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Integrating Verification and Testing: Topic of the Tutorial

What is this Tutorial about?

Design & formal specification

Deductive verification

Testing

of

Object-oriented software

This tutorial has been developed in the KeY project.
The demos will use the KeY tool.
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Some Buzzwords about KeY

Java Card as target language

Integration with two standard SWE tools:

Borland Together, a commercial CASE tool
Eclipse, an open extensible IDE

Specification languages

JML
UML/OCL

Dynamic logic as program logic

Verification = symbolic execution + induction

Sequent style calculus + meta variables + incremental closure

Interactive/automated prover with advanced UI
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KeY Works With

In this tutorial:
100% JavaCard

Other rule bases:

ODL, a minimal abstract object oriented language

A subset of the C language

ASM, Abstract State Machines [Stanislas Nachen, ETH Zürich]

HyKeY, differential dynamic logic for hybrid systems
[André Platzer, Univ. of Oldenburg]

KeY Prover

Rule Base
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Verifying Java Card Programs

What is Java Card?

Sun’s standard for smart cards and embedded devices

Subset of Java, but with transaction concept

Integrating Verification and Testing: Topic of the Tutorial

Verifying Java Card Programs

Why Java Card?

Good example for real-world object-oriented language

JavaCard lacks

garbage collection

dynamical class loading

multi-threading

floating-point arithmetic

Application areas are

security critical

prone to financial risk
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Formal Methods Integrated in KeY

Specification

UML + Object Constraint Language (OCL)

Java Modeling Language (JML)

Verification

Dynamic Logic

Decision procedures

And . . .

Static analysis

Test case generation

Integrating Verification and Testing: Architecture of the KeY Tool

Architecture of the KeY Tool

KeY Prover

Rule Base

Synthesis of Proof Obligations

OCL/DL
Translation

JML/DL
Translation

KeY Plugin

Borland
Together CT

KeY Plugin

Eclipse

IDE

JML
Browser

OCL/NL
Tool

English UML/OCL JML Logic

Taclets

Integrating Verification and Testing: Architecture of the KeY Tool

Part II

Specification

Integrating Verification and Testing:

Part II

Specification

3 Design by Contract

4 OCL Specification

5 JML Specification

6 Specification in Dynamic Logic (DL)

7 A Verification Example with JML
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Design by Contract

Class

Invariant

Operation

Precondition
Modifies Clauses
Postcondition
Termination, more precisely: normal or exceptional
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OCL: Object Constraint Language

Object Constraint Language

Part of the OMG standard UML

Present Version: 2.0

Adds formal constraints to UML (class) diagrams

Accessible to people without a strong mathematical background

OCL/FOL
Translation

KeY Prover

Rule Base

Synthesis of Proof Obligations

Integrating Verification and Testing: OCL Specification

A Typical UML Diagram

BankCard

correctPIN : int

ATM

wrongPINCounter : Integer

customerAuthenticated : Boolean

enterPin(pin : Integer)

0..10..1

insertedCard

Integrating Verification and Testing: OCL Specification



Design by Contract with OCL

Class

Invariant

Operation

Precondition

Postcondition

Modifies Clauses

Termination

Integrating Verification and Testing: OCL Specification

Design by Contract with OCL

context ATM

inv: 0 <= self.wrongPinCounter and
self.wrongPinCounter <= 2

context ATM::enterPin(pin: Integer)

pre: insertedCard <> null and not customerAuthenticated
and not pin = insertedCard.correctPIN
and wrongPINCounter < 2

post: wrongPINCounter = wrongPINCounter@pre + 1
and not customerAuthenticated

Modifies Clauses not explicitely supported by OCL

Termination specification not explicitely supported by OCL

Integrating Verification and Testing: OCL Specification

Proof Obligations

context C context D extends C
inv: I inv: J

Behavioural Subtyping for classes

For all instances o of D : o.J implies o.I.

Integrating Verification and Testing: OCL Specification

Proof Obligations

context C::op1 context D::op1
pre: pre1 pre: pre2
post: post1 post: post2

D extends C

Behavioural Subtyping for operations

pre1 implies pre2 and
post2 implies post1

Integrating Verification and Testing: OCL Specification



Proof Obligations

context C::op
pre: pre
post: post

Implementation p of op.

Ensures Postcondition

If p is started in a state satisfying pre
then p terminates and
in the final state post is true.

Integrating Verification and Testing: OCL Specification

Proof Obligations

context C::op context C
pre: pre inv: I
post: post

Implementation p of op.

Preserves Invariant

If p is started in a state satisfying pre and I
then p terminates and in the final state I is again true.

Integrating Verification and Testing: OCL Specification
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Specification

3 Design by Contract

4 OCL Specification

5 JML Specification

6 Specification in Dynamic Logic (DL)

7 A Verification Example with JML

Integrating Verification and Testing: JML Specification

JML: Java Modeling Language

Java Modeling Language

Behavioral interface specification language for Java

International community effort

More and more tools:
Runtime checkers, static analysis, program verification

JML/FOL
Translation

KeY Prover

Rule Base

Synthesis of Proof Obligations
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Design by Contract with JML (Invariants)

public class ATM {

/*@ private invariant wrongPINCounter >= 0 &&

wrongPINCounter <= 2

@*/

private BankCard insertedCard = null;
private boolean customerAuthenticated = false;
private int wrongPINCounter = 0;

public void enterPIN (int pin) { ...
}

}

Integrating Verification and Testing: JML Specification

Design by Contract with JML (Operation Contracts)

public class ATM {

/*@ public normal_behavior

@ requires insertedCard != null;

@ requires !customerAuthenticated;

@ requires pin != insertedCard.correctPIN;

@ requires wrongPINCounter < 2;

@ ensures wrongPINCounter ==

\old(wrongPINCounter) + 1;

@ assignable wrongPINCounter;

@

@ also ...

@*/

public void enterPIN (int pin) { ...
}

}

Integrating Verification and Testing: JML Specification

Proof Obligations

JML Proof Obligations

Behavioural Subtyping for classes

Behavioural Subtyping for operations

Strong Operation Contract

Ensures Postcondition

Preservation of Invariants

Correctness of Modifies Clauses

KeY Prover

Rule Base

Synthesis of Proof Obligations

Integrating Verification and Testing: JML Specification
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Total Correctness Statement

precondition → 〈program〉 postcondition

in state
s0

in state
s0

in at least one
state after
termination

Integrating Verification and Testing: Specification in Dynamic Logic (DL)

Specification in Dynamic Logic

\forall ATM x0;
x0.wrongPINCounter = ATM::wrongPINCounter@pre(x0) &

!self.insertedCard = null &
!self.customerAuthenticated = TRUE &
!pin = self.insertedCard.correctPIN &
self.wrongPINCounter < 2

->
\< self.enterPIN(_pin)@ATM;\> self.wrongPINCounter =

ATM::wrongPINCounter@pre(self) + 1

KeY Prover

Rule Base

Integrating Verification and Testing: Specification in Dynamic Logic (DL)
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Integrating Verification and Testing: A Verification Example with JML

