KeY Quicktour for JML

Work in progress

Christian Engel, Andreas Roth, Abian Blome,
Richard Bubel, Simon Greiner

This article is a variant of [BHS] by
Thomas Baar, Reiner Hdhnle, and Steffen Schlager.

October 6, 2010

1 Introduction

When we started writing this document, we aimed at providing a short tuto-
rial accompanying the reader at her/his first steps with the KeY system. The
KeY-Tool is designed as an integrated environment for creating, analysing, and
verifying software models and their implementation. The reader shall learn how
to install and use the basic functionality of the KeY-Tool. Besides practical
advises how to install and get KeY started, we show along a small project how
to use the KeY-Tool to verify programs.

Verification means to prove that a program complies its specification in
mathematical rigorous way. In order to fulfil this task, the specification needs
to be given in a formal language with a precise defined meaning. In the cur-
rent version of the document we focus on the popular Java Modeling Language
(JML) [LPCT08, [LBR04] as specification language.

In the next sections we show how to verify a JML annotated (specified)
JavaCard program. Therefore features KeY a calculus for the complete Java-
Card language including advanced features like transactions.

Besides JML, the KeY-Tool supports UML/OCL and JavaCardDL as spec-
ification languages. Later versions of this quicktour will cover them — for the
moment we can refer only to an outdated quicktour for OCL [BHS| from which
this document evolved.

For a longer discussion on the architecture, design philosophy, and theoretical
underpinnings of the KeY-Tool please refer to [BHSO7, IABBT05].

In case of questions or comments don’t hesitate to contact the KeY-support
team at |support@key-project.oryg.

1.1 Version Information

This tutorial was tested for KeY version 1.6.

1.2 Installation

You can choose between different methods to install and use KeY. We recom-
mend for this tutorial the Java Web Start variant described in Sect. [[.2.1]
1.2.1 The KeY-Prover by Java Web Start

Java Web Start is a Java Technology which allows to start applications directly
from a website. No installation is needed. You can visit our homepage

http://www.key-project.org/download

which contains a link to Java Web Start the KeY-Prover.
Please note that you have to have installed the Java Web Start facility (which
should come along with your Java distribution).

mailto:support@key-project.org
http://www.key-project.org/download

1.2.2 Bytecode and Sourcecode Installation

The download site offers also the binary and source code version of KeY. If
you intend to choose one of them, please note that you need to download
several third party libraries. The required libraries are packaged in a single
tar-gzipped archive that is also linked from our main download site http:
//www .key-project.org/download. Please follow the instructions given in the
README files.

Please mote: Support for Borland Together has been discontinued with
KeY 1.4.

http://www.key-project.org/download
http://www.key-project.org/download

2 Tutorial Example

2.1 Scenario

The tutorial example is a small paycard application consisting of two pack-
ages paycard and gui. Package paycard contains all classes implementing the
program logic and has no dependencies to the gui package.

Package paycard consists of the classes: PayCard, LogFile and LogRecord.
The gui package contains ChargeUI, IssueCardUI, and the main class Start.

In order to compile the project change to the jml directory and execute the
following command:

javac -sourcepath . gui/*.java (use gui\ under Windows)

Executing from the same directory

java -classpath . gui.Start
starts the application. Try this nowﬂ

The first dialog when executing the main method in Start asks the customer
(i.e. the user of the application) to obtain a paycard. A paycard can be charged
by the customer with a certain amount of money and thereafter used for cashless
payment until the pre-loaded money is eaten up.

To prevent the risk for the customer when loosing the paycard, there is a
limit up-to-which money can be loaded/charged on the paycard. Depending
on the limit there are three paycard variants offered by the bank: a standard
paycard with a limit of 1000, a junior paycard with a limit of 100, or a paycard
with a user-defined limit. The initial balance of a newly issued paycard is zero.

In the second dialog coming up after obtaining a paycard, the customer
may charge her/his paycard with a certain amount of money. But the charge
operation is only successful if the current balance of the paycard plus the amount
to charge is less than the limit of the paycard. Otherwise, i.e., if the current
balance plus the amount to charge is greater or equal the limit of the paycard, the
charge operation does not change the balance on the paycard and an attribute
counting unsuccessful operations is increased.

The KeY-Tool aims to formally prove that the implementation actually sat-
isfies such requirements. For example, one can formally verify the invariant that
the balance on the paycard is always less than the limit of the paycard.

The intended semantics of some classes is specified with the help of invariants
denoted in the Java Modeling Language (JML) [LPCT08, [LBR04]. Likewise,
the behavior of most methods is described in form of pre-/postconditions in the
JML. We do not go into details on how JML specifications for Java classes are
created. The tools downloadable from http://jmlspecs.org/download.shtml
may be helpful here. In particular, we require and assume that all JML
specifications are complying to the JML standards [LPCT08]. KeY’s
JML front-end is no substitute for the JML parser / type checker.

Ipotentially arising warnings can be safely ignored here

2.2 A First Look on the JML Specification

Before we can verify that the program satisfies the property mentioned in the
previous section, we need to express it in JML. The remaining section tries
to give a short, intuitive impression on how such a specification looks like. In
Sect. [3] JML specifications are explained in a bit more depth.

Load the file paycard/PayCard. java in an editor of your choice and search
for method isValid. You should see something like

/%@
@ public normal_behavior
@ requires true;
@ ensures \result == (unsuccessfulOperations<=3);
@ assignable \nothing;
©ex*/
public /*@pure@*/ boolean isValid() {
if (unsuccessfulOperations<=3) {
return true;
} else {
return false;
}
}

JML specifications are annotated as special marked commentsﬂ in Java files.
Comment containing JML annotations have an ‘at’ sign directly after the com-
ment sign as start marker and multi-line comments also as end-marker.

The JML annotation in the above listing represents a JML method contract.
A contract states that when the caller of a method ensures that certain condi-
tions (precondition + certain invariants (see Sect.) then the method ensures
that after the execution the postcondition holdsﬂ

The precondition is true. This means the precondition does not place ad-
ditionaﬂ conditions the caller has to fulfill in order to be guaranteed that after
the execution of the method its postcondition holds.

The ensures clause specifies the method’s postcondition and states simply
that the return value of the method is true if and only if there have not been
more than 3 unsuccessful operations. Otherwise false is returned.

For the other parts of the method specification see Sect. [4]

21t is also possible to have them in a separate file (not yet supported by KeY).
3The complete semantics is more complex; see Sect. [4| and [LPCT08].
4There might be conditions stemming from invariants.

