, differential dynamic logic for hybrid systems
[André Platzer, Univ. of Oldenburg]

KeY Prover

Rule Base

Integrating Object-oriented Design and Deductive Verification of Software: The KeY Tool 8 / 115

Java Card

What is Java Card?

Subset of Java, but with transaction concept

Sun’s official standard for Smart Cards and embedded devices

Why Java Card?

Good example for real-world object-oriented language

JavaCard has no

garbage collection

dynamical class loading

multi-threading

floating-point arithmetic

Application areas

security critical

financial risk
(e.g. exchanging smart cards
is expensive)

Integrating Object-oriented Design and Deductive Verification of Software: The KeY Tool 9 / 115

Part II

Specification

Integrating Object-oriented Design and Deductive Verification of Software: 10 / 115

Part II

Specification

3 Design by Contract

4 OCL Specification

5 JML Specification

Integrating Object-oriented Design and Deductive Verification of Software: Design by Contract 11 / 115

Design by Contract

Class

Invariant

Operation

Precondition
Modifies Clauses
Postcondition
Termination, more precisely: normal or exceptional

Integrating Object-oriented Design and Deductive Verification of Software: Design by Contract 12 / 115

Part II

Specification

3 Design by Contract

4 OCL Specification

5 JML Specification

Integrating Object-oriented Design and Deductive Verification of Software: OCL Specification 13 / 115

OCL: Object Constraint Language

Object Constraint Language

Part of the OMG standard UML

Present Version: 2.0

Adds formal constraints to UML (class) diagrams

Accessible to people without a strong mathematical background

OCL/FOL
Translation

KeY Prover

Rule Base

Synthesis of Proof Obligations

Integrating Object-oriented Design and Deductive Verification of Software: OCL Specification 14 / 115

Design by Contract with OCL

Class

Invariant

Operation

Precondition

Postcondition

Modifies Clauses

Termination

Integrating Object-oriented Design and Deductive Verification of Software: OCL Specification 15 / 115

Design by Contract with OCL

context ATM

inv: 0 <= self.wrongPinCounter and
self.wrongPinCounter <= 2

context ATM::enterPin(pin: Integer)

pre: insertedCard <> null and not customerAuthenticated
and not pin = insertedCard.correctPIN
and wrongPINCounter < 2

post: wrongPINCounter = wrongPINCounter@pre + 1
and not customerAuthenticated

Modifies Clauses not explicitely supported by OCL

Termination specification not explicitely supported by OCL

Integrating Object-oriented Design and Deductive Verification of Software: OCL Specification 15 / 115

OCL Constraints on the UML Class Ciagram Level

BankCard

correctPIN : int

Account Transaction
1 1

Integrating Object-oriented Design and Deductive Verification of Software: OCL Specification 16 / 115

Proof Obligations

context C context D extends C
inv: I inv: J

Behavioural Subtyping for classes

For all instances o of D : o.J implies o.I.

Integrating Object-oriented Design and Deductive Verification of Software: OCL Specification 17 / 115

Proof Obligations

context C::op1 context D::op1
pre: pre1 pre: pre2
post: post1 post: post2

D extends C

Behavioural Subtyping for operations

pre1 implies pre2 and
post2 implies post1

Integrating Object-oriented Design and Deductive Verification of Software: OCL Specification 17 / 115

Proof Obligations

context C::op
pre: pre
post: post

Implementation p of op.

Ensures Postcondition

If p is started in a state satisfying pre
then p terminates and
in the final state post is true.

Integrating Object-oriented Design and Deductive Verification of Software: OCL Specification 17 / 115

Proof Obligations

context C::op context C
pre: pre inv: I
post: post

Implementation p of op.

Preserves Invariant

If p is started in a state satisfying pre and I
then p terminates and in the final state I is again true.

Integrating Object-oriented Design and Deductive Verification of Software: OCL Specification 17 / 115

Part II

Specification

3 Design by Contract

4 OCL Specification

5 JML Specification

Integrating Object-oriented Design and Deductive Verification of Software: JML Specification 18 / 115

JML: Java Modeling Language

Java Modeling Language

Behavioral interface specification language for Java

International community effort

More and more tools:
Runtime checkers, static analysis, program verification

JML/FOL
Translation

KeY Prover

Rule Base

Synthesis of Proof Obligations

Integrating Object-oriented Design and Deductive Verification of Software: JML Specification 19 / 115

Design by Contract with JML (Invariants)

public class ATM {

/*@ private invariant wrongPINCounter >= 0 &&

wrongPINCounter <= 2

@*/

private BankCard insertedCard = null;
private boolean customerAuthenticated = false;
private int wrongPINCounter = 0;

public void enterPIN (int pin) { ...
}

}

Integrating Object-oriented Design and Deductive Verification of Software: JML Specification 20 / 115

Design by Contract with JML (Operation Contracts)

public class ATM {

/*@ public normal_behavior

@ requires insertedCard != null;

@ requires !customerAuthenticated;

@ requires pin != insertedCard.correctPIN;

@ requires wrongPINCounter < 2;

@ ensures wrongPINCounter ==

\old(wrongPINCounter) + 1;

@ assignable wrongPINCounter;

@

@ also ...