An Example Program swapMax()

public class Test {
private int idx;

/*@ requires precondition @ */

/*@ ensures postcondition @ */

void swapMax(int[] a) {
int counter = -1; idx = 0;

/*@ loop_invariant @*/

while (++ counter <a.length) {
if (a[counter] > a[idx]) idx=counter;

}
int tmp=a[idx]; a[idx]=a[0]; a[0]= tmp;

}
}

Integrating Verification and Testing: A Verification Example with JML



JML Specification of swapMax()

/*@ requires a!=null && a.length > 0;

@ ensures

@ (\ forall int x; x==idx;

@ \old(a[0])==a[x] && \old(a[x])==a[0]) &&

@ (\ forall int i; 0 <= i && i<\old(a.length );

@ a[0] >= a[i] &&

@ (i!=0 && i!=idx ==> a[i]==\ old(a[i])));

@ diverges false;

@ */

void swapMax(int[] a) { ... }

Integrating Verification and Testing: A Verification Example with JML

JML Loop Invariant

/*@ loop_invariant

@ -1<=counter && counter <=a.length &&

@ 0<=idx && idx <a.length &&

@ (\ forall int x; x>=0 && x<= counter;

@ a[idx]>=a[x]);

@ decreases (a.length - counter );

@*/

while (++ counter <a.length) {
if (a[counter] > a[idx])

idx=counter ;}

Integrating Verification and Testing: A Verification Example with JML

Proving Postconditions for swapMax()

After termination of the loop, we have. . .

\forall int i ; ((0 ≤ i & i ≤ a.length) −>
a[idx] ≥ a[i ])

But we also need to show that executing. . .

tmp=a[idx]; a[idx]=a[0]; a[0]=tmp;

gives us

\forall int i ; ((0 ≤ i & i ≤ a.length & i 6= 0 & i 6= idx) −>
a[i ] = \old(a[i ]))

So. . .

Loop invariant needs to be strengthened!

Integrating Verification and Testing: A Verification Example with JML

Improved JML Loop Invariant

/*@ loop_invariant

@ -1<=counter && counter <=a.length &&

@ 0<=idx && idx <a.length &&

@ (\ forall int x; x>=0 && x<= counter;

@ a[idx]>=a[x]);

@ decreases (a.length - counter );

@ assignable idx , counter;

@*/

while (++ counter <a.length) {
if (a[counter] > a[idx])

idx=counter ;}

Integrating Verification and Testing: A Verification Example with JML



Part III

Logic and Calculus
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11 A Calculus for 100% JavaCard

12 Interactive and Automated Proof Construction
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Syntax and Semantics

Syntax

Basis: Typed first-order predicate logic

Modal operators 〈p〉 and [p] for each (JavaCard) program p

Class definitions in background (not shown in formulas)

Semantics

Operators refer to the final state of p

[p]F : If p terminates, then F holds in the final state
(partial correctness)

<p>F : p terminates and F holds in the final state
(total correctness)

JavaCard DL formulas contain unaltered JavaCard source code

Integrating Verification and Testing: Java CardDL

Why Dynamic Logic?

Transparency wrt target programming language

More expressive and flexible than Hoare logic

Can use reference implementations instead of first-order theories

Symbolic execution is a natural interactive proof paradigm

Proven technology that scales up

Integrating Verification and Testing: Java CardDL



Why Dynamic Logic?

Transparency wrt target programming language

More expressive and flexible than Hoare logic

Can use reference implementations instead of first-order theories

Symbolic execution is a natural interactive proof paradigm

Proven technology that scales up

Programs are “first-class citizens”

No encoding of program syntax nor semantics into logic

Rule for each program construct in calculus

Integrating Verification and Testing: Java CardDL

Why Dynamic Logic?

Transparency wrt target programming language

More expressive and flexible than Hoare logic

Can use reference implementations instead of first-order theories

Symbolic execution is a natural interactive proof paradigm

Proven technology that scales up

Not merely partial/total correctness:

Correctness of program transformations

Security properties

Temporal extensions

Integrating Verification and Testing: Java CardDL

Why Dynamic Logic?

Transparency wrt target programming language

More expressive and flexible than Hoare logic

Can use reference implementations instead of first-order theories

Symbolic execution is a natural interactive proof paradigm

Proven technology that scales up

Class initialization much easier to specify with code

Integrating Verification and Testing: Java CardDL

First-Order Formula Syntax

ASCII syntax, keywords preceded by ‘\’

Logical operators

& and

| or

−> implication

<−> equivalence

! negation

Logical constants

true

false

Conditional terms

\if(. . .)\then(. . .)\else(. . .)

Quantifiers

\forall
\exists

Integrating Verification and Testing: Java CardDL



Dynamic Logic Example Formulas

(balance > 1 & amount > 1) −> <charge(amount);> (balance > 1)

<x = 1;> ([while (true) {}] false) Syntax? ok

Program formulas can appear nested

Integrating Verification and Testing: Java CardDL

Type System

Static types

Partially ordered finite type hierarchy

Terms are statically typed (like Java expressions)

Type casts in logic

Dynamic types

Each term value has a dynamic type

Dynamic type depends on state

Dynamic types conform to static types

Type predicates in logic

Integrating Verification and Testing: Java CardDL

Variables

Logical variables disjoint from program variables

No quantification over program variables
Programs do not contain logical variables
”Program variables” actually non-rigid functions

\exists int x; ([x = 1;] (x = 1)) Syntax? bad

x cannot be a logical variable, because it occurs in the program

x cannot be a program variable, because it is quantified

<int x;> \forall int val ; ((<p> x = val) <−> (<q> x = val)) Syntax?
ok

p, q equivalent relative to computation state restricted to x

Integrating Verification and Testing: Java CardDL

Rigid and Flexible Terms

Example

<int i;> \forall int x ; (i + 1 = x −> <i++;> (i = x))

Interpretation of i depends on computation state ⇒ flexible

Interpretation of x and + must not depend on state ⇒ rigid

Locations are always flexible
Logical variables, standard functions are always rigid

Integrating Verification and Testing: Java CardDL



Semantics

Kripke semantics

Semantics of a Java program is a partial function from states to states

<p>F true in state s iff
p terminates and F holds in the final state s ′

A JavaCard DL formula is valid iff it is true in all states

We need a calculus for checking validity of formulae

Integrating Verification and Testing: Java CardDL
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Sequents and their Semantics

Syntax

ψ1, . . . , ψm︸ ︷︷ ︸
Antecedent

=⇒ φ1, . . . , φn︸ ︷︷ ︸
Succedent

where the φi , ψi are formulae (without free variables)

Semantics

Same as the formula

(ψ1 & · · · & ψm) −> (φ1 | · · · | φn)

