KeY Quicktour

Thomas Baar Reiner Hahnle
University of Karlsruhe Chalmers University of Technology
Dept. of Computer Science Dept. of Computing Science
D-76128 Karlsruhe S-41296 Gothenburg
baar@ira.uka.de reiner@cs.chalmers.se
Steffen Schlager Sonja Lauer
University of Karlsruhe University of Karlsruhe
Dept. of Computer Science Dept. of Computer Science
D-76128 Karlsruhe D-76128 Karlsruhe
schlager@ira.uka.de lauer@ira.uka.de
Contents

1 Introduction/Prerequisites
1.1 Version Information . . .. .. ... ... ... L.
1.2 Logical Foundations . . .. ... .. .. ... ... ... .......
1.3 The KeY-Prover . . .. .. .. .. .. ... ... ... .. ...

2 Tutorial Example

3 Creating a Formal Specification in the OCL
3.1 TheBasicIdea . . .. ... .. . . . ... ..
3.2 Application in the Tutorial Example . . . . . .. .. ... ... ...
3.3 Constraints in Natural Language and OCL . . . .. .. .. ... ..

4 How to Parse a Specification
4.1 Application in the Tutorial Example . . . . . .. .. ... ... ...

5 How to Analyse/Verify a Specification
5.1 Informal Description of Options for Analysis and Specification . . .
5.2 Application in the Tutorial Example . . . . . . . .. ... ... ...

6 Current Limitations and Restrictions

A Formal Description of Generated Proof Obligations
A.1 Options Offered in the Class Menu . . . . . .. ... .. ... ....
A.2 Options Offered in the Method Menu . . . . . .. .. .. ... ....

NN NN

[



1 Introduction/Prerequisites

This document constitutes a tutorial introduction to the KeY-Tool. The KeY-Tool is
an integrated environment for creating, analysing, and verifying UML/OCL models
and their implementation. The main focus of the KeY-Tool are class diagrams.
Other kinds of diagrams are currently not supported yet.

The KeY-Tool is an extension of the commercial CASE tool TOGETHER CON-
TROLCENTER! (in the following referred to as TOGETHERCC). We assume that the
reader is familiar with the CASE tool TOGETHERCC. Here we concentrate on the
description of the KeY extensions. Furthermore, we assume that the KeY-Tool has
been already installed successfully.

The KeY-Tool is designed as an add-on to TOGETHERCC. Thus, all features
offered by TOGETHERCC are available and the user can work with a powerful UML
CASE tool in a familiar environment. The design philosophy of the KeY-Tool is to
encourage but not to force users to take advantage of formal methods. Users are
able to decide themselves at which point the KeY extensions are useful.

For a longer discussion on the architecture, design philosophy, and theoretical
underpinnings of the KeY-Tool please refer to [3].

The most recent version of the KeY-Tool can be downloaded from http://
download.key-project.org.

1.1 Version Information

This tutorial was tested for TOGETHERCC version 6.2.

1.2 Logical Foundations

Deduction with the KeY-Prover is based on a sequent calculus for a Dynamic Logic
for JavaCard (JavaDL) [4]. A sequent has the form ¢1,..., ¢, F ¥1,..., ¢, (m,n >
0), where the ¢; and t; are JavaDL-formulas. The formulas on the left-hand side
of the sequent symbol + are called antecedent and the formulas on the right-hand
side are called succedent. The semantics of a sequent is the same as that of the
formula (¢1 A ... A dm) — (Y1 V... V,) (m,n >0).

1.3 The KeY-Prover

In this section we give a short introduction into the handling of the KeY-Prover
which is shown in Figure 1. The KeY-Prover window consists of three panes where
the lower left pane is additionally tabbed. Each pane is described below.

Upper left pane: Every problem you want to prove with the KeY-Prover is loaded
in a proof environment. In this pane all currently loaded problems respectively
their proof environments are listed.?

Lower left pane: This pane contains the following four tabs.

User Constraint: To explain this functionality would go beyond the scope
of this quicktour. It won’t be required in the sequel.

Rules: In this pane all the rules available in the system are indicated. KeY
distincts between aziomatic taclets (rules that are always true in the given
logic), lemmas (that are derived from and thus provable by axiomatic

1 To obtain the tool TOGETHERCC please contact http://www.borland.com/together/. A free
time-restricted trial version is available.

2During this quicktour you should always load a problem in a new proof environment. So if
you are asked whether you want to re-use a proof, please select Cancel.



taclets) and built-in rules (for example how certain expressions can be
simplified).

By doubleclicking on a rule of the list, a window comes up where the
corresponding rule is explained.

Proof: This pane contains the whole proof tree which represents the current
proof. The nodes of the tree correspond to sequents (goals) at different
proof stages. Click on a node to see the corresponding sequent and the
rule that was applied on it in the following proof step (except the node
is a leaf). Leaf nodes of an open proof branch are coloured red whereas
leaves of closed branches are coloured green.