@*/

public void enterPIN (int pin) { ...
}

}

Integrating Object-oriented Design and Deductive Verification of Software: JML Specification 21 / 115

Another Example

public class Test {
private int idx;

/*@ requires precondition @ */

/*@ ensures postcondition @ */

void swapMax(int[] a) {
int counter = -1; idx = 0;

/*@ loop_invariant @*/

while (++ counter <a.length) {
if (a[counter] > a[idx]) idx=counter;

}
int tmp=a[idx]; a[idx]=a[0]; a[0]= tmp;

}
}

Integrating Object-oriented Design and Deductive Verification of Software: JML Specification 22 / 115

JML Specification of swapMax

/*@ requires a!=null && a.length > 0;

@ ensures

@ (\ forall int x; x==idx;

@ \old(a[0])==a[x] && \old(a[x])==a[0]) &&

@ (\ forall int i; 0 <= i && i<\old(a.length);

@ a[0] >= a[i] &&

@ (i!=0 && i!=idx ==> a[i]==\ old(a[i])));

@ diverges false;

@ */

void swapMax(int[] a) { ... }

Integrating Object-oriented Design and Deductive Verification of Software: JML Specification 23 / 115

JML Loop Invariant

/*@ loop_invariant

@ -1<=counter && counter <=a.length &&

@ 0<=idx && idx <a.length &&

@ (\ forall int x; x>=0 && x<= counter;

@ a[idx]>=a[x]);

@ decreases (a.length - counter);

@*/

while (++ counter <a.length) {
if (a[counter] > a[idx])

idx=counter ;}

Integrating Object-oriented Design and Deductive Verification of Software: JML Specification 24 / 115

Proving Postconditions for swapMax

After termination of the loop, we have . . .

\forall i int; ((0 <= i & i <= a.length) −>
a[idx] >= a[i])

It is also easy to show that . . .

tmp = a[idx]; a[idx] = a[0]; a[0] = tmp;

has as post-condition

\forall i int; ((0 <= i & i <= a.length & i 6= 0 & i 6= idx) −>
a[i] = \olda[i])

But . . .

Loop invariant needs to be strengthened!

Integrating Object-oriented Design and Deductive Verification of Software: JML Specification 25 / 115

Improved JML Loop Invariant

/*@ loop_invariant

@ -1<=counter && counter <=a.length &&

@ 0<=idx && idx <a.length &&

@ (\ forall int x; x>=0 && x<= counter;

@ a[idx]>=a[x]);

@ decreases (a.length - counter);

@ assignable idx , counter;

@*/

while (++ counter <a.length) {
if (a[counter] > a[idx])

idx=counter ;}

Integrating Object-oriented Design and Deductive Verification of Software: JML Specification 26 / 115

SECOND DEMO

Integrating Object-oriented Design and Deductive Verification of Software: JML Specification 27 / 115

Proof Obligations

Proof Obligations

Behavioural Subtyping for classes

Behavioural Subtyping for operations

Strong Operation Contract

Ensures Postcondition

Preservation of Invariants

Correctness of Modifies Clauses

KeY Prover

Rule Base

Synthesis of Proof Obligations

Integrating Object-oriented Design and Deductive Verification of Software: JML Specification 28 / 115

Total Correctness Statement

precondition → 〈program〉 postcondition

in state
s0

in state
s0

in at least one
state after
termination

Integrating Object-oriented Design and Deductive Verification of Software: JML Specification 29 / 115

Partial Correctness Statement

precondition → [program] postcondition

in state
s0

in state
s0

in all states
after termination

Integrating Object-oriented Design and Deductive Verification of Software: JML Specification 30 / 115

Specification in Dynamic Logic

\programVariables {int pin; ATM self; int _pin; ...}
\problem {
\forall ATM x0;

x0.wrongPINCounter = ATM::wrongPINCounter@pre(x0) &
!self.insertedCard = null &
!self.customerAuthenticated = TRUE &
!pin = self.insertedCard.correctPIN &
self.wrongPINCounter < 2

->
\< self.enterPIN(_pin)@ATM;\> self.wrongPINCounter =

ATM::wrongPINCounter@pre(self) + 1
}

KeY Prover

Rule Base

Integrating Object-oriented Design and Deductive Verification of Software: JML Specification 31 / 115

Part III

Logic and Calculus

Integrating Object-oriented Design and Deductive Verification of Software: 32 / 115

Part III

Logic and Calculus

6 Java Card DL

7 Sequent Calculus

8 Rules for Programs: Symbolic Execution

9 A Calculus for 100% Java Card

10 Taclets and Taclet Language

11 Correctness of Proof Rules

12 Interactive and Automated Proof Construction

Integrating Object-oriented Design and Deductive Verification of Software: Java Card DL 33 / 115

Syntax and Semantics

Syntax

Basis: Typed first-order predicate logic

Modal operators 〈p〉 and [p] for each (Java Card) program p

Class definitions in background (not shown in formulas)

Semantics

Operators refer to the final state of p

[p]F : If p terminates, then F holds in the final state
(partial correctness)

〈p〉F : p terminates and F holds in the final state
(total correctness)

JavaCard DL formulas contain unaltered JavaCard source code

Integrating Object-oriented Design and Deductive Verification of Software: Java CardDL 34 / 115

Why Dynamic Logic?

Transparency wrt target programming language

More expressive and flexible than Hoare logic

Can use reference implementations instead of first-order theories

Symbolic execution is a natural interactive proof paradigm

Proven technology that scales up

Integrating Object-oriented Design and Deductive Verification of Software: Java Card DL 35 / 115

First-Order Formula Syntax

ASCII syntax, keywords preceded by ‘\’

Logical operators

& and

| or

−> implication

<−> equivalence

! negation

Logical constants

true

false

Conditional terms

\if(. . .)\then(. . .)\else(. . .)