Integrating Verification and Testing: Sequent Calculus

Sequent Rules

General form

rule name

Premisses
︷ ︸︸ ︷

Γ1 ==> ∆1 · · · Γr ==> ∆r

Γ ==> ∆
︸ ︷︷ ︸

Conclusion

(r = 0 possible)

Soundness

If all premisses are valid, then the conclusion is valid

Integrating Verification and Testing: Sequent Calculus



Some Simple Sequent Rules

not left
Γ =⇒ A, ∆

Γ, !A =⇒ ∆

imp left
Γ =⇒ A, ∆ Γ, B =⇒ ∆

Γ, A −> B =⇒ ∆

close goal
Γ, A =⇒ A, ∆

close by true
Γ =⇒ true, ∆

all left
Γ, \forall t x ;φ, {x/e}φ =⇒ ∆

Γ, \forall t x ;φ =⇒ ∆

where e var-free term of type t ′ ≺ t

Integrating Verification and Testing: Sequent Calculus

Sequent Calculus Proofs

Proof tree

Proof is tree structure with
goal sequent as root

Rules are applied
from conclusion (old goal)
to premisses (new goals)

Rule with no premiss closes proof branch

Proof is finished when all goals are closed

Integrating Verification and Testing: Sequent Calculus
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Proof by Symbolic Program Execution

Sequent rules for program formulas?

What corresponds to top-level connective in a program?

The Active Statement in a Program

Example

l:{try{︸ ︷︷ ︸
π

i=0; j=0; } finally{ k=0; }}︸ ︷︷ ︸
ω

active statement i=0;
non-active prefix π
rest ω

Integrating Verification and Testing: Symbolic Execution



Proof by Symbolic Program Execution

Sequent rules execute symbolically the active (= 1st) statement

Sequent proof corresponds to symbolic program execution

Example: The rule for if-then-else (SIMPLIFIED VERSION!)

Γ, B =⇒ <π p ω>φ, ∆
Γ, !B =⇒ <π q ω>φ, ∆

Γ =⇒ <π if (B) { p } else { q } ω>φ, ∆

Integrating Verification and Testing: Symbolic Execution
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Problems to Address

Object attributes & arrays

Modelled as non-rigid functions

Side effects

Expressions in programs can have side effects

Example
if ((y=3) + y < 0) {...} else {...}

Aliasing

Different names may refer to the same location

Example
After o.a=17;, what is u.a?

Integrating Verification and Testing: A Calculus for 100% Java Card

Other Issues

Further supported JavaCard features

method invocation with polymorphism/dynamic binding

arrays

abrupt termination

throwing of NullPointerExceptions, etc.

object creation and initialisation

bounded integer data types

transactions

All Java Card language features are fully addressed in KeY

Integrating Verification and Testing: A Calculus for 100% Java Card



Java—A Language of Many Features

Ways to deal

Program transformation, up-front

Local program transformation, done by a rule on-the-fly

Modeling with first-order formulas

Special-purpose constructs in program logic

Pro: Feature needs not be handled in calculus
Contra: Modified source code
Example in KeY: Very rare: treating inner classes

Integrating Verification and Testing: A Calculus for 100% Java Card

Java—A Language of Many Features

Ways to deal

Program transformation, up-front

Local program transformation, done by a rule on-the-fly

Modeling with first-order formulas

Special-purpose constructs in program logic

Pro: Flexible, easy to implement, usable
Contra: Not expressive enough for all features
Example in KeY: Complex expression eval, method inlining, etc., etc.

Integrating Verification and Testing: A Calculus for 100% Java Card

Java—A Language of Many Features

Ways to deal

Program transformation, up-front

Local program transformation, done by a rule on-the-fly

Modeling with first-order formulas

Special-purpose constructs in program logic

Pro: No logic extensions required, enough to express most features
Contra: Creates difficult first-order POs, unreadable antecedents
Example in KeY: Dynamic types and branch predicates

Integrating Verification and Testing: A Calculus for 100% Java Card

Java—A Language of Many Features

Ways to deal

Program transformation, up-front

Local program transformation, done by a rule on-the-fly

Modeling with first-order formulas

Special-purpose constructs in program logic

Pro: Arbitrarily expressive extensions possible
Contra: Increases complexity of all rules
Example in KeY: Method frames, updates

Integrating Verification and Testing: A Calculus for 100% Java Card



Handling Side Effects

Problem

Expressions may have side effects

Terms in logic have to be side effect free

Example

(y=3) + y < 0
does not only evaluate to a boolean value, but also assigns a value to y

Integrating Verification and Testing: A Calculus for 100% Java Card

Handling Side Effects

Solution

Calculus rules realise a stepwise symbolic evaluation
(simple transformations)

Restrict applicability of some rules (e.g., if-then-else)

Example

if ((y=3) + y < 0) {...} else {...}
rewritten into

y = 3;
int val1 = y;
int val0 = val1 + y;
boolean guard = (val0 < 0);
if (guard) {...} else {...}

Integrating Verification and Testing: A Calculus for 100% Java Card

Handling Assignment: Explicit State Updates

Problem

Because of aliasing,
assignment cannot be handled as syntactic substitution

Solution

State updates as explicit syntactic elements

Syntax

{loc := val}φ

where (roughly)

loc is a program variable x , an attribute access o.a, or an array access a[i ]

val is same as val , a literal, or a logical variable

Integrating Verification and Testing: A Calculus for 100% Java Card

Assignment Rule in KeY

Γ =⇒ {loc := val}<π ω>φ, ∆

Γ =⇒ <π loc=val; ω>φ, ∆

Advantages

no renaming required

delayed proof branching

Update simplification in KeY

KeY system has powerful mechanism for simplifying and applying updates

eager simplification (also: parallel updates)

lazy application

Integrating Verification and Testing: A Calculus for 100% Java Card



Handling Abrupt Termination
Example: try-throw

Abrupt termination handled by “simple” program transformations

Changing control flow = rearranging program parts

Example

try-throw (exc simple)

Γ =⇒

〈π if (exc instanceof T)

{try {e=exc; r} finally {s}}
else {s throw exc}; ω

〉
φ

Γ =⇒ <π try{throw exc; q} catch(T e){r} finally{s}; ω>φ

Integrating Verification and Testing: A Calculus for 100% Java Card

Components of the Calculus

1 Non-program rules

first-order rules
rules for data-types
rules for modalities
the induction rule

2 Rules for reducing/simplifying the program (symbolic execution)
Replace the program by combination of

case distinctions (proof branches) and
sequences of updates

3 Rules for handling loops

rules using loop invariants
rules for handling loops by induction

4 Rules for replacing a method invocations by the method’s contract

5 Update simplification

Integrating Verification and Testing: A Calculus for 100% Java Card
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Integrating Verification and Testing: Proof Construction