3 How to Verify JML Specifications with the
KeY-Tool

JML specifications, in particular pre- and postconditions, can be seen as ab-
stractions of an implementation. In this context, an implementation is called
correct if it actually implies properties expressed in its specification. The KeY-
Tool includes functionality to verify the correctness of an implementation with
respect to its specification.

In this section we describe how to start (Sect. the KeY-Prover and load
the tutorial example (Sect. as well as a short overview about the graphical
user interface and its options (Sect. . Last but not least, we explain how to
configure the KeY-Prover to follow the tutorial example (Sect. .

3.1 Starting the KeY-Prover

In order to verify a program, you first need to start the KeY prover. This is
done either by using the webstart mechanism (see Sect.[1.2.1]) or by calling the
runProver or startProver script of your KeY distributionf’} e.g., by running

bin/runProver or bin/startProver

3.2 Loading the Tutorial Example

After downloading and unpacking this quicktour you should find a directory jml
containing the two subdirectories paycard and gui. We refer to the directory
jml as top-level directory.

Before you continue, please check in the menu bar that under Options |
Specification Parser the option Source File Comments Are JML is activated
(if not, please select it).

1. You have to choose the Java source files you want to verify. They contain
both the source code and the JML annotations. You can do this by either

e adding on the command line the path to the paycard directory:

bin/runProver <path_to_quicktour>/jml/paycard
or
bin/startProver <path_to_quicktour>/jml/paycard

(Windows: replace ’/” by ’\’)
e opening File | Load and selecting the paycard package directory after

having started runProver without any arguments.

KeY will then load the tutorial example and parse the JML annotations. If
you get an error dialog similar to the one in Fig. |1 than you have selected
the gml directory instead of its subdirectory paycard.

5In this case we assume that you have installed the KeY-Tool as described in Sect.

.0 Parser Messages
class de.uka.ilkd.key java.ConvertException

Consider using a classpath if this is a classtypekhat cannot be resolved
Could not resolve TypeReference "java.awt.event.ActionEvent” @6/8 in
FILE:../../jml/guifChargeUl.java(14) - Recoder: 1 errors have occured -
aborting.

(Close |} [] Show Details

Figure 1: Error dialog complaining about an unknown type

If you have your own projects you want to verify you can proceed similarly.
Please note, that KeY supports by default only a very limited selection of
the standard library classes (the complete list can be found in [Red]), how
to extend them and how to configure more complex projects that use 3rd
party libraries is described in brief in App.

. Now the Proof Obligation Browser window should appear as shown in
Fig. 2(a)l

In the left part of the window title Classes and Operations, the Proof
Obligation Browser lists all packages, classes/interfaces and methods of the
project to be verified in a tree structure similar to standard file managers.

The browser allows you to select the proof obligation (kind of property),
you want to verify. Selecting method charge of class PayCard offers a
number of proof obligations (Fig. such as Preservesinv, Ensures-
Post, RespectsModifies and several more.

Some of the proof obligations are explained in Sect. [4} for a complete and
detailed overview see Chap. 5 and 8 in [BHS07] and [Rot06].

For the moment please select EnsuresPost and press the button Start
Proof. In the then upcoming Contract Configurator window three contracts
should be displayed, one exceptional_behavior and two normal_behavior
contracts. Select that normal_behavior contract which in its postcondition
talks about balance, and confirm by pressing the button OK. More details
about the contract configurator will be given in Sect. [

. You should now see the KeY-Prover window with the loaded proof obli-
gation as in Fig. The prover is able to handle predicate logic as well
as Dynamic Logic. The KeY-Prover was developed as a part of the KeY-
Project and is implemented in JAVA. It features interactive application of
proof rules as well as automatic application controlled by strategies. In
the near future more powerful strategies will be available.

In Sect. we show how to prove some of the proof obligations generated
for the tutorial example.

a0on

Proof Obligation Browser

Classes and Operations

Proof Obligations

=
¥ [paycard

> |:| CardException

» [LogFile

» [| LogRecord

» [PayCard

Start P... \ (Cancel)
(a) Proof Obligation Browser after startup with expanded paycard package

ase Proof Obligation Browser
Classes and Operations Proof Obligations
=] StrongOperationContract
¥ @l paycard Preservesinv

» [CardException FreservesQwninv

> |:| LogFile EnsuresPost :

. |:| LogRecord RespectsModifies

- g SpecificationExtraction
v [PayCard PreservesGuard

<init>{)
<init>{int limit)
createjuniorCard()

chargeAndRecord(L.I amount)

isvalid()
infoCardMsg()

(StartP...) (Cancel)

(b) Proof Obligation Browser listing proof obligations for method charge of class PayCard

Figure 2: The Proof Obligation Browser window

800 KeY - Prover
I [mnsmpi] [ok [Meese|: | [B[MIE]

Tasks ' Current Goal

Env. with model paycard@s:23:52 PM #1

Jq e nsuresPost (paycard.PayCard::charge, JML normal_behavi(| [ISR ——

\forall paycard.PayCard p_0;

<> (p_0.<created> = TRUE & !p_0 = null -> !p 0.log = null)

\forall paycard.PayCard p
(p_0.<created> = TRUE &

=

&

= 1 > 0 = null -> p_0.balance >= (jint)(0

[Proof | Goals User Constraint___ » PRV T el LR (3int) (0))

Proof (p_0.<created> = TRUE & !p 0 = null -> p 0.limit > (jint)(0))
& \forall paycard.PayCard p 0;

& Proof Tree (p 0.<created> = TRUE & !p 0 =

null
p_0.unsuccessfulOperations >= (jlnt)(ﬁ))
(self s oD bk el
inTnt (amount)
((jint)(javaAddInt(amount, self.balance)) < self.limit
& {\for paycard.PayCard x; balanceAtPre 0(x):=x.balance}
self.isValid® (paycard.PayCard) ()
= TRUE
& amount > (jint)(0))
-> {_amount:=amount ||
\for paycard.PayCard Sz; balanceAtPre 0(x):=x.balance}
<

e

exc=null;try
result=self.charge(_amount)@paycard.PayCard;
} catch (java.lang.Throwable e) {
exc=e;

}
}\> (result = TRUE
& self.balance = (jint)(javaAddInt(amount, balanceAtPre 0(self)))
& exc = null)

K§3”" Integrated Deductive Software Design: Ready

Figure 3: The KeY-Prover with loaded proof obligation EnsuresPost for method
charge of class PayCard

3.3 The KeY-Prover

We assume that you have performed the steps described in the previous section
and that you see now something similar to Fig. In this section we describe
the GUI of the KeY-Tool and its different components.

The KeY-Prover window consists of three panes where the lower left pane is
additionally tabbed. Each pane is described below.