Quantifiers

\forall
\exists

Integrating Object-oriented Design and Deductive Verification of Software: Java CardDL 36 / 115

Dynamic Logic Example Formulas

(balance > 1 & amount > 1) −> 〈charge(amount);〉 (balance > 1)

〈x = 1;〉 ([while (true) {}] false) Syntax? ok

Program formulas can appear nested

Integrating Object-oriented Design and Deductive Verification of Software: Java Card DL 37 / 115

Variables

Logical variables disjoint from program variables

No quantification over program variables
Programs do not contain logical variables
”Program variables” actually non-rigid functions

\exists int x; ([x = 1;] (x = 1)) Syntax? bad

x cannot be a logical variable, because it occurs in the program

x cannot be a program variable, because it is quantified

〈int x;〉 \forall int val ; ((〈p〉 x = val) <−> (〈q〉 x = val)) Syntax? ok

p, q equivalent relative to computation state restricted to x

Integrating Object-oriented Design and Deductive Verification of Software: Java CardDL 38 / 115

Rigid and Flexible Terms

Example

〈int i;〉 \forall int x ; (i + 1 = x −> 〈i++;〉 (i = x))

Interpretation of i depends on computation state ⇒ flexible

Interpretation of x and + must not depend on state ⇒ rigid

Locations are always flexible
Logical variables, standard functions are always rigid

Integrating Object-oriented Design and Deductive Verification of Software: Java Card DL 39 / 115

Type System

Static types

Partially ordered finite type hierarchy

Terms are statically typed (like Java expressions)

Type casts in logic

Dynamic types

Each term value has a dynamic type

Dynamic type depends on state

Dynamic types conform to static types

Type predicates in logic

Integrating Object-oriented Design and Deductive Verification of Software: Java CardDL 40 / 115

Semantics

Kripke semantics

Semantics of a Java program is a partial function from states to states

〈p〉F true in state s iff
p terminates and F holds in the final state s ′

that is reached from s by running p

A JavaCardDL formula is valid iff it is true in all states

We need a calculus for checking validity of formulae

Integrating Object-oriented Design and Deductive Verification of Software: Java Card DL 41 / 115

Part III

Logic and Calculus

6 Java Card DL

7 Sequent Calculus

8 Rules for Programs: Symbolic Execution

9 A Calculus for 100% Java Card

10 Taclets and Taclet Language

11 Correctness of Proof Rules

12 Interactive and Automated Proof Construction

Integrating Object-oriented Design and Deductive Verification of Software: Sequent Calculus 42 / 115

Sequents and their Semantics

Syntax

ψ1, . . . , ψm︸ ︷︷ ︸
Antecedent

==> φ1, . . . , φn︸ ︷︷ ︸
Succedent

where the φi , ψi are formulae (without free variables)

Semantics

Same as the formula

(ψ1 & · · · & ψm) −> (φ1 | · · · | φn)

Integrating Object-oriented Design and Deductive Verification of Software: Sequent Calculus 43 / 115

Sequent Rules

General form

rule name

Premisses
︷ ︸︸ ︷

Γ1 ==> ∆1 · · · Γr ==> ∆r

Γ ==> ∆
︸ ︷︷ ︸

Conclusion

(r = 0 possible)

Soundness

If all premisses are valid, then the conclusion is valid

Integrating Object-oriented Design and Deductive Verification of Software: Sequent Calculus 44 / 115

Some Simple Sequent Rules

not left
Γ ==> A, ∆

Γ, !A ==> ∆

imp left
Γ ==> A, ∆ Γ, B ==> ∆

Γ, A −> B ==> ∆

close goal
Γ, A ==> A, ∆

close by true
Γ ==> true, ∆

all left
Γ, \forall t x ;φ, {x/e}φ ==> ∆

Γ, \forall t x ;φ ==> ∆

where e var-free term of type t ′ ≺ t

Integrating Object-oriented Design and Deductive Verification of Software: Sequent Calculus 45 / 115

Sequent Calculus Proofs

Proof tree

Proof is tree structure with
goal sequent as root

Rules are applied
from conclusion (old goal)
to premisses (new goals)

Rule with no premiss closes proof branch

Proof is finished when all goals are closed

Integrating Object-oriented Design and Deductive Verification of Software: Sequent Calculus 46 / 115

Part III

Logic and Calculus

6 Java Card DL

7 Sequent Calculus

8 Rules for Programs: Symbolic Execution

9 A Calculus for 100% Java Card

10 Taclets and Taclet Language

11 Correctness of Proof Rules

12 Interactive and Automated Proof Construction

Integrating Object-oriented Design and Deductive Verification of Software: Symbolic Execution 47 / 115

Proof by Symbolic Program Execution

Sequent rules for program formulas?

What corresponds to top-level connective in a program?

The Active Statement in a Program

Example

l:{try{︸ ︷︷ ︸
π

i=0; j=0; } finally{ k=0; }}︸ ︷︷ ︸
ω

active statement i=0;
non-active prefix π
rest ω

Integrating Object-oriented Design and Deductive Verification of Software: Symbolic Execution 48 / 115

Proof by Symbolic Program Execution

Sequent rules execute symbolically the first active statement

Sequent proof corresponds to symbolic program execution

Example: The rule for if-then-else (SIMPLIFIED VERSION!)

Γ, B ==> 〈π p ω〉φ, ∆ Γ, !B ==> 〈π q ω〉φ, ∆

Γ ==> 〈π if (B) { p } else { q } ω〉φ, ∆

Integrating Object-oriented Design and Deductive Verification of Software: Symbolic Execution 49 / 115

Part III

Logic and Calculus

6 Java Card DL

7 Sequent Calculus

8 Rules for Programs: Symbolic Execution

9 A Calculus for 100% Java Card

10 Taclets and Taclet Language

11 Correctness of Proof Rules

12 Interactive and Automated Proof Construction

Integrating Object-oriented Design and Deductive Verification of Software: A Calculus for 100% JavaCard 50 / 115

Problems to Address

Object attributes & arrays

Modelled as non-rigid functions

Side effects

Expressions in programs can have side effects

Example
if ((y=3) + y < 0) {...} else {...}

Aliasing

Different names may refer to the same location

Example
After o.a=17;, what is u.a?