Interaction and Automation

For realistic programs:
Fully-automated verification impossible

Integrating Verification and Testing: Proof Construction



Interaction and Automation

Goal in KeY: Integrate automated and interactive proving

All easy or obvious proof steps should be automated

Sequents presented to user should be simplified as far as possible

Primary steps that require interaction: induction, treatment of loops

Taclets enable interactive rule application mostly using mouse

Typical workflow when proving in KeY
(and other interactive provers)

1 Prover runs automatically as far as possible

2 When prover stops user investigates situation and gives hints
(makes some interactive steps)

3 Go to 1

Integrating Verification and Testing: Proof Construction

Working with Sequents: Sequent View

For goals (leaves of proof tree)

Obtaining information about
formulas/terms (press Alt key)

Selecting formulas/terms,
applying rules to them

For inner nodes

Inspecting parts involved in rule
application (highlighted)

Integrating Verification and Testing: Proof Construction

Extension of Proof: Application of Single Taclets

Taclet application requires

A proof goal

Focus of rule application: term/formula in the goal

Instantiation of schema variables

Main procedure for applying a taclet interactively

1 Select an application focus using mouse pointer

2 Select a particular rule from the context menu

3 Instantiate schema variables

Integrating Verification and Testing: Proof Construction

Applying Taclets using Drag-and-Drop

Applying equations

Drag the equation onto the term to be
rewritten

Instantiating quantifiers

Drag instantiation term onto the
quantified formula

Integrating Verification and Testing: Proof Construction



Means of Automation Implemented in KeY

Parameterized strategies for applying rules automatically

Free-variable first-order calculus
(non-destructive, proof-confluent)

Invocation of external theorem provers, decision procedures:

Simplify (from ESC/Java)
ICS
Any other with SMT-LIB interface

Integrating Verification and Testing: Proof Construction

Strategies Currently Present in KeY

Strategies optimized for . . .

Symbolic execution of programs

Come in different flavours: with/without unwinding loops, etc.

Concentrate on eliminating program and simplifying sequents

Handling first-order logic

Implements a complete first-order theorem prover

Includes arithmetics solver

Integrating Verification and Testing: Proof Construction

Part IV

Integrating Testing and Verification

Integrating Verification and Testing:

Part IV

Integrating Testing and Verification

13 Why Integrate?

14 Test-Case Generation by Bounded Symbolic Execution

15 Test-Case Generation from Method Specifications and Loop
Invariants

16 White-box testing by Combining Specification Extraction and
Black-box testing

17 Proving Incorrectness of Programs

Integrating Verification and Testing: Why Integrate?



Why Integrate?

Testing makes sense, even in cases when a formal proof exists

Testing can uncover bugs in environment
(hardware, compiler, operating system, virtual machine)

Testing can uncover bugs w.r.t. unspecified properties (e.g. timing)

Tests are reusable after program changes

Idea: Use a formal proof to generate test cases

KeY provides the path condition for each execution path

High code coverage (feasible execution paths)

Tests can be generated from incomplete proofs

Integrating Verification and Testing: Why Integrate?

Part IV

Integrating Testing and Verification

13 Why Integrate?

14 Test-Case Generation by Bounded Symbolic Execution

15 Test-Case Generation from Method Specifications and Loop
Invariants

16 White-box testing by Combining Specification Extraction and
Black-box testing

17 Proving Incorrectness of Programs

Integrating Verification and Testing: Test-Case Generation by Bounded Symbolic Execution

Verification-Based Test Generation: Overview

.java IUT
Code annotated
with JML

.java JC API
Signature with
JML contracts

Select
Test

requirements

KeY
VBT

.java IUT′

Java Code

.java JUnit
Unit Tests
Java Code

User input — Library — Automatically Generated

Integrating Verification and Testing: Test-Case Generation by Bounded Symbolic Execution

Verification-Based Test Generation Process

Select JML
Proof Obligation

Compile to
Dynamic Logic

Symbolic
Execution

Extract
Unit Tests

Select JML
Proof Obligation

Compile to
Dynamic Logic

Extract and
modify IUT

Select JML
Proof Obligation

Compile to
Dynamic Logic

Synthesize
Oracle

Extract
Unit Tests

Integrating Verification and Testing: Test-Case Generation by Bounded Symbolic Execution



Verification-Based Test Generation Process

Select JML
Proof Obligation

Compile to
Dynamic Logic

Symbolic
Execution

Extract
Unit Tests

Select JML
Proof Obligation

Compile to
Dynamic Logic

Extract and
modify IUT

Select JML
Proof Obligation

Compile to
Dynamic Logic

Synthesize
Oracle

Extract
Unit Tests
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Example: Java Method with JML Specification

public class Middle{

/*@ public normal_behavior

@ ensures \result==x || \result==y || \result==z;
@ ensures ...
@*/

public static int middle(int x, int y, int z){
int mid = z;
...

}
}
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Verification-Based Test Generation Process
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From Proof to Test

“Normalized” Proof obligation

Pre =⇒ S<p>Post

Preparations

Pre is a set of first-order formulas with preconditions, system invariant

S is initial (symbolic) state at start of execution of p

Extract IUT from S and p,

Synthesize test oracle from finitely guarded first-order formula Post

Integrating Verification and Testing: Test-Case Generation by Bounded Symbolic Execution



Verification-Based Test Generation Process
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Synthesize Oracle

Postcondition obtained from proof tree:

( ( o l d 0 x = j m l r e s u l t 8
| ( o l d 1 y = j m l r e s u l t 8 | o l d 2 z = j m l r e s u l t 8 ) )

& ( o l d 1 y >= j m l r e s u l t 8 & o l d 2 z >= j m l r e s u l t 8
| ( o l d 0 x >= j m l r e s u l t 8 & o l d 2 z >= j m l r e s u l t 8

| o l d 0 x >= j m l r e s u l t 8
& o l d 1 y >= j m l r e s u l t 8 ) )

& ( o l d 1 y <= j m l r e s u l t 8 & o l d 2 z <= j m l r e s u l t 8
| ( o l d 0 x <= j m l r e s u l t 8 & j m l r e s u l t 8 >= o l d 2 z

| j m l r e s u l t 8 >= o l d 0 x
& j m l r e s u l t 8 >= o l d 1 y ) ) )

Directly translatable to a boolean expression
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Synthesize Oracle

Test oracle:

( ( o l d 0 x == j m l r e s u l t 8
| | ( o l d 1 y == j m l r e s u l t 8 | | o l d 2 z == j m l r e s u l t 8 ) )

&& ( o l d 1 y >= j m l r e s u l t 8 && o l d 2 z >= j m l r e s u l t 8
| | ( o l d 0 x >= j m l r e s u l t 8 && o l d 2 z >= j m l r e s u l t 8

| | o l d 0 x >= j m l r e s u l t 8
&& o l d 1 y >= j m l r e s u l t 8 ) )

&& ( o l d 1 y <= j m l r e s u l t 8 && o l d 2 z <= j m l r e s u l t 8
| | ( o l d 0 x <= j m l r e s u l t 8 && j m l r e s u l t 8 >= o l d 2 z

| | j m l r e s u l t 8 >= o l d 0 x
&& j m l r e s u l t 8 >= o l d 1 y ) ) )
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Verification-Based Test Generation Process
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Extract IUT – Preparations