Upper left pane: Every problem you want to prove with the KeY-Prover is
loaded in a proof environment. In this pane all currently loaded problems
respectively their proof environments are listedﬂ

Lower left pane: This pane contains the following five tabs.

Proof: This pane (see Fig. contains the whole proof tree which
represents the current proof. The nodes of the tree correspond to
sequents (goals) at different proof stages. Click on a node to see
the corresponding sequent and the rule that was applied on it in the
following proof step (except the node is a leaf). Leaf nodes of an
open proof branch are colored red whereas leaves of closed branches
are colored green.

Pushing the right mouse button on a node of the proof tree will
open a pop-up context menu. If you choose now Prune Proof, the

SDuring this quicktour you should always load a problem in a new proof environment. So
if you are asked whether you want to re-use a proof, please select Cancel.

proof tree will be cut off at this node, so all nodes lying below will
be deleted. Choosing Apply Strategy will start an automatic proof
search (see later Automatic Proving), but only on that branch which
the node you had clicked on belongs to.

The context menu also contains commands that allow to hide closed
subtrees, to blind out inner nodes, to collapse, or expand the tree.
The commands help to keep track of a proof.

Goals: In this pane the open goals of a certain proof (corresponding to
one entry in the upper left pane) are listed. To work on a certain
goal just click on it and the selected sequent will be shown in the
right pane.

User Constraint: To explain this functionality would go beyond the
scope of this quicktour. It won’t be required in the sequel.

Rules: In this pane (Fig. , all the rules available in the system are
indicated. KeY distinguishes between aziomatic taclets (rules that
are always true in the given logic), lemmas (that are derived from and
thus provable by axiomatic taclets) and built-in rules (for example
how certain expressions can be simplified).

By clicking on a rule of the list, a window comes up where the cor-
responding rule is explained.

Proof Search Strategy: This tab (see Fig. |4(b)|) allows you to define
the active strategy from a set of available strategies. There are several
parameters and only the most important ones will be covered here:

Autoresume strategy By checking this you tell KeY to continue
automated proof search after user interaction.

Max. Rule Applications You can set the number N,,; of auto-
matic rule applications using the slider. Even if the automatic
strategy can still apply rules after N,,; applications, automatic
proving stops. If the checkbox Autoresume strategy is selected,
the prover automatically resumes applying the strategy after an
interactive rule application.

FOL vs. JavaDL If you want to prove some properties of a JAVA-
program you should use the strategy Java DL, as in the sequel
of this quicktour. For purely first order logic problems use the
strategy FOL (which stands for First Order Logic).

Goal Chooser Choose how strategies are exploring branches. Usu-
ally Default is to be preferred except for large proofs where
Depth First shows a significantly lower memory footprint.

Stop At Choose when strategy execution shall stop. Possible val-
ues are Default: strategy stops when no rules are applicable
or the maximal number of steps is reached and Non-closeable
Goal: strategy stops in all situations when Default stops but
also already when a goal is encountered on which no further rule
is (automatically) applicable.

10

Logical splitting Influences usage of rules branching a proof tree.
Logical means only rules working on formulas not on programs
fall under the chosen policy, i.e., program rules causing splits
are still applied even if splitting is switched off. The values are
Normal, Delayed (allows still splitting but prefers other rules)
and Off (no splitting).

Loop treatment This allows to set up how while-loops are treated.
They can be left untouched (None), handled using stated invari-
ant contracts (Invariant), or repeatedly unrolled (Expand).

Method treatment Method can also be left untouched (None), have
their method contracts applied (Contracts), or be inlined, i.e.
have the method body expanded in place (Expand).

Query treatment Queries used as terms in formulas are evaluated
either by symbolical execution (Expand), or are moved to the
succedent (Prog2Succ) so that contracts can be used, or are not
evaluated at all (None).

Quantifier treatment Sometimes quantifiers within the sequent
have to be instantiated. This can be either done manually (None)
or automatically with different alternatives:

No Splits Instantiate a quantifier only if this will not cause the
proof to split.

Unrestricted Instantiates a quantifier even when causing splits.
However the startegy tries to predict the number of caused
open branches and will prefer those with no or only few splits.

No Splits with Progs Chooses between the No Splits and
Unrestricted behaviour depending on prgrams present in
the sequent. If a program is still present the No splits be-
haviour is used. Otherwise quantifiers are instantiated unre-
stricted

Right pane: In this pane you can either inspect inner, already processed, nodes
of the proof tree or you can continue the proof by applying rules to the
open goals, whichever you choose in the left pane.

Rules can be applied either interactively or non-interactively using strate-
gies:

Interactive Proving: By moving the mouse over the current goal you
will notice that a subterm of the goal is highlighted (henceforth called
the focus term). Pressing the left mouse button displays a list of all
proof rules currently applicable to the focus term.

A proof rule is applied to the focus term simply by selecting one of
the applicable rules and pressing the left mouse button. The effect
is that a new goal is generated. By pushing the button Goal Back
in the main window of the KeY-Prover it is possible to undo one or

11

several rule applications. Note, that it is currently not possible to
backtrack from an already closed goal.

Automatic Proving: Automatic proof search is performed applying so-
called strategies which can be seen as a collection of rules suited for a
certain task. To determine which strategy should be used select the
tab item Proof Search Strategy in the left pane as described above.
To start (respectively continue) the proof push the run strategy
button on the toolbar labelled with the > - symbol.

3.4 Configure the KeY-Prover

In this section we explain how to configure the KeY-Prover to follow the tuto-
rial and give a few explanations about the implications of the chosen options.
Most of the options are accessible via the KeY-Prover menu. An exhaustive
list is available as part of Appendix [A] In order to verify or change some of
the necessary options it is necessary to have a proof obligation loaded into the
KeY-Prover as described in Sect. [3.21

The menu bar consists of different pull down menus:

File menu for file related actions like loading and saving of problems resp.
proofs, or opening the Proof Obligation Browser

View menu for changing the look of the KeY-Prover

Proof menu for changing and viewing proof specific options
Options menu for configuring general options affecting any proof
Experimental menu with additional features (not discussed here)
About menu (as the name says)

KeY provides a complete calculus for the Java Card 2.2.x version including
additional features like transactions. Further it provides some more concepts
of real Java like class and object initialisation. This quicktour is meant to help
with the first steps in the system.

For simplicity, we deactivate some advanced concepts and configure the KeY-
Prover to use the normal arithmetic integers to model Java integer types, which
will avoid to deal with modulo arithmetics. Important: Please note that this
configuration is unsound with respect to the Java semantics.

In order to configure the KeY-Prover in the mentioned way select Options
| Taclet Options. The dialog shows a list of available options. The list below
explains the options necessary for this tutoria]ﬂ Please ensure that for each
option the value as given in parentheses directly after the option name is se-
lected. In case you have to change one or more values, you will have to reload
the tutorial example in order to activate them.