Integrating Object-oriented Design and Deductive Verification of Software: A Calculus for 100% JavaCard 51 / 115

Other Issues

Further supported JavaCard features

method invocation with polymorphism/dynamic binding

arrays

abrupt termination

throwing of NullPointerExceptions, etc.

object creation and initialisation

bounded integer data types

transactions

All Java Card language features are fully addressed in KeY

Integrating Object-oriented Design and Deductive Verification of Software: A Calculus for 100% JavaCard 52 / 115

Java—A Language of Many Features

Ways to deal

Program transformation, up-front

Local program transformation, done by a rule on-the-fly

Modeling with first-order formulas

Special-purpose constructs in program logic

Pro: Feature needs not be handled in calculus
Contra: Modified source code
Example in KeY: Very rare: treating inner classes

Integrating Object-oriented Design and Deductive Verification of Software: A Calculus for 100% JavaCard 53 / 115

Java—A Language of Many Features

Ways to deal

Program transformation, up-front

Local program transformation, done by a rule on-the-fly

Modeling with first-order formulas

Special-purpose constructs in program logic

Pro: Flexible, easy to implement, usable
Contra: Not expressive enough for all features
Example in KeY: Complex expression eval, method inlining, etc., etc.

Integrating Object-oriented Design and Deductive Verification of Software: A Calculus for 100% JavaCard 53 / 115

Java—A Language of Many Features

Ways to deal

Program transformation, up-front

Local program transformation, done by a rule on-the-fly

Modeling with first-order formulas

Special-purpose constructs in program logic

Pro: No logic extensions required, enough to express most features
Contra: Creates difficult first-order POs, unreadable antecedents
Example in KeY: Dynamic types and branch predicates

Integrating Object-oriented Design and Deductive Verification of Software: A Calculus for 100% JavaCard 53 / 115

Java—A Language of Many Features

Ways to deal

Program transformation, up-front

Local program transformation, done by a rule on-the-fly

Modeling with first-order formulas

Special-purpose constructs in program logic

Pro: Arbitrarily expressive extensions possible
Contra: Increases complexity of all rules
Example in KeY: Method frames, updates

Integrating Object-oriented Design and Deductive Verification of Software: A Calculus for 100% JavaCard 53 / 115

Handling Side Effects

Problem

Expressions may have side effects

Terms in logic have to be side effect free

Example

(y=3) + y < 0
does not only evaluate to a boolean value, but also assigns a value to y

Integrating Object-oriented Design and Deductive Verification of Software: A Calculus for 100% JavaCard 54 / 115

Handling Side Effects

Solution

Calculus rules realise a stepwise symbolic evaluation
(simple transformations)

Restrict applicability of some rules (e.g., if-then-else)

Example

if ((y=3) + y < 0) {...} else {...}
rewritten into

y = 3;
int val1 = y;
int val0 = val1 + y;
boolean guard = (val0 < 0);
if (guard) {...} else {...}

Integrating Object-oriented Design and Deductive Verification of Software: A Calculus for 100% JavaCard 55 / 115

Handling Assignment: Explicit State Updates

Problem

Because of aliasing,
assignment cannot be handled as syntactic substitution

Solution

State updates as explicit syntactic elements

Syntax

{loc := val}φ

where (roughly)

loc is a program variable x , an attribute access o.a, or an array access a[i]

val is same as val , a literal, or a logical variable

Integrating Object-oriented Design and Deductive Verification of Software: A Calculus for 100% JavaCard 56 / 115

Assignment Rule in KeY

Γ ==> {loc := val}〈π ω〉φ, ∆

Γ ==> 〈π loc=val; ω〉φ, ∆

Advantages

no renaming required

delayed proof branching

Update simplification in KeY

KeY system has powerful mechanism for simplifying and applying updates

eager simplification (also: parallel updates)

lazy application

Integrating Object-oriented Design and Deductive Verification of Software: A Calculus for 100% JavaCard 57 / 115

Handling Abrupt Termination
Example: try-throw

Abrupt termination handled by “simple” program transformations

Changing control flow = rearranging program parts

Example

try-throw (exc simple)

Γ ==>

〈π if (exc instanceof T)

{try {e=exc; r} finally {s}}
else {s throw exc}; ω

〉
φ

Γ ==> 〈π try{throw exc; q} catch(T e){r} finally{s}; ω〉φ

Integrating Object-oriented Design and Deductive Verification of Software: A Calculus for 100% JavaCard 58 / 115

Components of the Calculus

1 Non-program rules

first-order rules
rules for data-types
rules for modalities
the induction rule

2 Rules for reducing/simplifying the program (symbolic execution)
Replace the program by combination of

case distinctions (proof branches) and
sequences of updates

3 Rules for handling loops

rules using loop invariants
rules for handling loops by induction

4 Rules for replacing a method invocations by the method’s contract

5 Update simplification

Integrating Object-oriented Design and Deductive Verification of Software: A Calculus for 100% JavaCard 59 / 115

Part III

Logic and Calculus

6 Java Card DL

7 Sequent Calculus

8 Rules for Programs: Symbolic Execution

9 A Calculus for 100% Java Card

10 Taclets and Taclet Language

11 Correctness of Proof Rules

12 Interactive and Automated Proof Construction

Integrating Object-oriented Design and Deductive Verification of Software: Taclets and Taclet Language 60 / 115