Pushing the right mouse button on a node of the proof tree will open a
pop-up context menu. If you choose now Prune Proof, the proof tree will
be cut off at this node, so all nodes lying below will be deleted. Choosing
Apply Strategy will start an automatic proof search (see later Automatic
Proving), but only on that branch the node you had clicked on belongs
to.

Goals: In this pane the open goals of a certain proof (corresponding to one
entry in the upper left pane) are listed. To work on a certain goal just
click on it and the selected sequent will be shown in the right pane.

Right pane: In this pane you can either inspect inner, already processed nodes of
the proof tree or you can continue the proof by applying rules to the open
goals, whichever you choose in the left pane.

Rules can be applied either interactively or non-interactively using strategies:

Interactive Proving: Moving the mouse over the current goal you will no-

tice that a subterm of the goal is highlighted (henceforth called the focus
term). Pressing the left mouse button displays a list of all proof rules
currently applicable to the focus term.
A proof rule is applied to the focus term simply by selecting one of
the applicable rules and pressing the left mouse button. The effect is
that a new goal is generated. By pushing the button Goal Back in the
main window of the KeY-Prover it is possible to undo one or several rule
applications. Note, that it is currently not possible to backtrack from an
already closed goal.

Automatic Proving: Automatic proof search is performed applying so-called
strategies which can be seen as a collection of rules suited for a certain
task. To determine which strategy should be used select menu item Proof
— Strategy. A dialog pops up where you can define the active strategy
from a set of available strategies. If you want to prove some properties
of a JAvA-program you should use the strategy Simple JavaCardDL, as
in the sequel of this quicktour. For pure logic problems use the strategy
Simple FOL. Furthermore, you can set the maximum number of auto-
matic rule applications. If you want to save your settings (chosen strategy
and maximum number of rule applications) for further proofs push the
button Save as Default. To save them only for the current proof just
push the OK - button. To start (respectively continue) the proof push
the run strategy-button on the toolbar labelled with the > - symbol. If
the checkbox Autoresume strategy is selected, the prover automatically
resumes applying the strategy after an interactive rule application.

Another way to define the strategy that should be used during the current
proof is to click on the field right to the run strategy-button. In this field



the current strategy is shown. After clicking on it, a list of all available
strategies comes up from which you can select one. By moving the blue
arrow to the left or to the right you can also set the maximum number
of automatic rule applications.

In the following we describe some menu items available in the main menu of the
KeY-Prover. In this quicktour we will confine on the most important ones.

File — Save: Saves current proof. Note, that if there are several proofs loaded
(see the upper left pane) only the one currently worked on is saved.

File — Exit: Quits the KeY-Prover (be warned: the current proof is lost!).

View — Pretty&Untrue: This menu item allows you to toggle between two dif-
ferent views. If unselected, terms and formulas are displayed in their internal
representation which is often very hard to read. For example, the formula
5 < 6 would be displayed as I¢(5,6). For a user-friendly representation of
terms and formulas select PrettyésUntrue. Be warned: Some rule applications
require the user to provide a term or formula. However, using the user-frienly
syntax to enter terms or formulas is currently not possible (therefore “un-
true”) and the syntax of the internal representation has to be used. Thus, if
you want to enter the formula 5 < 6 you have to type I¢(5,6).

View — Smaller: Decreases the font size in the right prover pane.
View — Larger: Increases the font size in the right prover pane.

Proof — Abandon Task: Quits the currently active proof. All other loaded
problems will stay in the KeY-Prover.

Options — Taclet Options Defaults : In the following, each taclet option is
described briefly. The respective default settings are given in parenthesis.
What is behind all this goes beyond the scope of this quicktour. Please use
the default settings unless you know what you are doing.

transactionsPolicy: Specifies how to handle the JavaCard Transactions (abort-
Transaction).

programRules: Changes between different program languages (Java)?3.

initialisation: Specifies if static initialisation should be considered or not
(disableStaticInitialisation).

intRules: Here you can choose between different semantics for Java integer
arithmetic (for details see [6]). Three choices are offered:

e Java semantics: Corresponds exactly to the semantics defined in the
Java language specification. In particular this means, that arith-
metical operations may cause over-/underflow.

e Arithmetic semantics ignoring overflow (default): Treats the prim-
itive finite Java types as if they had the same semantics as mathe-
matical integers with infinite range.

e Arithmetic semantics prohibiting overflow: Same as above but the
result of arithmetical operations is not allowed to exceed the range
of the Java type as defined in the language specification.

nullPointerPolicy: Specifies if nullpointer-checks should be done or not
(nullCheck).

3Ensure that Java is selected.



The current setting of the taclet options can be viewed by choosing Proof —
Show Active Taclet Options.

Options — Update Simplifier: Here you can define policies how updates should
be simplified. As the description of Taclet Options Defaults above, this goes
beyond the scope of this quicktour. Please use the default settings if you are
not familiar with it.

Options — Decision Procedure Configuration: Distincts between the two dif-
ferent integer decision procedures Simplify* [1] and ICS [2]. During this quick-
tour, the procedure Simplify should be selected.

Options — Compute Specification: Here you can choose between different set-
tings for the automatic computation and specification.