State update S

{_old0_x := x_lv_0 ||
_old1_y := y_lv_0 ||
_old2_z := z_lv_0 ||
x:= x_lv_0 ||
y:= y_lv_0 ||
z:= z_lv_0}

Program p

_jmlresult8=Middle.middle(x,y,z);

Integrating Verification and Testing: Test-Case Generation by Bounded Symbolic Execution

Extract IUT – Resulting Java Code

State update S is translated into a sequence of assignments

_old0_x=x_lv_0;
_old1_y=y_lv_0;
_old2_z=z_lv_0;
x=x_lv_0;
y=y_lv_0;
z=z_lv_0;
_jmlresult8=Middle.middle(x,y,z);

Export program context, add getter and setter methods for private fields
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Verification-Based Test Generation Process

Select JML
Proof Obligation

Compile to
Dynamic Logic

Symbolic
Execution

Extract
Unit Tests

Select JML
Proof Obligation

Compile to
Dynamic Logic

Extract and
modify IUT

Select JML
Proof Obligation

Compile to
Dynamic Logic

Synthesize
Oracle

Extract
Unit Tests

Integrating Verification and Testing: Test-Case Generation by Bounded Symbolic Execution

Symbolic Execution in Logic

Rules of Java CardDL Calculus that axiomatize program formulas
implement symbolic execution

ifElse
Γ, SB =⇒ S<π p ω>φ, ∆ Γ, !SB =⇒ S<π q ω>φ, ∆

Γ =⇒ S<π if (B) { p } else { q } ω>φ, ∆

Branch conditions SB and !SB are added to the sequent

PC :=
∧

γ∈Γ

γ ∧
∧

δ∈∆

¬δ implies path condition of current path

If the execution path is infeasable PC is invalid and thus Γ =⇒ ∆
valid

Interleave first-order deduction and symbolic execution
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Example (Finite Number of Execution Paths)

Compute the middle of three numbers

pub l i c s t a t i c i n t midd le ( i n t x , i n t y , i n t z ){
i n t mid = z ;
i f ( y<z ){

i f ( x<y ){
mid = y ;

} e l s e i f ( x<z ){
mid = x ;

}
} e l s e {

i f ( x>y ){
mid = y ;

} e l s e i f ( x>z ){
mid = x ;

}
}
re tu rn mid ;

}

Integrating Verification and Testing: Test-Case Generation by Bounded Symbolic Execution

Symbolic Execution Tree of middle()

int mid=z;

y<z y>=z

x>=y

if(x<y)

if(x<z)

if(x>y)

x>y

z>=x

x>z

x>=z

x<z

x<y y>=x

return mid; return mid; return mid; return mid; return mid;

mid = y; mid = y;

mid = x;

if(x>z)

mid = x;

return mid;
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From Proof to Test, Cont’d

Test Generation

Pre =⇒ S<p>Post

1 Attempt verification of PO, construct proof tree

2 Search for exit nodes Γ =⇒ S<>ϕ, ∆ in the proof tree
Search for abnormally terminating paths
Γ =⇒ S<π throw e;ω>ϕ, ∆

3 Collect accumulated path conditions at these points; weaken

PC :=
∧
γ∈Γ

γ ∧
∧
δ∈∆

¬δ

4 Find first-order models of PC using, e.g., Simplify or Cogent
Each model of each path condition yields a set of test data

5 Extract input variable assignment from found models
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Verification-Based Test Generation Process
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Generated JUnit Test Case

For every “feasible branch” in the proof tree one test method is
generated

public void testmiddle <i>(){
<local variable declarations >
<creation of test data >
foreach test data tuple:
{

<test data assignments >
<IUT >
<test oracle >

}
}

Integrating Verification and Testing: Test-Case Generation by Bounded Symbolic Execution

Infinite Number of Execution Paths

Code cannot be symbolically executed entirely without using induction
or loop invariants

Solution: Use Bounded Symbolic Execution

1 Perform a bounded number of proof steps

2 Unwind loops finite number of times, inline method bodies

3 Compute path conditions also for not yet terminated paths
corresponding to leaves Γ =⇒ S<p’>ϕ, ∆ of open branches in the
proof tree

Integrating Verification and Testing: Test-Case Generation by Bounded Symbolic Execution

Bounded Symbolic Execution – Benefits and
Shortcomings

Benefits

1 Test generation remains automatic while a formal proof would need
interaction

2 In practice still a high code coverage

Shortcomings

1 No guarantees on code coverage
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Example (Infinite Number of Execution Paths)

Determine Maximal Entry of Array

/*@ public normal_behavior

@ ensures (\forall int i;
@ 0<=i && i<arr.length; arr[i]<=\result);
@*/

public int getMax(int[] arr){
int max = arr[0];
for(int i=1; i<arr.length; i++){

if(arr[i]<max) max = arr[i];
}
return max;

}
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Example (Infinite Number of Execution Paths)

Path conditions for execution paths through the loop body needed

Loops are handled by bounded unwinding

Γ =⇒ S<π l:if(c){l’:{b’} while(c){b}} ω>ϕ, ∆

Γ =⇒ S<π while(c){b} ω>ϕ, ∆

Integrating Verification and Testing: Test-Case Generation by Bounded Symbolic Execution

Example (Infinite Number of Execution Paths)

Oracles for quantified formulas are needed

Quantified formulas in postcondition are evaluated using loops

(\forall int i; 0<=i && i<arr.length; arr[i]<=\result);

for(int i = 0; i<arr.length; i++){ ... }

Restrictions on the admissible quantification domain.

Integrating Verification and Testing: Test-Case Generation by Bounded Symbolic Execution
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Integrating Verification and Testing: . . . from Method Specifications and Loop Invariants

Generating Tests from Loop Invariants and Method
Specifications

Explicit execution of paths

Fully automatic

Limited unwinding of loops and of recursion steps of methods

Abstract/implicit execution of paths

Requires (user provided) method specifications and loop invariants

Full feasible branch coverage possible
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Example 1: Branch after a Loop

void foo1(int n){
int i=0;
while(i < n*2){

n+=2;
i+=8;
if(..){..}else{..}

}
if(i>=64){

C();
}

}

Loop invariant rule
(simplified)

Γ =⇒ {U}I , ∆
Γ =⇒ {U} {M} (I ∧ lc → [b] I ), ∆
Γ =⇒ {U} {M} I ∧ ¬lc → [π ω]φ, ∆

Γ =⇒ {U} [π while(lc){b} ω]φ, ∆

Result

Using the invariant:
4 + i

1 + n − npre
= 4

KeY computed test data with: n = 33

Integrating Verification and Testing: . . . from Method Specifications and Loop Invariants