Taclets

Taclets are the “rules” of the KeY system

Taclets. . .

have logical content like rules of the calculus

have pragmatic information for interactive application

have pragmatic information for automated application

keep all these concerns separate but close to each other

can easily be added to the system

are given in a textual format

can be verified w.r.t. base taclets

Integrating Object-oriented Design and Deductive Verification of Software: Taclets and Taclet Language 61 / 115

Taclet Syntax (by Example)

Modus ponens: Rule

Γ, φ, ψ ==> ∆

Γ, φ, φ −> ψ ==> ∆

Modus ponens: Taclet

modus ponens{
\find (phi -> psi ==>)
\assumes (phi ==>)
\replacewith (psi ==>)
\heuristics(simplify)

}

Integrating Object-oriented Design and Deductive Verification of Software: Taclets and Taclet Language 62 / 115

An Axiom and a Branching Rule

Closure rule

close goal {
\find (==> b)
\assumes (b ==>)
\closegoal
\heuristics(closure)

};

Cut rule

cut {
\add (b ==>);
\add (==> b)

};

Integrating Object-oriented Design and Deductive Verification of Software: Taclets and Taclet Language 63 / 115

Java Card Taclets

Rule if else split

B = TRUE ==> 〈π p ω〉F
B = FALSE ==> 〈π q ω〉F

==> 〈π if (B) p else q ω〉F

where B is a Boolean expression without side effects

Corresponding taclet

if else split {
\find (==> <{.. if(#B) #p else #q ...}>post)
\replacewith (==> <{.. #p ...}>post) \add (#B = TRUE ==>);
\replacewith (==> <{.. #q ...}>post) \add (#B = FALSE ==>)
\heuristics(if split)

};

Integrating Object-oriented Design and Deductive Verification of Software: Taclets and Taclet Language 64 / 115

Taclets: Summary

Taclets are . . .

simple and (sufficiently) powerful

compact and clear notation

no complicated meta-language

easy to apply with a GUI

validation possible

Integrating Object-oriented Design and Deductive Verification of Software: Taclets and Taclet Language 65 / 115

Part III

Logic and Calculus

6 Java Card DL

7 Sequent Calculus

8 Rules for Programs: Symbolic Execution

9 A Calculus for 100% Java Card

10 Taclets and Taclet Language

11 Correctness of Proof Rules

12 Interactive and Automated Proof Construction

Integrating Object-oriented Design and Deductive Verification of Software: Correctness of Proof Rules 66 / 115

Verification Calculus Soundness

A fundamental problem!

informal language specification

proof rules formal semantics

Integrating Object-oriented Design and Deductive Verification of Software: Correctness of Proof Rules 67 / 115

Validating Soundness of Proof Rules

Bootstrapping

Validate a core set of rules,
generate and prove verification conditions for additional rules

Cross-verification

against the Bali calculus for Java formalized in Isabelle/HOL
[D. von Oheimb, T. Nipkow]

against the Java semantics in the Maude system
[J. Meseguer]

Tests

Using the compiler test suite Jacks

Integrating Object-oriented Design and Deductive Verification of Software: Correctness of Proof Rules 68 / 115

From the Java Language Specification

PostIncrementExpression:
PostfixExpression ++

At run time, if evaluation [. . .] completes abruptly, then the
postfix increment expression completes abruptly and no
incrementation occurs.
Otherwise, the value 1 is added to the value of the variable and
the sum is stored back into the variable. Before the addition,
binary numeric promotion is performed on the value [. . .]
The value of the postfix increment expression is the value of the
variable before the new value is stored.

Integrating Object-oriented Design and Deductive Verification of Software: Correctness of Proof Rules 69 / 115

Rule for Postfix Increment

Intuitive rule (not correct!)

==> 〈π x=y; y=y+1; ω〉φ
==> 〈π x=y++; ω〉φ

But . . .

x = 5 ==> 〈x=x++;〉 (x = 6) INVALID

Correct rule

==> 〈π v=y; y=y+1; x=v; ω〉φ
==> 〈π x=y++; ω〉φ

Integrating Object-oriented Design and Deductive Verification of Software: Correctness of Proof Rules 70 / 115

From the Jacks Conformance Test Suite

class T1241r1a {
final int i=1; static final int j=1;
static { }

}

class T1241r1b {
/*@ public normal_behavior

@ ensures \result == 7; @ */

public static int main() {
int s = 0; T1241r1a a = null;
s = s + a.j;
try {s = s + a.i;}
catch (Exception e) {

s = s + 2; a = new T1241r1a ();
s = s + a.i + 3; }

return s; }
}

Integrating Object-oriented Design and Deductive Verification of Software: Correctness of Proof Rules 71 / 115

Part III

Logic and Calculus

6 Java Card DL

7 Sequent Calculus

8 Rules for Programs: Symbolic Execution

9 A Calculus for 100% Java Card

10 Taclets and Taclet Language

11 Correctness of Proof Rules

12 Interactive and Automated Proof Construction

Integrating Object-oriented Design and Deductive Verification of Software: Proof Construction 72 / 115

Interaction and Automation

For realistic programs:
Fully-automated verification impossible

Integrating Object-oriented Design and Deductive Verification of Software: Proof Construction 73 / 115

Interaction and Automation

Goal in KeY: Integrate automated and interactive proving

All easy or obvious proof steps should be automated

Sequents presented to user should be simplified as far as possible

Primary steps that require interaction: induction, treatment of loops

Taclets enable interactive rule application mostly using mouse

Typical workflow when proving in KeY
(and other interactive provers)