Options — Minimize interaction: If this checkbox is selected, checkbacks to
the user are reduced. This simplifies the interactive rule application.

Options — Suggestive names for auxiliary variables: Influences the naming
of introduced variables.

Options — Proof Assistant: By selecting this checkbox you can turn off the
proof assistant.

Options — Save Settings: Here you can save changes to the settings in menu
Options permanently, i.e. for future sessions with the KeY-Prover.

Tools — Extract Specification: Extracts the specification of a program.

2 Tutorial Example

In this tutorial we use a simple paycard application (project paycardInteractive)
to illustrate some basic capabilities offered by the KeY-Tool. The tutorial example
is a standard TOGETHERCC project (contained in the file paycard.tpr) and can
reside anywhere in the file system of your computer. After opening the project you
can inspect the class structure of the project as depicted in Figure 2 (select tab
<default>, if necessary).

The class diagram shown in Figure 2 consists of the six classes PayCard, PayCard-
Junior, CardException, ChargeUI, IssueCardUI, and Start. The class Start
provides the main method of the application. You can compile and execute the
application from within TOGETHERCC by selecting the menu item Run — Run
or by using the function key F9. Try this now. TOGETHERCC first compiles the
Java source code and immediately executes it afterwards. If TOGETHERCC re-
ports errors during compilation one reason could be a wrong setting in project
options. Please change in the project options (Tools — Options — Project Level)
the value of Builder — Built-in Javac — Compiler Options — Destination directory
to $PROJECT DIRS$ and try again.

The tutorial example is a simple paycard scenario. Running the application, in
the first dialog the customer (user of the application) can obtain a paycard with
a certain limit: a standard paycard with a limit of 1000, a junior paycard with a
limit of 100, or a paycard with a user-defined limit. The initial balance of a newly
issued paycard is zero. In the second dialog the customer may charge his paycard
with a certain amount of money. But the charge operation is only successful if the

4Simplify is part of ESCJava2. We have been allowed to offer a binary download version on
our website.
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Figure 1: The KeY-Prover.

current balance of the paycard plus the amount to charge is less than the limit of
the paycard. Otherwise, i.e. if the current balance plus the amount to charge is
greater or equal the limit of the paycard, the charge operation does not change the
balance on the paycard and, depending on the class, either an attribute counting
unsuccessful operations is increased or an exception is thrown. The KeY-Tool aims
to formally prove that the implementation actually satisfies such requirements. For
example, one can formally verify the invariant that the balance on the paycard is
always less than the limit of the paycard.

The static structure of the example application is modelled in the class diagram.
The intended semantics of some classes is defined with the help of invariants denoted
in the Object Constraint Language (OCL). Likewise, the behaviour of most methods
is described in form of pre-/postconditions in the OCL.

3 Creating a Formal Specification in the OCL

Rigorous specification is a necessary prerequisite to discuss the “correctness” of a
UML model and its implementation in a meaningful way. This is a considerable
obstacle, in particular, for novice users in formal methods. The KeY-Tool helps
users to come up with meaningful requirement specifications in the OCL.

3.1 The Basic Idea

Probably only few software developers feel happy when faced with the task of writ-
ing a specification in a formal language like the OCL. Many developers are not
familiar with that kind of activity and refuse to learn how to write formal con-
straints for the system they intend to build. The situation is not helped by the
fact that most CASE tools treat formal constraints just as a kind of comment. In
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Figure 2: Class Structure of Tutorial Example

practice, requirement specifications are mostly written in natural language, with all
its ambiguities. Formal specification languages are rarely, if ever, used.

For the user of the KeY-Tool the situation is different. Since the KeY-Tool can
analyse and give feedback on OCL constraints (see Section 5) they are actually and
immediately useful. Hence, the user has a new motivation to formulate constraints
in a formal language. But the KeY-Tool can even support the user in generating
formal specifications in the first place. The technology behind this is a template-
like and easy-to-understand mechanism. Consider, for example, the behavioural
specification of class PayCard where we require that the value of the attribute
balance is always greater or equal zero and less than limit. Such requirements
where the value of an attribute attr of a class aClass has to be within a certain
interval occur quite often. The specification of such a requirement has the following
form in general:

context aClass:
inv: JlowerBound < attr and attr < upperBound

There is a plethora of similar constraints needed in related situations (for exam-
ple AttributeHasKeyProp, and, as examples for pre-/postconditions, ProduceFor-
AssociationSet, GetFromAssociationSet, and IncreaseAttribute). The KeY-
Tool contains predefined blueprints (or templates) of such constraints which we call
KeY-Idioms.

In addition to KeY-Idioms there is a slightly more complicated way to generate
a specification, called KeY-Pattern. Again, the basic idea is to use blueprints. In
contrast to KeY-Idioms, where the blueprints are merely attached to a single class
or method, they are now attached to OO design patterns like Composite, Observer,
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Figure 3: Generation of OCL Expressions.

etc. The KeY-Patterns can be used in the same way as the other design patterns
that are available in TOGETHERCC.