Example 2: Branch within a Loop

void foo2(int n){
int i=0;
while(i < n*2){

n+=2;
if(i>=64){

C();
}
i+=8;

}
}

Loop invariant rule
(simplified)

Γ =⇒ {U}I , ∆
Γ =⇒ {U} {M} (I ∧ lc → [b] I )∆
Γ =⇒ {U} {M} I ∧ ¬lc → [πω]φ, ∆

Γ =⇒ {U} [π while(lc){b} ω]φ∆,

Result

Using the invariant:
4 + i

1 + n − npre
= 4

We get: n = 34
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Example 3: Branch after a Method Call

class Foo{
int i;

void foo(int n){
D(n);
if(i==20){ C(); }

}

/*@ requires i<n;
@ assignable i;
@ ensures i==n; */

void D(int n){ while(i<n)...}
}

Method contract rule
(simplified)

Γ =⇒ {U} {T} Pre, ∆
Γ =⇒ {U} {M ‖ T} Post → [πω]φ, ∆

Γ =⇒ {U} [π m(t1,..,tn); ω]φ∆,

Integrating Verification and Testing: . . . from Method Specifications and Loop Invariants

More Generally

Testing Tasks

Branch after a loop

Branch within a loop

Branch after a method call

(on Friday ...)

How to compute the precondition more generally

Required properties of must the specification or invariant

Integrating Verification and Testing: . . . from Method Specifications and Loop Invariants
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Integrating Verification and Testing: Structure Extraction+Black-box=White-box

Next: Combining KeY with other Testing Tools

KeY can extend Black-box Testing Tools

Integrating Verification and Testing: Structure Extraction+Black-box=White-box

Previous Approach

Integrating Verification and Testing: Structure Extraction+Black-box=White-box

Next Appraoch
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Benefits

Using of existing Black-box Testing Tools for White-box testing

Separation of concerns - Modulariy

Combination of Coverage Criteria

Integrating Verification and Testing: Structure Extraction+Black-box=White-box

Two Kinds of Specifications

Requirement Specificaiton

Given by the user

Role: To be tested or verified

Extracted Specifictaion

Is extracted automatically

Complies with the IUT by construction

Reflects the structure of the program

Integrating Verification and Testing: Structure Extraction+Black-box=White-box

Tool Chain

Integrating Verification and Testing: Structure Extraction+Black-box=White-box

Tool Chain
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Tool Chain

Integrating Verification and Testing: Structure Extraction+Black-box=White-box

Example IUT

/*@ public normal_behavior

@ ensures \result == ((a<b? a : b)<0 ?
@ -(a<b? a : b) :
@ (a<b? a : b)); @*/

public static int absMin ( int a, int b) {
int result = b;
if (a<b) { result=a; }
if (result<0) { result=-result;}
return result;

}

Integrating Verification and Testing: Structure Extraction+Black-box=White-box

Specification Extraction

Proof Obligation

Γ, requires → <absMin(a,b)>Dummy

Closed Proof Branches

a = 1, a = 2 ⇒ <A...>φ a = 1, a 6= 2 ⇒ <B...>φ
a = 1 ⇒ <if(a==2){A}{B}...>φ

Integrating Verification and Testing: Structure Extraction+Black-box=White-box

Open Proof Branches

for precondition︷ ︸︸ ︷
a <= −1, b <= −1 + a ⇒ {

for postcondition︷ ︸︸ ︷
result := −a }Dummy

a >= 0, b <= −1 + a ⇒ {result := a}Dummy

b <= −1, a <= −1, b >= a ⇒ {result := −b}Dummy

b >= 0, b >= a ⇒ {result := b}Dummy

Integrating Verification and Testing: Structure Extraction+Black-box=White-box



Combined Specification

/*@ public normal_behavior
@ requires true;
@ ensures \result == ((a < b ? a : b) < 0 ?
@ -((a < b ? a : b)):
@ (a < b ? a : b));
@ also

@ requires true && b <= -1 && a <= -1 && b >= a;
@ ensures \result == \old((b * -1));
@ also

@ requires true && b >= 0 && b >= a;
@ ensures \result == \old(b);
@ also

...
@*/

Integrating Verification and Testing: Structure Extraction+Black-box=White-box

Specification Extraction + Black-box Testing =
White-box Testing

Properties of this Approach

Integrating Verification and Testing: Structure Extraction+Black-box=White-box

Black-box Tools

Tool requirements

JML Support

Derive tests based on method preconditions

Ensure coverage of specification

Generate tests automatically

Integrating Verification and Testing: Structure Extraction+Black-box=White-box

JML supporting Black-box Tools

BB-tools for JML

JET / UTJML — no coverage guarantees

Korat — based on class invariants

JmlAutoTest — implementation is lost

JmlTT — specification animator, limited test generation support

jmlunit — generates only the oracle

jtest — does not generate test data

Integrating Verification and Testing: Structure Extraction+Black-box=White-box



Combinations of Coverage Criteria

Integrating Verification and Testing: Structure Extraction+Black-box=White-box

Using the extracted Post Condition

Requirement Specification

/*@ requires true;
@ ensures \result!=23; @*/
absMin(int a, int b){...}

With Full Specification

/*@ requires true;
@ ensures \result!=23;
@ also...
@ requires b >= 0 && b >= a;
@ ensures \result == \old(b) @*/

Simplified

/*@ requires b >= 0 && b >= a;
@ ensures 23 != \old(b);
@ ... @*/

Integrating Verification and Testing: Structure Extraction+Black-box=White-box

Requirement Specification from a Reference
Implementation

Integrating Verification and Testing: Structure Extraction+Black-box=White-box

Requirement Specification from a Reference
Implementation

Integrating Verification and Testing: Structure Extraction+Black-box=White-box
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Integrating Verification and Testing: Proving Incorrectness of Programs

Proving Incorrectness of Programs

Java DL can also directly express program incorrectness

Basically: proving with negated input formula + quantification
⇒ Symbolic search for inputs that make post-condition fail

Difference to generating test cases:
Both path-constraints and post-condition are considered
(Only “failing test cases” are found)

Constraint solving by KeY itself

Symbolic reasoning ⇒ “symbolic test cases” can be found

Integrating Verification and Testing: Proving Incorrectness of Programs

Proving Incorrectness of Programs (2)

More generally, this covers:

Reachability analysis:
Can a program reach certain states?