1 Prover runs automatically as far as possible

2 When prover stops user investigates situation and gives hints
(makes some interactive steps)

3 Go to 1

Integrating Object-oriented Design and Deductive Verification of Software: Proof Construction 74 / 115

Working with Sequents: Sequent View

For goals (leaves of tree)

Obtaining information about
formulas/terms (press Alt key)

Selecting formulas/terms,
applying rules to them

For inner nodes

Inspecting parts involved in rule
application (highlighted)

Integrating Object-oriented Design and Deductive Verification of Software: Proof Construction 75 / 115

Extension of Proof: Application of Single Taclets

Taclet application requires

A proof goal

Focus of rule application: term/formula in the goal

Instantiation of schema variables

Main procedure for applying a taclet interactively

1 Select an application focus using mouse pointer

2 Select a particular rule from the context menu

3 Instantiate schema variables

Integrating Object-oriented Design and Deductive Verification of Software: Proof Construction 76 / 115

Applying Taclets using Drag-and-Drop

Possible for taclets with find-part and one assumption, like . . .

Rewriting a term using an equation

Instantiating formulas with universal-type quantifier

Applying equations

Drag the equation onto the term to be
rewritten

Instantiating quantifiers

Drag instantiation term onto the
quantified formula

Integrating Object-oriented Design and Deductive Verification of Software: Proof Construction 77 / 115

Means of Automation Implemented in KeY

Parameterized strategies for applying rules automatically

Free-variable first-order calculus
(non-destructive, proof-confluent)

Invocation of external theorem provers, decision procedures:

Simplify (from ESC/Java)
ICS
Any other with SMT-LIB interface

Integrating Object-oriented Design and Deductive Verification of Software: Proof Construction 78 / 115

Strategies Currently Present in KeY

Strategies optimized for . . .

Symbolic execution of programs

Come in different flavours: with/without unwinding loops, etc.

Concentrate on eliminating program and simplifying sequents

Handling first-order logic

Implements a complete first-order theorem prover

Includes arithmetics solver

Integrating Object-oriented Design and Deductive Verification of Software: Proof Construction 79 / 115

Part IV

Further Topics

Integrating Object-oriented Design and Deductive Verification of Software: 80 / 115

Part IV

Further Topics

13 Dealing with Integers

14 Proof Reuse

15 Generating Test Cases

16 Concurrency

Integrating Object-oriented Design and Deductive Verification of Software: Integers 81 / 115

Specification of Integer Square Root

Taken from: Preliminary Design of JML [G. Leavens et al.]

/*@ requires y >= 0;

@ ensures

@ \result * \result <= y &&

@ y < (abs(\ result)+1) * (abs(\ result)+1);

@ */

public static int isqrt(int y)

But . . .

\result = 1073741821 = max int−5
2 satisfies spec for y = 1.

1073741821 ∗ 1073741821 = −2147483639 ≤ 1
1073741822 ∗ 1073741822 = 4 > 1

Integrating Object-oriented Design and Deductive Verification of Software: Integers 82 / 115

Data Type Gap

Specification level: Abstract data types

Integer (Z)

Set, List

Implementation level: Concrete programming language data types

byte, short, int, long

Array

Integrating Object-oriented Design and Deductive Verification of Software: Integers 83 / 115

Examples

Valid for Java integers

MAX INT + 1 = MIN INT

MIN INT ∗ (−1) = MIN INT

∃x , y . (x 6= 0 ∧ y 6= 0 ∧ x ∗ y = 0)

Not valid for Java integers

∀x .∃y . y > x

Not a sound rewrite rule for Java integers

x + 1 > y + 1 x > y

Integrating Object-oriented Design and Deductive Verification of Software: Integers 84 / 115

More Formal Semantics of Java Integer Types

Range of primitive integer types in Java

Type Range Bits

byte [−128, 127] 8
short [−32768, 32767] 16
int [−2147483648, 2147483647] 32
long [−263, 263 − 1] 64

Integrating Object-oriented Design and Deductive Verification of Software: Integers 85 / 115

Options for Integer Semantics Rules in KeY

Java semantics

Faithfully axiomatises the overflow semantics of Java integers

Leads to hard verification problems (lack of intuition)

Arithmetic semantics

Leads to easier verification problems

Incorrect

Arithmetic semantics with overflow check

Correct

Leads to moderate verification problems

Incomplete
(there are programs that are correct despite overflows)

Integrating Object-oriented Design and Deductive Verification of Software: Integers 86 / 115

Part IV

Further Topics

13 Dealing with Integers

14 Proof Reuse

15 Generating Test Cases

16 Concurrency

Integrating Object-oriented Design and Deductive Verification of Software: Proof Reuse 87 / 115

Proof Reuse

Basic Use Case

1 Verification attempt fails

2 Amend program

3 Recycle unaffected proof parts

Example: Incremental Verification

1 Program correct w.r.t. arithmetic semantics? ✔

2 Program correct w.r.t. overflow checking semantics? ✘

3 Fix bug, reuse proof ✔

Successfully used in case studies

Integrating Object-oriented Design and Deductive Verification of Software: Proof Reuse 88 / 115

Proof Reuse

Observations

Similar program rule applications focus on similar program parts

Program rules applicable at a limited number of goals

Proof structure follows program structure

Steps

1 Identify changes in program (program diff)

2 Identify subproofs beginning with unaffected statements

3 Similarity-guided proof replay

Integrating Object-oriented Design and Deductive Verification of Software: Proof Reuse 89 / 115