7App. [A] contains a list of all available options.

12

IE] Proof Search Strategy Rules }
3] Time limit (ms) -1]3)
[Proof | Goals User Constraint___ > | B s ST
Proof Max. Rule Applications: 1000
& Proof Tree N .
& l:impRight 1 10 100 1000 10000 100000
& 2:exc=null;
& 3:methodBodyExpand O FoL
& 4:LogRecord max = logArray[0]; (® Java DL
& 55logRecord max;) Java DL Options
5 g g.maleEogArr:y[ogl, Fxeem " Goal Chooser
ormal execution (logArray = nu Default Depth First
7:Update Simplification s® g (2) B26E
12:Update Simplification top at
& 13-inti= 1; @ Dsfau!l »O Non-Closable Goal
® 14:0PEN GOAL Logical splitting
8 @ Null Reference (logArray = null) O Normal (3 Delayed O off
8:Update Simplification L‘gl’ "“""‘"é o
1 Expand Invariant None
B @inde Expand All Below null Method treatment
9:Up Expand Goals Only (® Expand (O Contracts O None
@ Expand Goals Only Below Query treatment
Collapse All O Expand O Prog2Succ ® None
Collapse Other Branches Arithmeti
Collapse Below rithmetic treatment
() Basic (O DefOps O Model Search
Previous Sibling Quantifier treatment
Next Sibling) None O No splits
Hide Intermediate Proofsteps (®) No Splits with Progs () unrestricted
Hide Closed Subtrees User-specific taclets
Search F3 1 @off O Low prior. O High prior.
2. (= off () Low prior. O High prior.
Prune Proof . . 5 q
> Apply Strategy (® off () Low prior. () High prior.
Visualize O VBT Strategy
Create Test For Node O ocL simplification
- BliEngEmhSiNG e : Specification extraction
Mark for Re-Use -
(a) The Proof tree tab (b) The Proof Search Strategy tab
I Proof Search Strategy Rules’ 1
¥ (& Built-In b

[use Operation Contract
[update simplification
[} Decision Procedure Simplify
¥ [0 Taclet Base
» [activeUse
[active_auribute_access
[add_eq
> [Hadd_eq_back
[[] add_equations
[add_equations_right
[add_less
» [add_less_back
[add_literals
add_non_neg_square
add_sub_elim_left
add_sub_elim_right
add_sub_step
add_two_inequations_1
add_two_inequations_2
add_zero_left
add_zero_right
addition
addition_associative
allLeft
allLeftHide
allLeftHidelnt
allLefting
allRight
all_bool
all_integer_sorts_are_equals
all_pull_out0
all_pull_out

v
1o e e e e e e e e e e e e e

el

(c) The Rules tab

Figure 4: Selected components of the KeY-Tool graphical user interface

13

initialisation: (disableStaticlnitialisation) Specifies whether static initialisation
should be considered.

intRules: (arithmeticSemanticslgnoringOF) Here you can choose between dif-
ferent semantics for Java integer arithmetic (for details see [Sch02 [Sch07]
BHSOQT7]). Three choices are offered:

javaSemantics (Java semantics): Corresponds exactly to the semantics
defined in the Java language specification. In particular this means,
that arithmetical operations may cause over-/underflow. This setting
provides correctness but allows over-/underflows causing unwanted
side-effects.

arithmeticSemanticslgnoringOF (Arithmetic semantics ignoring overflow):
Treats the primitive finite Java types as if they had the same seman-
tics as mathematical integers with infinite range. Thus this setting
does not fulfil the correctness criteria.

arithmeticSemanticsCheckingOF (Arithmetic semantics prohibiting over-
flow): Same as above but the result of arithmetical operations is not
allowed to exceed the range of the Java type as defined in the lan-
guage specification. This setting not only enforces the java semantics
but also ascertains that no overflow occur.

javacard: (jcOff) There are two values for this option jcOn and jcOff. Switching
on or off all taclets axiomatising JavaCard specific features like transac-
tion.

As a last preparation step change to the Proof Search Strategy tab in the
lower left pane and choose the following setting:

e Autoresume strategy should be unchecked (otherwise the prover will switch
to automatic mode after each interactive rule application).

e Max. Rule Applications should be set to a value greater or equal 500. A
too low value will cause the prover to leave automatic mode too early. In
this case you might have to press the run strategy button more often than
described in the tutorial.

e Java DL must be selected with the following sub options:

— Goal Chooser: Default

— Stop at: Default

— Logical splitting: Delayed (Normal should also work)
— Loop treatment: Invariant

— Method treatment: Expand

— Query treatment: Expand

14

— Arithmetic treatment: Basic is sufficient for this tutorial (when using
division, modulo or similar you will need at least DefOps)

— Quantifier treatment: No Splits with Progs is a reasonable choice for
most of the time

— User-specific taclets: all Off

15

4 Provable properties

In the following the ideas behind the various options for verification are de-
scribed informally. A formal description of the generated proof obligations is
contained in [BHSOT]. For further details on the mapping between JML specifi-
cations and the formulae of the JavaDL logic used in KeY please consult [Eng05].

Examples of usage within the context of the case study in this tutorial are
described in Sect. [£3]

4.1 Informal Description of Proof Obligations

The current implementation does not support the full verification of a program.
Instead, the KeY-Tool generates lightweight proof obligations that enable de-
velopers to prove selected properties of their program. These properties are of
two kinds:

e properties for method specifications: we show that a method fulfils its
method contract,

e properties for class specifications: we show that a method preserves in-
variants of a clasf

4.1.1 The Logic in Use

In this section we make a short excursion to the formalism underlying the KeY-
Tool. As we follow a deduction based approach towards software verification,
logics are the basic formalism used. More precise a typed first-order dynamic
logic called JavaCardDL.

We do not intend here to give a formal introduction into the used logic, but
we explain the intended meaning of the formulas. Further we assume that the
reader has some basic knowledge if classical first-order logic.

In addition to classical first-order logic, dynamic logic knows two additional
operators called modalities, namely the diamond (-)- and box [-]- modality. Their
first argument takes a piece of JavaCard code and the second argument an arbi-
trary formula. Let p be a program and ¢ an arbitrary formula in JavaCardDL
then

e (p)¢ is a formula in JavaCardDL, meaning, program p terminates and in
its final state formula ¢ holds.

e [p]¢ is a formula in JavaCardDL, meaning, if program p terminates then
in its final state formula ¢ holds.

The notion state is a central one. Simplified a state can be seen as current
snapshot of the memory when running a program. It describes the values of
each variable or field. A formula in JavaCardDL is evaluated in such a state.