Each KeY-Pattern contains a set of blueprints that are selected and instantiated
by the user during a customisation dialog. As it is the case for standard patterns,
TOGETHERCC generates a concrete design after finishing the dialog. In addition,
concrete OCL constraints are generated as instances of OCL blueprints.

3.2 Application in the Tutorial Example

We demonstrate how to generate a specification for the class PayCard, i.e. an
invariant, which states that the value of the attribute balance is always greater
or equal zero and less than limit. First, make sure that a specification for this
class does not already exist. Should the occasion arise, please delete it from the
sourcecode. Now, use the mouse to select class PayCard in the UML diagram and
push the right mouse button to get a pop-up context menu. Please select the menu
item Choose Pattern.... A pattern selection dialog lists all predefined patterns and
you should now select KeY Idiom — InvariantConstraints, which lists a number of
available OCL blueprints for class invariant specification.

Please choose the blueprints AttributeLowerBound and AttributeUpperBound
by clicking on the according checkboxes and fill in the required slots: “Attribute
with lower bound” should be “balance”, “Lower bound for attribute” should
be “0”, “lowerOperator” should be “>”, “Attribute with upper bound” should
be “balance”, “Upper bound for attribute” should be “limit”, and



“upperOperator” should be “<” (see Figure 3)°. After pushing the Finish but-
ton, the pattern dialog disappears and the intended specification is generated and
added as a comment to the sourcecode of class PayCard. As this example shows,
it is possible to select several blueprints simultaneously. Then, the resulting OCL
specification is the conjunction of the instantiated OCL blueprints.

In a similar way, the blueprints of the KeY-Patterns are instantiated. Note, that
in case of KeY-Patterns the relevant part of the current class diagram is generated
and selecting a class prior to invocation of the dialog is not necessary.

3.3 Constraints in Natural Language and OCL

This chapter is currently not up-to-date as we are migrating to a new
GF version, which leads to an improved natural language rendering (see
http://www.cs.chalmers.se/“krijo/gfspec/).

A tool for simultaneous development of natural language and OCL constraints
is currently being integrated into the KeY-Tool. It consists of a syntax directed
editor for constraints. Here, we will see an example of how to use this syntax editor
to construct a simple invariant.

At the current level of integration, the syntax editor can be started from the
context menu of classes and methods in TOGETHERCC, for the editing of invariants
or pre- and postconditions, respectively. This tool is work in progress, we refer to
the (forthcoming) manual for important details and limitations which we omit here.

The basic idea of the editor is that the user constructs an abstract syntax tree
of a specification (for instance, an invariant of a class), by selecting alternatives
from menus. The syntax tree is at all times presented in both OCL and English
to the user. Since the editing always takes place by selection from menus, the
editor can ensure that only syntactically correct specifications are constructed. Type
correctness is also ensured.

Creating a New Class Invariant for PayCard: First, delete any previously
added invariant for the class PayCard from the sourcecode. Then, just right-click
on the class in the “Designer” pane of TOGETHERCC, and select Edit Invariant
[GF] from the KeY part of the context menu which appears.

The syntax editor will now start. This usually takes a little while: the editor
window might appear quickly, but it is not ready for input until some text has
appeared in the three main areas of the window (which are blank to start with).
Figure 4 shows what the editor window will look like when it is ready for input.

The Editor Window: The editor window consists of three main parts. The
upper left part shows an abstract syntax tree of the invariant we are editing. The
upper right part also shows the abstract syntax tree (as a string), but also the
rendering of the abstract syntax into OCL and English. Unfinished parts of the
invariant are shown as question marks (also referred to as metavariables)—these
mark spots which have yet to be filled in by the user. The current metavariable is
highlighted. When we start editing a new invariant, the OCL and English parts are
empty (i.e. just a 7?” is shown). The abstract representation (the first few lines in
the upper right window) contains some information which is not explicit in English
or OCL (for instance that the class of the invariant we are editing is PayCard), and
is therefore not completely empty.

Editing proceeds by filling in question marks which is done by selecting refine-

(3}

ments from the menu in the lower half of the editor window. The “r” in each list

5The order of the parameters may differ, don’t mind if that is the case.
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Figure 4: Editing a new invariant in the syntax editor

(135}

item just stands for ”refine”, what comes after the “r” is the name of the refine-
ment (from the abstract syntax). To select a refinement, just double-click on it.
The current metavariable (question mark) will then be filled in.

Choosing Refinements: We use an even simpler example than above: we will
add the invariant that the balance of a PayCard is always greater than or equal to
zero. The first step would be to find a refinement corresponding to the greater-
than-or-equal relation for integers. To do this, we need to know that there are ways
to make the list of refinements more informative than just showing a name from
the abstract syntax. We can choose to show refinements in abstract syntax or in
English®, and we can choose to show type information or not.” These choices are
made using the Menus menu in the upper right corner of the editor window. In
this menu, plain and printname refers to abstract syntax and English, respectively.
The alternatives typed and untyped refers to type information.