Part IV

Further Topics

13 Dealing with Integers

14 Proof Reuse

15 Generating Test Cases

16 Concurrency

Integrating Object-oriented Design and Deductive Verification of Software: Generating Test Cases 90 / 115

Generating Test Cases

Testing makes sense, even in cases when a formal proof exists

Testing can uncover bugs in environment
(hardware, compiler, operating system, virtual machine)

Testing can uncover specification errors

Testing can uncover bugs w.r.t. unspecified properties (e.g. timing)

Tests can be generated from incomplete proofs

Idea: Use a formal proof to generate test cases

KeY provides the path condition for each execution path

High code coverage (feasible execution paths)

For infinite number of paths:
Unwind loops finite number of times, inline method bodies

Integrating Object-oriented Design and Deductive Verification of Software: Generating Test Cases 91 / 115

Test Case Ingredients

Generate unit tests

Code fragment to be tested

Test cases

Test oracle

Test setup for each execution path

Integrating Object-oriented Design and Deductive Verification of Software: Generating Test Cases 92 / 115

Example (Finite Number of Execution Paths)

Compute the middle of three numbers

pub l i c s t a t i c i n t midd le (i n t x , i n t y , i n t z){
i n t mid = z ;
i f (y<z){

i f (x<y){
mid = y ;

} e l s e i f (x<z){
mid = x ;

}
} e l s e {

i f (x>y){
mid = y ;

} e l s e i f (x>z){
mid = x ;

}
}
re tu rn mid ;

}

Integrating Object-oriented Design and Deductive Verification of Software: Generating Test Cases 93 / 115

Part IV

Further Topics

13 Dealing with Integers

14 Proof Reuse

15 Generating Test Cases

16 Concurrency

Integrating Object-oriented Design and Deductive Verification of Software: Concurrency 94 / 115

Verifying concurrent Java programs

Full reasoning about data

Beyond just safety or race detection

No abstractions

Integrating Object-oriented Design and Deductive Verification of Software: Concurrency 95 / 115

java.lang.StringBuffer

private char value [];
private int count;

public synchronized StringBuffer
append(char c) {

int newcount = count + 1;
if (newcount > value.length)

expandCapacity(newcount);
value[count ++] = c;
return this;

}

Integrating Object-oriented Design and Deductive Verification of Software: Concurrency 96 / 115

Verify That. . .

strb.<lockcount> = 0 ∧ ¬strb = null ∧ strb.count = 0 →
∀n. n > 0 →

〈{n}strb.append(c);{0}〉 strb.count = n∧
∀k. 0 ≤ k < n → strb.value[k] = c(p1(k + 1))

Integrating Object-oriented Design and Deductive Verification of Software: Concurrency 97 / 115

Three-Step Programme

1 Unfold

2 Prove atomicity invariant

3 Symbolic execution + induction

Integrating Object-oriented Design and Deductive Verification of Software: Concurrency 98 / 115

Statistics

Proof steps: 14622

Branches: 238 (3 relevant)

Interactions: 2

Runtime: ∼1 minute

Result: conjecture false for n ≥ MAX INT

Integrating Object-oriented Design and Deductive Verification of Software: Concurrency 99 / 115

Concurrency Verification Problems

Number of threads
➥ symmetry reduction (this work)

Number of interference points
➥ exploit locking, data confinement

Java Memory Model
➥ ?

Integrating Object-oriented Design and Deductive Verification of Software: Concurrency 100 / 115

Alas. . .

No thread identities in programs

No dynamic thread creation (but unbounded concurrency)

Currently only atomic loops

Integrating Object-oriented Design and Deductive Verification of Software: Concurrency 101 / 115

The Calculus Is Built On. . .

symmetry reduction

. . . and explicit scheduler formalization

Integrating Object-oriented Design and Deductive Verification of Software: Concurrency 102 / 115

The Calculus Is Built On. . .

symmetry reduction

. . . and explicit scheduler formalization

Integrating Object-oriented Design and Deductive Verification of Software: Concurrency 102 / 115

The Calculus Is Built On. . .

symmetry reduction

. . . and explicit scheduler formalization

Integrating Object-oriented Design and Deductive Verification of Software: Concurrency 102 / 115

Part V

Wrap Up

Integrating Object-oriented Design and Deductive Verification of Software: 103 / 115

Part V

Wrap Up

17 Case Studies

18 Current Directions of Work

19 Acknowledgments

Integrating Object-oriented Design and Deductive Verification of Software: Case Studies 104 / 115

“Fundamental” Case Studies: Libraries

Java Collections Framework (JCF)

Part of JCF (treating sets) specified using UML/OCL

Parts of reference implementation verified

Java Card API Reference Implementation

Covers whole of latest API used in practice (2.2.1)

60 classes, 4,500 lines of Java code

Effort: 2–3 (expert) months

Integrating Object-oriented Design and Deductive Verification of Software: Case Studies 105 / 115

Algorithm Verification

Schorr-Waite Algorithm

Graph-marking algorithm (memory-efficient garbage collection)

Very complicated loop invariant

One single proof with 17,000 steps

Integrating Object-oriented Design and Deductive Verification of Software: Case Studies 106 / 115

Security Case Studies: Java Card Software

Demoney

Electronic purse application provided by Trusted Logic S.A.