8Barlier versions supported history constraints. KeY 1.4 underwent a complete rewrite
concerning proof-obligations and JML. We are currently working on bringing all features back
and more.

16

Let 4, j denote program variables. Some formulas in JavaCardDL:

e The formula
i=0—=>({=i+1)>0

is a formula in JavaCardDL. The formual states:

If the value of i is 0 then the program ¢ = i + 1; terminates and
in the final state (the state reached after executing the program)
the program variable ¢ is greater than 0.

The diamond operator states implicitly that the program must terminate
normally, i.e., no infinite loop/recursion and no uncaught exception).

Replacing the diamond in the formula above by a box
i=0—=>[i=i+1]i>0

changes the termination aspect and does not require that the program
terminates, i.e., this formula is already satisfied if in each state where the
value of 7 is 0 and if the program ¢ = ¢ + 1; terminates then in its final
state ¢ is greater than 0.

e A typical kind formula you will encounter is one with an update in front
like
{i=allj=0b}(tmp=1iyi=j;j=tmp;)i=b& j=a

Intuitively, an update can be seen as an assignment, the two vertical
strokes indicate that the two assignments a to ¢ and b to j are performed
in parallel (simultaneously). The formula behind the update is then valid
if in the state reached executing the two ‘assignments’, the program ter-
minates (diamond!) and in the final state the content of the variables 4
and j have been swapped.

4.1.2 Sequents

Deduction with the KeY-Prover is based on a sequent calculus for a Dynamic
Logic for JavaCard (JavaDL) [BHSOT7, Bec01].

A sequent has the form ¢1,...,¢, F ¥1,...,%, (m,n > 0), where the ¢;
and 1; are JavaDL-formulas. The formulas on the left-hand side of the sequent
symbol F are called antecedent and the formulas on the right-hand side are
called succedent. The semantics of a sequent is the same as that of the formula

(D1 A Adm) = (Y1 V...V ihy) (myn > 0).

4.2 Proof-Obligations

In general a proof obligation is a formula that has to be proved valid. When we
refer to a proof obligation, we mean usually the designated formula occurring
in the root sequent of the proof.

17

In the following sections we sketch the most important proof obligations
generated to prove that methods and classes respect certain parts of their spec-
ification.

4.2.1 Selected Proof Obligations for Methods

The Proof Obligation Browser provides a selection of proof-obligations to verify
different aspects of a method specification (also called method or operation
contract). In this section we list several of them and explain them in brief. For
a full coverage see [BHSOT, Rot06].

A method contract for a method m of a class C' consists in general of a

precondition pre describing the method speciﬁcﬂ conditions which a caller of
the method has to fulfil before calling the method in order to be guaranteed
that the

postcondition post holds after executing the method and that the

assignable/modifies clause mod is respected. This means that at most the
locations described by mod are modified in the final state.

termination marker indicating if termination of the method is required. Ter-
mination required (total correctness) has termination marker diamond, i.e.
the method must terminate when the called in a state where the precon-
dition is fulfilled. The marker box does not require termination (partial
correctuness), i.e., the contract must only be fulfilled if the method termi-
nates.

In addition each class D has a possibly empty set of invariants invp assigned
to them.

For the general description we refer to this general kind of contract. Map-
ping of JML specification to this general contract notion is slightly indicated in
Sect. More details can be found in [BHS07, [Eng05|.

Let us have a closer look into some of the proof-obligations offered by the
Proof Obligation Browser for a method m of class C:

EnsuresPost this proof-obligation generates a formula that is valid if a method
fulfils its specification. Roughly spoken, if the precondition and a given
set of invariants is satisfied then the post conditions holds and — option-
ally — the method terminates. The set of additional invariants is user
customisable and can be selected in the Contract Configurator.

PreservesInv allows to verify that method m preserves validity of a given set
of invariants INV. The generated proof-obligation states that when m
is called in a state where its precondition and all invariants in INV hold
then all of the invariants are also valid in the method’s final state.

9 Additional conditions stem from invariants.

18

PreservesOwnlnv a special case of Preserveslnv where set INV contains ex-
actly all invariants of class C'. This implements a proof-obligation for an
often used lightweight specification.

RespectsModifies generates a formula used to verify the assignable/modifies
clause.

The Contract Configurator allows to choose between different specifications
available for a method, i.e. for different pre- and postcondition pairs. For most
proof obligations it offers also to choose sets of invariants that are assumed to
hold in the prestate (tab Assumed Invariants) and/or that must be ensured to
hold in the poststate.

4.2.2 Selected Proof-Obligations for Classes/Interfaces

KeY offers currently only one proof-obligation on the class resp. interface level
namely BehaviouralSubtypinglnv. This proof-obligation ensures that the invari-
ants of the chosen class imply the invariant of their superclass(es).

4.3 Application to the Tutorial Example

Now we apply the described proof obligations to the tutorial example. First
we demonstrate the generation of proof obligations, then we show how these
can be handled by the KeY-Prover. Please make sure that the default settings
of the KeY-Prover are selected (see Chapter , especially that the current
strategy is Java DL and the maximum number of automatic rule applications
is 5000. Be warned that the names of the proof rules and the structure of the
proof obligations may be subject to changes in the future.

4.3.1 Method Specifications

Normal Behavior Specification Case. In the left part of the Proof Obli-
gation Browser, expand the directory paycard. From the now available classes
select PayCard and then the method isValid. This method is specified by the
JML annotation

public normal_behavior
requires true;
ensures result == (unsuccessfulOperations<=3);
assignable \nothing;

This JML method specification treats the normal_behavior case, i.e., a
method satisfying the precondition (JML boolean expression following the re-
quires keyword) must not terminate abruptly throwing an exception. Further
each method satisfying the precondition must

e terminate (missing diverges clause),

19

e satisfy the postcondition — the JML boolean expression after the ensures
keyword, and

e only change the locations expressed in the assignable clause; here: must
not change any location. The assignable clause is actually redundant in
this concrete example, as the method is already marked as pure which
implies assignable \nothing.

Within KeY you can now prove that the implementation satisfies the different
aspects of the specification, i.e., that if the precondition is satisfied then the
method actually terminates normally and satisfies the postconditon or that the
assignable clause is respected. We concentrate know on the first aspect.

Choose the proof obligation EnsuresPost in the right pane and press the
button Start Proof. The next dialog that pops up is the Contract Configurator,
it allows to select the contract you want to prove. We select the only nor-
mal_behavior contract which is offered. The configurator also offers you the
possibility to customise the set of assumed invariants. By default exact the
invariants of the declaring class (here: PayCard) are selected. We will simply
keep the default selection and confirm by pressing the OK button.