Inversion:
Which pre-states lead to certain post-states?
(i.e., construct models of the weakest pre-condition)

Non-termination analysis (more details later)

Integrating Verification and Testing: Proving Incorrectness of Programs

Example: Bug in Binary Search

public int binSearch(int []ar, int target) {
if (ar.length == 0) return -1;

int hi = ar.length;
int lo = 0;
while (true) {
int centre = (hi + lo) / 2;
if (centre == lo) {
if (ar[centre] == target) return centre;
else if (ar[centre+1] == target) return centre+1;
else return -1;

}

if (ar[centre] < target) lo = centre;
else if (target < ar[centre]) hi = centre;
else return centre;

} }

Integrating Verification and Testing: Proving Incorrectness of Programs



Example: Bug in Binary Search (2)

Pre-condition: array is sorted:

ar 6 .= null ∧ ∀ i : nat. (i < (ar .length − 1) → ar [i ] ≤ ar [i + 1])

Post-conditions: result is desired index:

result 6 .= −1 → (0 ≤ result < ar .length ∧ ar [result]
.
= target)

result
.
= −1 → ∀ i : nat. (i < ar .length → ar [i ] 6 .= target)

Dis-verification condition:

∃ pre-state. ¬
(
pre → 〈 binSearch(ar , target) 〉 post

)

Integrating Verification and Testing: Proving Incorrectness of Programs

Example: Bug in Binary Search (3)

When proving the formula, KeY produces a constraint that describes
critical inputs (automatically):

[ ar .length
.
= 1 ∧ ar [0] 6 .= target ]

Result: program behaves wrongly whenever

the length of the given array is 1, and

the searched number is not in the array.

Integrating Verification and Testing: Proving Incorrectness of Programs

Schema for Characterising Incorrectness in DL

∃ pre-state. {pre-state}
¬

(
pre-conditions → 〈 program code 〉 post-conditions

)
This formula holds if:

pre-state satisfies the pre-conditions, and

the program does not terminate, or

terminates but violates the post-conditions.

Pre-state quantification has to cover:

local variables, class attributes,

instance attributes, arrays, number of allocated objects.

Technically:

“Update” is needed for making pre-state active

Integrating Verification and Testing: Proving Incorrectness of Programs

Reasoning about Incorrectness Conditions

∃ pre-state.

¬
(
pre-conditions → 〈 program code 〉 post-conditions

)
How to eliminate ∃ pre-state ?

In KeY: Metavariables + constraint solving
→ Backtracking-free proving
→ Systematic search for constraints that close a proof

Integrating Verification and Testing: Proving Incorrectness of Programs



Extension: Non-Termination Detection

Required: KeY + Invariant generator

As before, incorrectness can be expressed in DL:
“Program p does not terminate for some pre-state”

∃ pre-state. ¬
(
pre-conditions → 〈 program code 〉 true

)
In the proof, a non-termination invariant is required
⇒ Program cannot reach terminal states
⇒ Invariant generator needed as extension to KeY

Techniques to construct invariants in our approach:
⇒ Invariant templates containing metavariables
⇒ Refinement based on failed proof attempts

(more information in the talk on Friday)

Integrating Verification and Testing: Proving Incorrectness of Programs

Example: Gaussian Sum

int n = [...];

int sum = 0;

while (n != 0) {
sum += n;
n--;

}

Problem:

What happens if n
has a negative value?

A common programming error.

KeY + Invariant generator can prove non-termination automatically:

Constraint on initial state: n < 0

Loop invariant (intermediate states): n < 0
→ Found in few iterations (2–4, depending on settings)

Integrating Verification and Testing: Proving Incorrectness of Programs
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Taclets

Taclets are the “rules” of the KeY system

Taclets. . .

have logical content like rules of the calculus

have pragmatic information for interactive application

have pragmatic information for automated application

keep all these concerns separate but close to each other

can easily be added to the system

are given in a textual format

can be verified w.r.t. base taclets

Integrating Verification and Testing: Taclets and Taclet Language

Taclet Syntax (by Example)

Modus ponens: Rule

Γ, φ, ψ =⇒ ∆

Γ, φ, φ −> ψ =⇒ ∆

Modus ponens: Taclet

modus ponens{
\find (phi -> psi ==>)
\assumes (phi ==>)
\replacewith (psi ==>)
\heuristics(simplify)

}

Integrating Verification and Testing: Taclets and Taclet Language

An Axiom and a Branching Rule

Closure rule

close goal {
\find (==> b)
\assumes (b ==>)
\closegoal
\heuristics(closure)

};

Cut rule

cut {
\add (b ==>);
\add (==> b)

};

Integrating Verification and Testing: Taclets and Taclet Language

Java Card Taclets

Rule if else split

B = TRUE =⇒ <π p ω>F
B = FALSE =⇒ <π q ω>F

=⇒ <π if (B) p else q ω>F

where B is a Boolean expression without side effects

Corresponding taclet

if else split {
\find (==> <{.. if(#B) #p else #q ...}>post)
\replacewith (==> <{.. #p ...}>post) \add (#B = TRUE ==>);
\replacewith (==> <{.. #q ...}>post) \add (#B = FALSE ==>)
\heuristics(if split)

};

Integrating Verification and Testing: Taclets and Taclet Language



Taclets: Summary

Taclets are . . .

simple and (sufficiently) powerful

compact and clear notation

no complicated meta-language

easy to apply with a GUI

validation possible

Integrating Verification and Testing: Taclets and Taclet Language
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Integrating Verification and Testing: Correctness of Proof Rules

Verification Calculus Soundness

A fundamental problem!

informal language specification

proof rules formal semantics

Integrating Verification and Testing: Correctness of Proof Rules

Validating Soundness of Proof Rules

Bootstrapping

Validate a core set of rules,
generate and prove verification conditions for additional rules

Cross-verification

against the Bali calculus for Java formalized in Isabelle/HOL
[D. von Oheimb, T. Nipkow]

against the Java semantics in the Maude system
[J. Meseguer]

Tests

Using the compiler test suite Jacks

Integrating Verification and Testing: Correctness of Proof Rules



From the Java Language Specification

PostIncrementExpression:

PostfixExpression ++

At run time, if evaluation [. . . ] completes abruptly, then the
postfix increment expression completes abruptly and no
incrementation occurs.
Otherwise, the value 1 is added to the value of the variable and
the sum is stored back into the variable. Before the addition,
binary numeric promotion is performed on the value [. . . ]
The value of the postfix increment expression is the value of the
variable before the new value is stored.

Integrating Verification and Testing: Correctness of Proof Rules

Rule for Postfix Increment

Intuitive rule (not correct!)

=⇒ <π x=y; y=y+1; ω>φ

=⇒ <π x=y++; ω>φ

But . . .

x = 5 =⇒ <x=x++;> (x = 6) INVALID

Correct rule

=⇒ <π v=y; y=y+1; x=v; ω>φ

=⇒ <π x=y++; ω>φ

Integrating Verification and Testing: Correctness of Proof Rules

From the Jacks Conformance Test Suite

class T1241r1a {
final int i=1; static final int j=1;
static { }

}

class T1241r1b {
/*@ public normal_behavior

@ ensures \result == 7; @ */

public static int main() {
int s = 0; T1241r1a a = null;
s = s + a.j;
try {s = s + a.i;}
catch (Exception e) {

s = s + 2; a = new T1241r1a ();
s = s + a.i + 3; }

return s; }
}
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Specification of Integer Square Root

Taken from: Preliminary Design of JML [G. Leavens et al.]