To find a suitable refinement, we can scroll through the list of refinements in
the lower half of the editor window, possibly switching between abstract syntax and
English, or typed and untyped presentation using the Menus menu. Eventually, we
should find the refinement intGTE, “? is greater than or equal to 77 in English.
The type for intGTE is Instance Integer — Instance Integer — Sent, i.e. it
takes two instances of a class of integers and creates a sentence. Figure 5 shows the
editor after the selection of this refinement (by double-clicking).

6This is a current limitation, the user should be able to see refinements in abstract syntax, in
OCL, or in English.

7A current bug is that showing refinements in English and also with type information results
in a somewhat garbled display, where the type information partly overlaps the English text.

10



' _GF Syntax Editor —’ﬂﬂg

File  Languages Wiew

SPECS |-N.ew v|| open || Save || New Tapic ||Fmer VHMEI’:L;S_ -|

= [ Paycardjunior_invHe : Const PavCardJ Unior_invHC
= £ 4(x_0 : VarSelf PayCardju (s O TV
Bl [ imcTE: Sent e
73 Instance Integer (thTE
74 :Instance Integer 73
24

)
)

o e WK WK kK

L ==74

oW WK WK KKK i

| is areater than or equal to 74

4

‘ » ype=Instance Integer

B

Select Action on Subiterm

T*

r PayZardlunior_unsuccessfulOperations_Attr
I PayCard_available_Oper

r PayCard_balance_Attr —
r PayCard_id_Attr L]
r PayCard_limit_nttr

r PayCard_unsuccessfulOperations_fttr
r T

r Zero

rany -

GF command || Read HMndlfy VH Alpha H Random || Undo |

Figure 5: The first refinement step

Navigation: If there is more than one metavariable (as in Figure 5), we can fill
them in in any order. The button bar in the middle of the editor window makes
it possible to navigate the syntax tree. For instance, the buttons marked “7<”
and “>7" are used to step back and forward among the metavariables. The list
of refinements always refers to possible ways of filling in the current metavariable
(which is highlighted).

The left metavariable in the example can be filled in by choosing the refinement
PayCard_balance_Attr and then self. For the right one we can simply choose the
refinement Zero.

Finishing Up: Editing proceeds until there are no more metavariables to fill in.
In the case of the example, we end up with the OCL constraint self.balance >=
0, and the English rendering “the balance of the payCard is greater than or equal
to zero”. We can then just close the editor window, and the invariant will appear in
the sourcecode of class PayCard as well as in the tab “Properties” of the “Inspector”
pane in TOGETHERCC.

4 How to Parse a Specification

We are now ready to take a closer look on the ways how to make use of OCL
constraints in model analysis and verification of correctness properties.

A specification consists of OCL expressions for invariants of classes and for pre-
/postconditions of methods. Of course, OCL expressions can only live in the context
of a UML diagram (and therefore UML diagrams and even the implementation in

11



a target language are also part of the specification), but we concentrate on OCL
expressions for now.

The first step is to ensure syntactical correctness of OCL expressions. The KeY-
Tool features an integrated OCL parser which can be invoked via a menu item in the
context menu. The currently used parser was developed at Dresden University of
Technology (see http://dresden-ocl.sourceforge.net/index.html for details).
It can also be used as a stand-alone system.

4.1 Application in the Tutorial Example

To parse OCL constraints, the KeY-Tool offers menu items Parselnvariant and
ParseMethodSpec, respectively, as part of the context menus of classes and methods
(to open it push the right mouse button on a class respectively a method and then
select KeY on the shown pop-up menu).

As an example let us invoke Parselnvariant in class PayCard and the parser will
tell you that the invariant (balance > 0) and (balance < limit) is syntacti-
cally well-formed. Try to modify the invariant into a syntactically incorrect OCL
expression (say, by misspelling balance as ballance). The parser points to the
position, where the error occurred.

Please try also to invoke ParseMethodSpec, e.g., in class PayCard on method charge.

5 How to Analyse/Verify a Specification

Analysis: OCL constraints make the semantics of a class diagram more precise.
A minimal requirement that must be fulfilled by these constraints is that it is
actually possible for a model/implementation to satisfy them. In other words,
OCL constraints must be consistent or free of contradictions. The KeY-Tool
includes functionality to analyse the constraints.

Verification: OCL constraints, in particular, pre- and postconditions, can be seen
as abstractions of an implementation. In this context, an implementation is
called correct if it actually implies properties expressed in its specification.
The KeY-Tool includes functionality to verify® the correctness of an imple-
mentation with respect to its specification.

In each case, the KeY-Tool generates suitable proof obligations in terms of logical
formulas. When analysing a specification no code needs to be considered, hence the
resulting proof obligations are formulas of sorted first-order predicate logic. On
the other hand, if the correctness of an implementation has to be verified, proof
obligations will contain code of the target programming language (JAvA CARD, in
our case). For these we use a Dynamic Logic? that is able to express properties of
JAvA CARD programs.

In both cases, proof obligations are passed to the integrated interactive theorem
prover KeY-Prover (see Section 1.3), which is able to handle predicate logic as well
as Dynamic Logic. The KeY-Prover was developed as a part of the KeY-Project
and is implemented in JAVA. It features interactive application of proof rules as well
as automatic application controlled by strategies. In the near future more powerful
strategies will be available.