The selected contract says that a call to this method always (pre true) termi-
nates normally and that the return value is true iff the parameter unsuccess-
fulOperations is < 3. The sequent displayed in the large prover window after
loading the proof obligation exactly reflects this property.

Start the proof by pushing the Start-button (the one with the green “play”
symbol). The proof is closed automatically by the strategies. It might be
necessary that you have to push the button more than once if there are more rule
applications needed than you have specified with the “Max. Rule Applications”
slider.

Exceptional Behavior Specification Case. An example of an exceptional
behavior specification case can be found in the JML specification of method
charge(int amount) in class PayCard. The exceptional case reads

public exceptional_behavior
requires amount <= 0;

This JML specification is for the exceptional case. In contrast to the nor-
mal_behavior case, the precondition here states under which circumstances the
method is expected to terminate abruptly by throwing an exception.

Use the Proof Obligation Browser (File | Proof Obligation Browser). Con-
tinue as before, but select this time method charge(int amount) of class
PayCard. In contrast to the previous example, the Contract Configurator of-
fers you three contracts: two for the normal behavior case and one for the
exceptional case. As we want to prove the contract for the exceptional case
select the contract named: JML exceptional_behavior operation contract. For
the assumed invariants we will keep the default selection and we confirm our
selection by pressing the OK button.

20

The KeY proof obligation for this specification requires that if the parameter
amount is negative or equal to 0, then the method throws a I1legalArgument-
Exception.

Start the proof again by pushing the run strategy-button. The proof is closed
automatically by the strategies.

Generic Behavior Specification Case. The method specification for method
createJuniorCard in PayCard is:

ensures \result.limit==100;

This is a lightweight specification, for which KeY provides a proof obligation that
requires the method to terminate (maybe abruptly) and to ensure that, if it ter-
minates normally, the 1imit attribute of the result equals 100 in the post-state.
We may assume the invariants of PayCard. By selecting the createJuniorCard
method, choosing FEnsuresPost again and then JML operation contract named
contract in the Contract Configurator, an appropriate JavaDL formula is loaded
in the prover. The proof can be closed automatically by the strategy Java DL.

4.3.2 Type Specifications
The instance invariant of type PayCard is

this.balance >= 0
&& this.limit > O
&& unsuccessfulOperations >=0;

The method charge of PayCard must preserve these invariants unless it
does not terminate. The KeY proof obligation to check this property is called
PreservesOwnlnv. Please read carefully as there is also a proof obligation called
PreservesInv which allows you to customise the set of invariants to be preserved.

Open the Proof Obligation Browser, once again and select class PayCard and
method charge (int amount). Then choose the proof obligation PreservesOwn-
Inv and proceed as usual. The proof closes automatically.

4.3.3 Proof-Supporting JML Annotations

In KeY, JML annotations are not only input to generate proof obligations but
also support proof search. An example are loop invariants. In our scenario
there is a class LogFile which keeps track of a number of recent transactions
by storing the balances at the end of the transactions. Consider the method
getMaximumRecord() in that class. It returns the stored log entry (LogRecord)
with the greatest balance. To prove the normal _behavior specification proof
obligation of the method, one needs to reason about the incorporated while
loop. Basically there are two possibilities do this in KeY: use induction or use
loop invariants. In general, both methods require interaction with the user dur-
ing proof construction. For loop invariants, however, no interaction is needed if

21

the JML loop_invariant annotation is used. In the example the loop invari-
ant, written in the JML notation, indicates that the variable max contains the
largest value of the traversed part of the array (up to position j):

/*@ loop_invariant 0<=i && i <= logArray.length
e && max!=null &&
@ (\forall int j; 0 <= j && j<i;
@ max.balance >= logArrayl[j].balance);
Q@ assignable max, 1i;
Qx/
while (i<logArray.length){
LogRecord lr = logArray[i++];
if (1r.getBalance() > max.getBalance()){
max = 1lr;
}
}

If the annotation had been skipped, we would have been asked during the proof
to enter an invariant or an induction hypothesis. With the annotation no further
interaction is required to resolve the loop.

Load the EnsuresPost proof obligation of LogFile’s getMaximumRecord(),
select the contract JML normal behavior operation contract and press OK.

Choose the strategy Java DL and the Loop treatment None. Make sure
Autoresume strategy is selected and start the prover. When no further rules can
be applied automatically, select the while loop including the leading updates,
press the mouse button and select the rule loopInvariant. This rule makes use of
the invariants and assignables specified in the source code. Several goals remain
open after the strategies have resumed their work.

Restart the strategies and run them until only one goal is left open, pressing
Run Simplify should then close the remaining goal.

As can be seen, KeY makes use of an extension to JML, which is that
assignable clauses can be attached to loop bodies, in order to indicate the loca-
tions that can at most be changed by the body. Doing this makes formalizing
the loop invariant considerably simpler as the specifier needs not to add infor-
mation to the invariant specifying all those program variables and fields that are
not changed by the loop. Of course one has to check that the given assignable
clause is correct, this is done by the invariant rule. We refer to [BHSOT] for
further discussion and pointers on this topic.

4.3.4 Using the KeY-plugin for Eclipse

This section is currently out-of-date as the eclipse plug-
ins are undergoing restructuring. The principal approach
15 still valid.

This section will give a quick overview on the visualization features added
by the KeY-plugin for Eclipse. We will assume that the plugin has already been
installed as described above. Start Eclipse and open the PayCard project using

22

the Import dialog from the File menu. The paycard directory should appear
on the right hand side. Now open the proof visualization by selecting Other
in the Show View submenu inside the View menu. Once there select Proof
Visualization in the KeY branch and click OK. Now it is time to actually open
one of the classes, in this example we will use LogFile.

Open the KeY-Tool by clicking on the KeY-logo in the toolbar. As before se-
lect the PayCard project and mark the normal_behavior speccase for the method
getMaximumRecord in the LogFile class. Now start the proof. A number of open
goals will remain but this time we won’t deal with them, our focus is on the
Eclipse plugin.

It is time to take a closer look at the visualization options in Eclipse. Return
to it and press the Show Ezxecution Traces button from the Proof Visualization
view. A new window should pop up with a number of execution traces available.
Checking the Filter uninteresting traces option hides those traces that appear
to be irrelevant to the understanding of the current proof. In this case it should
leave you with a single trace. Mark it and click OK. Now you will actually
see the execution trace of the selected node in the Proof Visualization view.
Additionally all executed statements, except for the last one, are highlighted
in yellow inside the Java editor. In case of an exception the last statement is
highlighted in dark red, otherwise in dark yellow. You can navigate through the
trace using the buttons Step Into and Step over. The first one allows you to
mark the next executed statement while the last one jumps over substatements
and method calls. By right-clicking on a branch you can also choose to go into
it. To return to the main execution trace press the Home button. Pushing the
Mark All Statements button remarks all statements of the trace in the Java
editor. If you want to clear all markers you can press the red cross. It is
possible to receive more information on single statement, like the node at which
the statement was executed, by moving the mouse over the marker bar left of
the Java editor.