/*@ requires y >= 0;

@ ensures

@ \result * \result <= y &&

@ y < (abs(\ result )+1) * (abs(\ result )+1);

@ */

public static int isqrt(int y)

But . . .

\result = 1073741821 = max int−5
2 satisfies spec for y = 1.

1073741821 ∗ 1073741821 = −2147483639 ≤ 1
1073741822 ∗ 1073741822 = 4 > 1
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Data Type Gap

Specification level: Abstract data types

Integer (Z)

Set, List

Implementation level: Concrete programming language data types

byte, short, int, long

Array
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Examples

Valid for Java integers

MAX INT + 1 = MIN INT

MIN INT ∗ (−1) = MIN INT

∃x , y . (x 6= 0 ∧ y 6= 0 ∧ x ∗ y = 0)

Not valid for Java integers

∀x .∃y . y > x

Not a sound rewrite rule for Java integers

x + 1 > y + 1  x > y
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More Formal Semantics of Java Integer Types

Range of primitive integer types in Java

Type Range Bits

byte [−128, 127] 8
short [−32768, 32767] 16
int [−2147483648, 2147483647] 32
long [−263, 263 − 1] 64

Integrating Verification and Testing: Integers



Options for Integer Semantics Rules in KeY

Java semantics

Faithfully axiomatises the overflow semantics of Java integers

Leads to hard verification problems (lack of intuition)

Arithmetic semantics

Leads to easier verification problems

Incorrect

Arithmetic semantics with overflow check

Correct

Leads to moderate verification problems

Incomplete
(there are programs that are correct despite overflows)
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Proof Reuse

Basic Use Case

1 Verification attempt fails

2 Amend program

3 Recycle unaffected proof parts

Example: Incremental Verification

1 Program correct w.r.t. arithmetic semantics? 4

2 Program correct w.r.t. overflow checking semantics? 8

3 Fix bug, reuse proof 4

Successfully used in case studies
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Proof Reuse

Observations

Similar program rule applications focus on similar program parts

Program rules applicable at a limited number of goals

Proof structure follows program structure

Steps

1 Identify changes in program (program diff)

2 Identify subproofs beginning with unaffected statements

3 Similarity-guided proof replay
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Verifying concurrent Java programs

Full reasoning about data

Beyond just safety or race detection

No abstractions
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java.lang.StringBuffer

private char value [];
private int count;

public synchronized StringBuffer
append(char c) {

int newcount = count + 1;
if (newcount > value.length)

expandCapacity(newcount );
value[count ++] = c;
return this;

}
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Verify That. . .

strb.<lockcount> = 0 ∧ ¬strb = null ∧ strb.count = 0 →
∀n. n > 0 →

<{n}strb.append(c);{0}> strb.count = n∧
∀k. 0 ≤ k < n → strb.value[k] = c(p1(k + 1))
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Three-Step Programme

1 Unfold

2 Prove atomicity invariant

3 Symbolic execution + induction
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Statistics

Proof steps: 14622

Branches: 238 (3 relevant)

Interactions: 2

Runtime: ∼1 minute

Result: conjecture false for n ≥ MAX INT
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Concurrency Verification Problems

Number of threads
å symmetry reduction (this work)

Number of interference points
å exploit locking, data confinement

Java Memory Model
å ?
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Alas. . .

No thread identities in programs

No dynamic thread creation (but unbounded concurrency)

Currently only atomic loops

Integrating Verification and Testing: Concurrency



The Calculus Is Built On. . .

symmetry reduction

. . . and explicit scheduler formalization
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The Calculus Is Built On. . .

symmetry reduction

. . . and explicit scheduler formalization
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The Calculus Is Built On. . .

symmetry reduction

. . . and explicit scheduler formalization
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Integrating Verification and Testing: Case Studies

“Fundamental” Case Studies: Libraries

Java Collections Framework (JCF)

Part of JCF (treating sets) specified using UML/OCL

Parts of reference implementation verified

Java Card API Reference Implementation

Covers whole of latest API used in practice (2.2.1)

60 classes, 4,500 lines of Java code

Effort: 2–3 (expert) months
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Algorithm Verification

Schorr-Waite Algorithm

Graph-marking algorithm (memory-efficient garbage collection)

Very complicated loop invariant

One single proof with 17,000 steps
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Security Case Studies: Java Card Software

Demoney

Electronic purse application provided by Trusted Logic S.A.

Mondex Card

Smart card for electronic financial transactions

Issued by NatWest in 1996

Proposed as case study in Grand Challenge

KeY used to verify a reference implementation in Java Card
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Safety Case Study

Avionics Software

Java implementation of a Flight Manager module at Thales Avionics

Comprehensive specification using JML, emphasis on class invariants

Verification of some nested method calls using contracts

Virtual Machine for Real Time Secury Java

Verification of some library functions of the Jamaica VM from Aicas
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Integrating Verification and Testing: Current Directions of Work

Some Current Directions of Research in KeY

Multi-threaded Java

Integration of deduction and static analysis

Integration of verification and testing

Counter examples

Symbolic error propagation

Verification of MISRA C

Proof visualization, proving as debugging

Extension of dynamic logic for multi-threading
Symbolic execution calculus
Prototype available, StringBuffer class verified
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Some Current Directions of Research in KeY

Multi-threaded Java

Integration of deduction and static analysis

Integration of verification and testing

Counter examples

Symbolic error propagation

Verification of MISRA C

Proof visualization, proving as debugging

Mutual call of analyser/prover, common semantic framework
Implementation of static analysis in theorem proving frame
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Some Current Directions of Research in KeY

Multi-threaded Java

Integration of deduction and static analysis

Integration of verification and testing

Counter examples

Symbolic error propagation

Verification of MISRA C

Proof visualization, proving as debugging

Generation of test cases from proofs
Symbolic testing
New coverage criteria
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Some Current Directions of Research in KeY

Multi-threaded Java

Integration of deduction and static analysis

Integration of verification and testing

Counter examples

Symbolic error propagation

Verification of MISRA C

Proof visualization, proving as debugging

Generate counter example from failed proof attempt
Counter example search as proof of uncorrectness
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Some Current Directions of Research in KeY

Multi-threaded Java

Integration of deduction and static analysis

Integration of verification and testing

Counter examples

Symbolic error propagation

Verification of MISRA C

Proof visualization, proving as debugging

Symbolic error classes modeled by formulas
Error injection by instrumentation of JavaCard DL rules
Symbolic error propagation via symbolic execution
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Some Current Directions of Research in KeY

Multi-threaded Java

Integration of deduction and static analysis

Integration of verification and testing

Counter examples

Symbolic error propagation

Verification of MISRA C

Proof visualization, proving as debugging
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More Information

The KeY Book

B. Beckert, R. Hähnle, P. H. Schmitt (eds.)

Verification of Object-Oriented Software:
The KeY Approach

Springer-Verlag, LNCS 4334, 2007.

Web site

www.key-project.org
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