In the following the ideas behind the various options for analysis and verification
are described informally. A formal description of the generated proof obligations is

8Sometimes analysis of a specification is called horizontal verification and what we call verifi-
cation is called vertical verification.
9Dynamic Logic can be seen as an extension of Hoare logic.
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Figure 6: Options offered by the Class Menu.

contained in Appendix A. Examples of application within the context of the case
study in this tutorial are described in Section 5.2.

5.1 Informal Description of Options for Analysis and Speci-
fication

All options can be invoked via context-sensitive menu items. Therefore, every option
“knows” the model element it is applied to: in case of a class menu item this is the
current class and in case of a method menu item this is the current method in the
current class.

The proof obligations generated by invoking one of the options are derived from
the invariant, the pre- and postconditions, and possibly the target code attached to
the current model element.

Both, invariants and pre-/postconditions can be empty. In this case, the KeY-
Tool assumes them to be true by default. Note that this differs from some other
approaches. In Eiffel, for example, invariants are “inherited” from the parent class
(see [5]).

In the following, options whose proof obligations are formulated in predicate
logic are marked with (PL) and proof obligations formulated in Dynamic Logic are
marked with (DL).

5.1.1 Options Offered in the Class Menu

Figure 6 shows the options offered in the class context menu (to open the menu
select a class and push the right mouse button, then select KeY).

13



StructuralSubtyping (PL): Structural subtyping is one aspect of Liskov’s sub-
stitution principle, namely that objects of classes inherited from class C' may
be used in place of objects from class C' itself. The principle implies that an
object of current class C'C' must satisfy all constraints declared in all parent
classes of CC.

In particular, the generated proof obligation ensures that the invariant (that
is the structural aspect) of the current class CC' is logically stronger than the
one in the immediate parent class.

5.1.2 Options Offered in the Method Menu

Figure 7 shows the options offered in the method context menu (to open the menu
select a method and push the right mouse button, then select KeY).

Here, KeY distincts between Total Correctness, Partial Correctness and Through-
out Correctness of a method. Under the first two menu items you will find the same
options, namely PreservesInvariant, EnsuresPostCondition and Correctness (which
will be explained in a moment). The difference is, that if you want to prove one of
these properties with respect to total correctness, the prover ensures additionally
the termination of the method. Whereas the termination won’t be considered if you
choose this property with respect to partial correctness. That means that in the
first case it will be guaranteed that the method always meets this property, and in
the second that the property will be satisfied in case that the method terminates.
The menu item Throughout Correctness refers to some throughout property of the
method.

In the following, the properties of a method that can be checked by the KeY-
Prover will be explained.
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Figure 7: Options offered by the Method Menu.

Total/Partial Correctness: The following three options are offered.

PreservesInvariant (DL): Correctness of an implementation of a method
means that the implementation obeys the invariant of the class and en-
sures the postcondition of the method. Here it is checked that the ex-
ecution of a method obeys the invariant under the assumption that the
invariant and a possibly existing precondition hold.

Note that an invariant can be violated even if the obligation generated
here is verified for every method (and constructor) of its class Cp,, be-
cause methods of other classes might manipulate the state of objects of
Cyn. This phenomenon is sometimes called Indirect Invariant Effect [5,
p.405] or Representation Exposure.

EnsuresPostCondition (DL): A proof obligation is computed ensuring that
the postcondition of the current method holds after being executed under
the assumption that possibly existing precondition and invariant hold.

Correctness (DL): Identical to the combination of PreservesInvariant plus
EnsuresPostCondition.

Throughout Correctness — PreservesThroughout (DL): It is checked that
the throughout property of the current method is satisfied. That means that
the method obeys the strong invariant during the execution of the method,
therefore after each execution of a statement.
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5.2 Application in the Tutorial Example

Now we apply the described options in the tutorial example. First, we demonstrate
the generation of proof obligations, then we show how these can be handled by
the KeY-Prover. Please make sure that the default settings of the KeY-Prover are
selected (see chapter 1.3), especially that the current strategy is Simple JavaCardDL
and the maximum number of automatic rule applications is 1000. Be warned that
the names of the proof rules and the structure of the proof obligations may be
subject to changes in the future.

5.2.1 Options Offered in the Class Menu

StructuralSubtyping: Invoked from the context-sensitive menu of class PayCard-
Junior, this option starts the KeY-Prover with the proof obligation
=
((self.balance > 0 &
self.balance < PayCardJunior.PayCardJunior::juniorLimit) &
PayCardJunior.PayCardJunior: :juniorLimit < self.limit)
-> (self.balance < self.limit & self.balance > 0).10

This proof obligation is a pure first-order predicate logic formula. The premiss
of the implication is the translated invariant of the subclass PayCardJunior
and the conclusion is the translated invariant of the superclass PayCard.!!
There are two ways to prove this with the KeY-Prover:

Automatic: Just push the run strategy-button (which is the button with the
> - symbol) to start the proof.
The KeY-Prover simplifies the open goal automatically and informs you
that the goal could be proven. You can quit the KeY-Prover with menu
item File — Ezit.