In case Eclipse is not available you can use a more rudimentary visualization
built directly in the KeY-Tool. You can access it by right-clicking on a node
and selecting Visualize. This opens a new window with a list of traces. Again
you have the chance to Filter uninteresting traces and you get to see the trace
in a tree-like structure. Statements that produced exceptions are highlighted in
red.

The visualization options presented above concentrate on the symbolic exe-
cution. They allow an intuitive way for analyzing the current proof branch in a
way that is similar to classic debuggers.

23

5 Notes

The KeY-Tool is still very much work in progress so that parts of this tutorial
may be outdated as you read it. Moreover, the JML semantics are still subject to
discussions, and there is no formal semantics specification for JML. Differences
between the JML semantics of other tools and the (implicitly given) semantics
in KeY are therefore possible. The JML dialect of KeY even extends JML in
some points (as we have seen above for assignable clauses in loop_invariants).

e Supported platforms:

— Linux and MacOS X are tested, Solaris should work as well

— Windows NT, 2000 and XP should work when using the KeY byte
code version.

e Restrictions of the KeY-Prover:
— manual not yet available
e Restrictions on JDK:

— Problem: Sometimes windows show up “rolled up” and only the title
bar is visible. This happens only if you use JRE 1.5.
Solution: Use JDK 1.6

— Problem: tool tips are flickering occasionally
Workaround: reduce the number of tool tip lines in the menu View

24

A List of Menu Options

In the following we describe some menu items available in the main menu of the
KeY-Prover. In this quicktour we will restrict ourselves to the most important
ones.

File File related actions

| Load: Loads a problem or proof file; selecting a directory opens the
proof obligation browser with the generated proof obligation for the
chosen specification language (see Options | Specification Parser)

| Save: Saves the current selected proof. Note, that if there are several
proofs loaded (see the upper left pane) only the one currently worked
on is saved.

| Proof Obligation Browser: Allows browsing through the available proof
obligations. Proof obligations can be generated from JavaDL, JML
or OCL specifications, option Options | Specification Parser allows
to select from which one.

| Load User-defined Taclets: Allows to activate and deactivate theories
given as taclet collection in a .key file.

| Reload Last Problem: Reloads the problem you are currently working
on.

| Recent Files: List the last five loaded files (if they are still present).
| Exit: Quits the KeY-Prover (be warned: the current proof is lost!).

View Settings influencing the look of the user interface

| Font size Changes the font size of the right prover pane

| Smaller: Decreases the font size.
| Larger: Increases the font size.

| ToolTip options: Configures the tooltip shown when hovering over a
taclet in the list of applicable taclets.
Proof Proof specific options
| Start: Run the proof (semi-)automatically w.r.t. to current strategy
options.
| Goal Back: Undo one proof step.

| Abandon Task: Quits the currently active proof. All other loaded prob-
lems will stay in the KeY-Prover.

| Reuse Previous Attempt: Reuse a previously started (open) proof; see
[BHSO7, Chap. 13].

| Show Active Taclet Options: Shows the taclet options chosen for the
current proof.

25

| Show Used Specifications: Shows specifications, i.e., contracts, invari-
ants, and modifies clauses, which are assumed in this proof.

| Show Proof Statistics: Shows some general statistics about the proof
size and interactive steps.

| Show Known Types: Lists all types present in the current proof envi-
ronment.

| Show SMT Result Dialog: Shows detailed results of invoked SMT provers
in tabular display.

Options General options

| Taclet Options: In the following, each taclet option is described briefly.
The respective default settings are given in parenthesis. The meaning
of all settings is beyond the scope of this quicktour. Please use the
default settings unless you know what you are doing. Note that this
list is not complete.

assertions: (on) There exists are different values for this option
on evaluates assert statements and raises an AssertionException
if the condition evaluates to false. This behaviour models
the behaviour of the Java virtual machine with assertions
enabled globally.
off skips evaluation of assert statement. In particular, the argu-
ments of the assert statements are not evaluated at all. This
behaviour models the behaviour of the Java virtual machine
with assertions disabled globally.
safe using this option ensures that the shown property is valid no
matter if assertions are globally enabled or disabled. Proofs
with this option are typically harder.
Please note: There is no support other than option safe for en-
abling or disabling assertions package or class wise.
initialisation: (disableStaticlnitialisation) Specifies whether static ini-
tialisation should be considered.
intRules: (arithmeticSemanticlgnoringOF) Here you can choose be-

tween different semantics for Java integer arithmetic (for details
see [Sch02| [Sch07, BHSO7]). Three choices are offered:

javaSemantics (Java semantics): Corresponds exactly to the se-
mantics defined in the Java language specification. In par-
ticular this means, that arithmetical operations may cause
over-/underflow. This setting provides correctness but al-
lows over-/underflows causing unwanted side-effects. This
corresponds to the code_java_math macro in JML.

arithmeticSemanticslgnoringOF (Arithmetic semantics ignoring
overflow, default): Treats the primitive finite Java types as if
they had the same semantics as mathematical integers with

26

infinite range. Thus this setting does not fulfil the correct-
ness criteria. This corresponds to the code_bigint_math
macro in JML.
arithmeticSemanticsCheckingOF (Arithmetic semantics prohibit-
ing overflow): Same as above but the result of arithmetical
operations is not allowed to exceed the range of the Java
type as defined in the language specification. This setting
not only enforces the java semantics but also ascertains that
no overflow occur. This corresponds to the code_safe_math
macro in JML.
javacard: (jcOff) There are two values for this option jcOn and jcOff.
Switching on or off all taclets axiomatising JavaCard specific fea-
tures like transaction. If switched off, the taclet options transac-
tions and transactionsAbort have no effect.
memory: Activates a set of rules dealing with memory consumption.
nullPointerPolicy: (nullCheck) Specifies if nullpointer checks should
be performed when evaluating reference access expressions. If
turned off, no NullPointerExceptions will be raised when deref-
erencing a null reference.
programRules: (Java) Changes between different program languageﬂ
rtsj: (off) Activates rules to deal with RT'SJ programs.
stringRules: (withStringPool) Toggle whether the presence of a string
pool is assumed or every String is a newly created object.
throughout: (toutOn) Depending on the chosen value toutOn or
toutOff KeY features a throughout operator allowing to verify
strong invariants. These are invariants that must hold in each
intermediate state of execution.
transactionAbort: (abortOn) Turns on or off support for the abort
case of transactions.
transactions: (transactionsOn) Specifies how to handle the JavaCard
Transactions.