Mondex Card

Smart card for electronic financial transactions

Issued by NatWest in 1996

Proposed as case study in Grand Challenge

KeY used to verify a reference implementation in Java Card

Integrating Object-oriented Design and Deductive Verification of Software: Case Studies 107 / 115

Safety Case Study

Avionics Software

Java implementation of a Flight Manager module at Thales Avionics

Comprehensive specification using JML, emphasis on class invariants

Verification of some nested method calls using contracts

Virtual Machine for Real Time Secury Java

Verification of some library functions of the Jamaica VM from Aicas

Integrating Object-oriented Design and Deductive Verification of Software: Case Studies 108 / 115

Part V

Wrap Up

17 Case Studies

18 Current Directions of Work

19 Acknowledgments

Integrating Object-oriented Design and Deductive Verification of Software: Current Directions of Work 109 / 115

Some Current Directions of Research in KeY

Multi-threaded Java

Integration of deduction and static analysis

Integration of verification and testing

Counter examples

Symbolic error propagation

Verification of MISRA C

Proof visualization, proving as debugging

Extension of dynamic logic for multi-threading
Symbolic execution calculus
Prototype available, StringBuffer class verified

Integrating Object-oriented Design and Deductive Verification of Software: Current Directions of Work 110 / 115

Some Current Directions of Research in KeY

Multi-threaded Java

Integration of deduction and static analysis

Integration of verification and testing

Counter examples

Symbolic error propagation

Verification of MISRA C

Proof visualization, proving as debugging

Mutual call of analyser/prover, common semantic framework
Implementation of static analysis in theorem proving frame

Integrating Object-oriented Design and Deductive Verification of Software: Current Directions of Work 110 / 115

Some Current Directions of Research in KeY

Multi-threaded Java

Integration of deduction and static analysis

Integration of verification and testing

Counter examples

Symbolic error propagation

Verification of MISRA C

Proof visualization, proving as debugging

Generation of test cases from proofs
Symbolic testing
New coverage criteria

Integrating Object-oriented Design and Deductive Verification of Software: Current Directions of Work 110 / 115

Some Current Directions of Research in KeY

Multi-threaded Java

Integration of deduction and static analysis

Integration of verification and testing

Counter examples

Symbolic error propagation

Verification of MISRA C

Proof visualization, proving as debugging

Generate counter example from failed proof attempt
Counter example search as proof of uncorrectness

Integrating Object-oriented Design and Deductive Verification of Software: Current Directions of Work 110 / 115

Some Current Directions of Research in KeY

Multi-threaded Java

Integration of deduction and static analysis

Integration of verification and testing

Counter examples

Symbolic error propagation

Verification of MISRA C

Proof visualization, proving as debugging

Symbolic error classes modeled by formulas
Error injection by instrumentation of JavaCard DL rules
Symbolic error propagation via symbolic execution

Integrating Object-oriented Design and Deductive Verification of Software: Current Directions of Work 110 / 115

Some Current Directions of Research in KeY

Multi-threaded Java

Integration of deduction and static analysis

Integration of verification and testing

Counter examples

Symbolic error propagation

Verification of MISRA C

Proof visualization, proving as debugging

Integrating Object-oriented Design and Deductive Verification of Software: Current Directions of Work 110 / 115

Some Current Directions of Research in KeY

Multi-threaded Java

Integration of deduction and static analysis

Integration of verification and testing

Counter examples

Symbolic error propagation

Verification of MISRA C

Proof visualization, proving as debugging

Integrating Object-oriented Design and Deductive Verification of Software: Current Directions of Work 110 / 115

Some Current Directions of Research in KeY

Multi-threaded Java

Integration of deduction and static analysis

Integration of verification and testing

Counter examples

Symbolic error propagation

Verification of MISRA C

Proof visualization, proving as debugging

Integrating Object-oriented Design and Deductive Verification of Software: Current Directions of Work 110 / 115

Part V

Wrap Up

17 Case Studies

18 Current Directions of Work

19 Acknowledgments

Integrating Object-oriented Design and Deductive Verification of Software: Acknowledgments 111 / 115

Acknowledgments

Funding agencies

Deutsche Forschungsgemeinschaft (DFG)

Deutscher Akademischer Auslandsdienst (DAAD)

Vetenskapsradet (VR)

VINNOVA

STINT

European Union (within the IST framework)

Integrating Object-oriented Design and Deductive Verification of Software: Acknowledgments 112 / 115

Acknowledgments

Students

The many students who did a thesis or worked as developers

Alumni

W. Menzel (em.), T. Baar (EPFL), A. Darvas (ETH), M. Giese (RICAM),
W. Mostowski (U Nijmegen), A. Roth (SAP), S. Schlager

Colleagues who collaborated with us

J. Hunt, K. Johanisson, A. Ranta, D. Sands

Integrating Object-oriented Design and Deductive Verification of Software: Acknowledgments 113 / 115

Part V

Wrap Up

17 Case Studies

18 Current Directions of Work

19 Acknowledgments

Integrating Object-oriented Design and Deductive Verification of Software: More Information 114 / 115

More Information

The KeY Book

B. Beckert, R. Hähnle, P. H. Schmitt (eds.)

Verification of Object-Oriented Software:
The KeY Approach

Springer-Verlag, LNCS 4334, 2007.

Web site

www.key-project.org

Integrating Object-oriented Design and Deductive Verification of Software: More Information 115 / 115

	Introduction
	Topic of the Tutorial
	The KeY Tool

	Specification
	Design by Contract
	OCL Specification
	JML Specification

	Logic and Calculus
	JavaCardDL
	Sequent Calculus
	Rules for Programs: Symbolic Execution
	A Calculus for 100% JavaCard
	Taclets and Taclet Language
	Correctness of Proof Rules
	Interactive and Automated Proof Construction

	Further Topics
	Dealing with Integers
	Proof Reuse
	Generating Test Cases
	Concurrency

	Wrap Up
	Case Studies
	Current Directions of Work
	Acknowledgments
	More Information