Interactive: To prove the proof obligation in the example interactively, per-
form the following proof steps:

1. Apply rule imp_right to the whole formula in the succedent in order
to remove the implication. As a result, the premiss of the implication
becomes the antecedent of the sequent and the conclusion becomes
the succedent.

2. Apply rule and_left to the whole formula in the antecedent. This
rule removes the conjunction operator.

3. Apply rule and_left to formula
self.balance > 0 &
self.balance < PayCardJunior.PayCardJunior::juniorLimit
to remove the conjunction.

4. Apply rule and_right to the whole formula in the succedent. Formulas
in the succedent of a sequent are implicitly disjuntively connected.
Thus, the conjunction operator cannot just be replaced by a comma
as it is the case in the antecedent, where the formulas are implicitly
conjunctively connected. Rather, applying rule and_right results in
two sequents, each of them containing one of the conjunctives in
the succedent. After the rule application, the proof tree (which is
shown in the tab Proof of the lower left pane) will therefore contain
a branch.

101f the formula displayed in the KeY-Prover looks different enable the checkbox Prettyé Untrue
from the menu group View.
" The translation is necessary because the syntax of the OCL and predicate logic differs.
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5. Now consider Case 1 in the proof tree at first. The formula
self.balance > 0 is contained as well in the antecedent as in the
succedent. This goal can be closed by applying rule close_goal to
self.balance > 0 in the succedent because a sequent of the form
o, I'F ¢, A is an axiom.

6. There is still an open goal in Case 2. In the succedent of this se-
quent we have the formula self.balance < self.limit and in the
antecedent we have
self.balance < PayCardJunior.PayCardJunior::juniorLimit
and PayCardJunior.PayCardJunior: : juniorLimit < self.limit.
To close this goal we have to make use of the transitivity of the
relation “<”. This is done by applying rule less_trans to formula
(PayCardJunior.PayCardJunior:: juniorLimit < self.limit).
After doing that you can click on the node preceding the current
open goal to see the explanation of this rule. It has the following
effect: The formula in the antecedent it was applied to (10 < il) is
highlighted in dark green. If a formula of the form i < 10 exists in
the antecedent of the sequent (highlighted in light-green), then the
new formula i < il will be added. Thus, the formula self.balance
< self.limit is added in the antecedent of our example.

7. Now, on both sides of the sequent we have the formula self.balance
< self.limit and, as above, we can close this goal by applying rule
close_goal on self .balance < self.limit in the succedent.

5.2.2 Options Offered in the Method Menu

We only consider the options PreservesInvariant, EnsuresPostCondition and Cor-
rectness with respect to Total Correctness, because we want the prover to ensure
that the corresponding method terminates. A non-terminating method would not
be as requested in this example.

PreservesInvariant: Try to apply this to method charge in class PayCard. Prov-
ing this property requires to verify the actual implementation of charge
against the invariant. Therefore, the generated proof obligation contains JAVA
code in the generated Dynamic Logic formula.

First, select checkbox Autoresume strategy and then start the proof by pushing
the run strategy-button. When the strategy stops, one goal is still open. This
goal cannot be proven automatically by applying the strategy, thus we have
to continue either interactively or by running the decision procedure Simplify.
The latter is done by pushing the button Run SIMPLIF'Y, which will succeed
right away.

If you want to prove the goal interactively apply rule add_less to the formula
(self.balance) < 0 in the succedent of the sequent and enter amount in the
input slot Instantiation for variable i1 of the rule instantiation dialog. The for-
mula will be replaced by (amount + self.balance) < (amount + 0). After
that, the prover resumes automatically by applying rule add_zero_right (which
results in deleting the redundant part + 0 on the right side of the new for-
mula) and then immediately stops again. Now, apply rule switch_params
interactively to the first part of the new created formula. Then the prover
once again resumes automatically and the goal can be proven by running the
strategy.

EnsuresPostCondition: We demonstrate this options by means of method check-
Sum in class PayCardJunior. The postcondition of this method states that
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the return value is 1 if the parameter sum is less than juniorLimit and O if
sum is greater or equal juniorLimit.

Proving that the implementation of method checkSum ensures the postcon-
dition can be done automatically applying the current strategy Simple Java-
CardDL.

Correctness: Again we use method checkSum in class PayCardJunior to demon-
strate this option. Once again the goal can be proven automatically applying
the strategy.

6 Current Limitations and Restrictions

The current version of the KeY-Tool is far from being a polished and universally
applicable tool. Here is a list of open issues we are now working on and intend to
resolve in near future:

1. Supported platforms:

e Linux is tested, Solaris and MacOS X should work as well

e Windows NT, 2000 and XP should work when using the KeY byte code
version.