The current setting of the taclet options can be viewed by choosing
Proof | Show Active Taclet Options.

| Update Simplifier: Fine tuning of the update simplifier. For example,
the deletion of superfluous updates can be switched off.

| SMT Solvers: This option allows you to choose one or more external
decision procedures that can be invoked during proofs. There is a
native interface to Simplify. A variety of other provers CVC3, Yices,
and Z3 are directly supported via SMTLIB [BRSTO0S8]. In addition,
translations of taclets to the SMTLIB language can be written to a
text file (Taclet Translation) to be loaded by any SMT prover. There
are further options on the set of taclets to translate.

10Ensure that Java is selected.

27

| Specification Parser: There are three values for this option JML, OCL,
and Ignore. If JML or OCL are chosen the loaded files are scanned for
JML resp. OCL annotations from which if found proof obligations
are generated. The generated proof obligations can be invoked via
File | Proof Obligation Browser.

| Debug: Internal information and options to debug KeY.

| Sound: By selecting this checkbox sound notifications can be turned
on or off (on).

| Proof Assistant: Kiki the proof assistant can be turned on or off via
this option (on).

Experimental Additional (experimental) tools. Note: This item may be
changed soon/frequently.

| Show Proof Dependencies: Produces a graphical display of dependen-
cies between proof obligations, proofs, etc.

| Check Non interference: Generates proof obligation to show non in-
terference.

| Specification Extraction: Extracts the specification of a program. You
can choose between different settings for the automatic computation
and specification.

| Create Unittests: Creates JUnit testcases from the proof.

| Create JML-Wrapper Generates a JML specification (requires/ensures)
pair from a proof [BGO7|. The program with the generated JML spec-
ification can then be feed into an automatic test generation tool [EHOT].

B Setting Up Own Projects
B.1 API of Supported Standard Library Classes

If not specified otherwise via a classpath directive, KeY includes a restricted
set of signatures of classes and methods from the default standard library. A
complete listing of them is available as separate document [Red].

B.2 The classpath Directive

Sorry this chapter needs still to be written. If you run into a situation where
you need information about the classpath directive, please

e look into the README. classpath file contained in the subdirectory doc/
of the source code distribution.

e do not hesitate to ask for further support at support@key-project.org.

28

References

[ABB105] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Richard Bubel,

[Bec01]

[BGOT]

[BHS]

[BHS07]

[BRSTOS]

[EHO7]

[Eng05]

[LBRO4]

[LPCT08]

Martin Giese, Reiner Hahnle, Wolfram Menzel, Wojciech Mostowski,
Andreas Roth, Steffen Schlager, and Peter H. Schmitt. The KeY tool.
Software and System Modeling, 4:32-54, 2005.

Bernhard Beckert. A dynamic logic for the formal verification of Java
Card programs. In I. Attali and T. Jensen, editors, Java on Smart
Cards: Programming and Security. Revised Papers, Java Card 2000,
International Workshop, Cannes, France, LNCS 2041, pages 6-—24.
Springer-Verlag, 2001.

Bernhard Beckert and Christoph Gladisch. White-box testing by
combining deduction-based specification extraction and black-box
testing. In B. Meyer and Y. Gurevich, editors, Proceedings, Interna-
tional Conference on Tests and Proofs (TAP), Zurich, Switzerland,
LNCS 4454. Springer, 2007.

Thomas Baar, Reiner Hahnle, and Steffen Schlager. Key quicktour.
See http://www.key-project.org/download/.

Bernhard Beckert, Reiner Héhnle, and Peter H. Schmitt, editors.
Verification of Object-Oriented Software: The KeY Approach. LNCS
4334. Springer-Verlag, 2007.

Clark Barrett, Silvio Ranise, Aaron Stump, and Cesare
Tinelli. The Satisfiability Modulo Theories Library (SMT-LIB).
www.SMT-LIB.org, 2008.

Christian Engel and Reiner Héhnle. Generating unit tests from for-
mal proofs. In Bertrand Meyer and Yuri Gurevich, editors, Proc.
Tests and Proofs (TAP), Ziirich, Switzerland, volume 4454 of LNCS.
Springer-Verlag, 2007.

Christian Engel. A translation from jml to java dynamic logic. Stu-
dienarbeit, Fakultat fiir Informatik, Universitdt Karlsruhe, January
2005.

Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary de-
sign of JML: A behavioral interface specification language for Java.
Technical Report 98-06y, Iowa State University, Department of Com-
puter Science, November 2004. See http://www. jmlspecs.orgl

Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon, Clyde
Ruby, David Cok, Peter Mller, Joseph Kiniry, Patrice Chalin, and
Daniel M. Zimmerman. Jml reference manual. Department of
Computer Science, lowa State University. Available from http:
//www.jmlspecs.org, May 2008.

29

http://www.key-project.org/download/
http://www.jmlspecs.org
http://www.jmlspecs.org
http://www.jmlspecs.org

[Red]

[Rot06]

[Sch02]

[Sch07]

JavaRedux - API. API documentation of a restricted subset of the
Java Standard Library Classes.

Andreas Roth. Specification and Verification of Object-oriented
Components. PhD thesis, Fakultéit fiir Informatik der Universitét
Karlsruhe, June 2006.

Steffen Schlager. Handling of Integer Arithmetic in the Verifi-
cation of Java Programs. Master’s thesis, Universitdt Karlsruhe,
2002. Available at: http://il2www.ira.uka.de/~key/doc/2002/
DA-Schlager.ps.gzl

Steffen Schlager. Symbolic Fxecution as a Framework for Deductive
Verification of Object-Oriented Programs. PhD thesis, Fakultat fir
Informatik der Universitat Karlsruhe, February 2007.

30

http://i12www.ira.uka.de/~key/doc/2002/DA-Schlager.ps.gz
http://i12www.ira.uka.de/~key/doc/2002/DA-Schlager.ps.gz

	Introduction
	Version Information
	Installation

	Tutorial Example
	Scenario
	A First Look on the JML Specification

	How to Verify JML Specifications with the KeY-Tool
	Starting the KeY-Prover
	Loading the Tutorial Example
	The KeY-Prover
	Configure the KeY-Prover

	Provable properties
	Informal Description of Proof Obligations
	Proof-Obligations
	Application to the Tutorial Example

	Notes
	List of Menu Options
	Setting Up Own Projects
	API of Supported Standard Library Classes
	The classpath Directive