2. Restrictions on UML models:

e when invoking an analysis/verification option all involved classes (usually
the current class and the parent class) must be members of the current
diagram

3. Restrictions of the KeY-Prover:

e manual not yet available (will be available soon!)
e powerful automated deduction system not integrated

e the following words are currently reserved by KeY and should not occur
as attribute names:

java, new, branch, notsimple, include, LDTs, nostandardrules,
typeof, object, number, intliteral, longliteral, genmeric,
extends, oneof, program, svlist, all, ex, true, false, find,
if, varcond, containsquery, noninteractive, recursive,
displayname, helptext, not, free, in, depending, on, close,
goal, replacewith, add, addrules, addprogvars, heuristics,
sorts, options, with, schema, variables, local, rigid,
predicates, functions, formula, modal, operator, rules,
proof, rule, term, inst, ifseqformula, interactive, heur,
problem, waryAll, waryEx, same, compatible, sameUpdateLevel,
smaller, than, quotes, ThisReference, ocl, keylLog, keyUser,
keyVersion, keySettings, modifies, contracts

#inType, #isObject, #inLong, #inInt, #inChar, #inShort,
#inByte, #add, #sub, #mul, #div, #jdiv, #mod, #jmod, #less,
#greater, #leq, #geq, #eq, #JavalntUnaryMinus, #JavalntAdd,
#JavaIntSub, #JavalIntMul, #JavaIntDiv, #JavalIntMod,
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#JavalntAnd, #JavalntOr, #JavalntXor, #JavalntComplement,
#JavalntShiftRight, #JavaIntShiftLeft,
#JavalntUnsignedShiftRight, #JavalLongUnaryMinus,
#JavalongAdd, #JavalongSub, #JavalLongMul, #JavalongDiv,
#JavalongMod, #JavalongAnd, #JavalongOr, #JavaLongXor,
#JavalongComplement, #JavalongShiftRight, #JavalLongShiftLeft,
#JavalongUnsignedShiftRight, #moduloByte, #moduloShort,
#moduloInteger, #moduloLong, #staticanalysis, #ResolveQuery,
#constantvalue, #lengthReference, #transient, #shadowed,
#concat, #introduce, #allSubtypes

4. Restrictions on OCL translation:

e problem: unsupported at the moment are: allInstances, Set{l..n}
(and similar)
workaround: express it as a dynamic logic formula in a .key-file.

5. Restrictions on JDK:

e problem: tool tips are flickering occasionally
workaround: reduce the number of tool tip lines in the menu View
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A Formal Description of Generated Proof Obliga-
tions

In general, proof obligations are based on assertions (invariants, preconditions, post-
conditions) attached to a current element (class or method) or its (direct) parent
classes!?.

To facilitate the description of the proof obligations we take advantage of the
following abbreviations, where we assume to have a total order on parent classes

with index set P = {1,...,n}.

Class INV invariant of the current class
INVFE: invariant of the i-th parent class

Method m.PRE precondition of method m in current class
m.POST postcondition of method m in current class
m.PRE": precondition of method m in i-th parent class

m.POST""  postcondition of method m in i-th parent class

With the exception of postconditions (m.POST, m.POST*") the abbreviations
stand for pure predicate logic (PL) formulas (at this stage we assume that the OCL
expressions from the UML model were translated already into PL formulas).

Postconditions are PL formulas up to @Qpre-expressions and result-variables that
need special attention when translating OCL into PL. It is assumed that this trans-
formation has been done.

All PL formulas contain the variable self referring to the current object. In
some cases the occurrence of self is important and needs to be emphasised. For
this we write INV (self), m.PRE(self), etc., instead of INV, m.PRE, etc.

The structure of the rest of this section parallels that of Section 5.1.

A.1 Options Offered in the Class Menu

StructuralSubtyping (PL) The invariant of the current class CC' is stronger
than the ones of the parent classes:
(PO) A;cp(Vself : CCINV (self) — INVTi(sel f))

A.2 Options Offered in the Method Menu

PreservesInvariant(DL) The implementation of the current method obeys (pre-
serves) the invariant of the current class.

(PO) Vself : CCm.PRE(self) NINV (self) — (m)INV (self)

If method m is a constructor, then the subformula m.PRE(sel f)ANINV (self)
can be assumed to be equivalent to true. Therefore, in this case the proof
obligation is simplified to:

(POCQC) Vself : CC(m)INV (self)

EnsuresPostCondition(DL) The implementation of the current method satisfies
its postcondition.

(PO) Vself : CCm.PRE(self) NINV (self) — (mym.POST (self)

As above, if m is a constructor, then m.PRE(self) N INV(self) can be
assumed to be equivalent to true. The proof obligation is simplified to:

12We allow a class to have more than one parent class here. However, since interfaces are
currently not supported, due to the JAVA class hierarchy restrictions, the actual proof obligations
involve only one parent class.
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(POCQC) Vself : CC (m)m.POST (self)

Correctness(DL) PreservesInvariant plus EnsuresPostCondition:

(PO) Vself : CCm.PRE(self) NINV (self) —
(m)INV (self) ANm.POST (self)

Again, if m is a constructor, then m.PRE(sel f) NINV (sel f) can be assumed
to be equivalent to true. The proof obligation is simplified to:

(POCQC) Vself : CC (m)INV (sel f) A m.POST (self)
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