KeY Quicktour for JML

Christian Engel, Andreas Roth and Abian Blome*

1 Introduction/Prerequisites

This document constitutes a tutorial introduction to the KeY-Tool using the JML
interface, called JMLKeY in the sequel. The KeY-Tool is designed as an integrated
environment for creating, analyzing, and verifying software models and their imple-
mentation. The focus of the KeY-Tool is to consider UML/OCL models, especially
UML class diagrams. Due to the increasing popularity of the Java Modeling Lan-
guage (JML) [LPCT02, LBR04] and the success of the prover component of KeY,
which implements a calculus for the complete JavaCard language, the KeY group
has provided an interface for this specification language to KeY, which is described
in this document.

For a longer discussion on the architecture, design philosophy, and theoretical
underpinnings of the KeY-Tool please refer to [ABB105]. A tutorial introduction
to the KeY-Tool with its UML/OCL interface is provided in [BHS|, which this
document is also based on.

The most recent version of the KeY-Tool can be downloaded from http://
download.key-project.org. We assume that the KeY-Tool has already been in-
stalled successfully.

In case of questions or comments don’t hesitate to contact the KeY-support team
at support@key-project.org.

1.1 Version Information

This tutorial was tested for KeY version 0.99 (internal 0.2246).

1.2 Logical Foundations

Deduction with the KeY-Prover is based on a sequent calculus for a Dynamic
Logic for JavaCard (JavaDL) [Bec01l]. A sequent has the form ¢é1,...,¢m F
P1,...,%n (m,n > 0), where the ¢; and 1¢; are JavaDL-formulas. The formulas
on the left-hand side of the sequent symbol + are called antecedent and the formu-
las on the right-hand side are called succedent. The semantics of a sequent is the
same as that of the formula (¢p1 A... A @m) — (Y1 V...V ,) (m,n > 0).

1.3 The KeY-plugin for Eclipse

In this section we will describe how to setup the KeY-plugin for Eclipse as well
as the use of some of its core features. We assume that Eclipse has already been
installed on the target computer. Start it and in the menu Help select Software
Updates and then Find and Install. In the new window activate Search for new
features to install and click on Next. Now add the New Remote Site hitp:// with

*Universitat Karlsruhe. This article is a variant of [BHS] by Thomas Baar, Reiner Hahnle, and
Steffen Schlager.

6066 KeY -- Prover

File View Proof Options Tools About
4] | JmImIE

Tasks Current Goal

Env. with model paycard@2:24:27 PM #1 self_PayCard lv_0.limit <= amount_lv_0 + self PayCard_lv_0.balance,

self PayCard lv_0.<created> = TRUE,
amount_1lv_0 >= 1,
self PayCard lv_0.balance >= 0,
= T self PayCard lv_0.balance >= 1 + amount_lv 0 * -1,
= av self PayCard lv_0.limit >= 1,
self_PayCard_lv_0.unsuccessfulOperations@(paycard.PayCard) >= 0,

ﬁ Ensures Post Condition PO (using only in

[Proof Goals User Constraint - p |

JRS
Proof ===
R - self PayCard lv_0.log = null,
93:polySimp_elimOne self_PayCard_lv_0 = null,
844nEqSimp_subsumptiont {_old3:=self PayCard lv 0.balance,

payCard:=self_PayCard_1v_0,

95:add_zero_right self payCard:=self PayCard_lv_0}

86:mul_literals

97:add_literals

98:leq_literals

99:concrete_or_1 -
100:ifthenelse_split

b_l=payCard==null;
if (b 1) {
throw new java.lang.NullPointerException ();

=] self_PayCard_Iv_0.limit <= amount paycard.PayCard payCard 1 = payCard;)

101:nEqSimp_exactShadowa int j = (int)(payCard.unsuccessfulOperations+l);
. payCard_l.unsuccessfulOperations=j;

104:mul_literals return false;:
105:polySimp_addAssoc }
106:nEqSimp_sepPosMonomialt }\> self PayCard.balance »>= _old3
107:add_zero_right
108:polySimp_mulComm0
109:palySimp_rightDist
110:mul_literals
111:f (payCard==null) { throw new
112:boolean b; =
G 113:0PEN GOAL 1

e RPN

,
I Kﬁy Strategy: Applied 111 rules (5.2 sec), closed 1 goal, 1 remaining 7

Figure 1: The KeY-Prover.

a name of your choice. Click on Finish. Now a new window should appear with
a list of installable features. Mark KeY and continue. After accepting the license
agreement and selecting a usable location you will be asked to verify the installation.
Do so by clicking on Install all and restart Eclipse when asked to. This completes
the installation. It is possible to update the KeY-plugin by selecting Search for
updates of the currently installed features in the Software updates menu. You can
now start the standalone version of the prover by either clicking on the KeY logo
in the menu bar or from the Verification menu. In this menu you can also find the
JML Specification Browser whose function is described below.

1.4 The KeY-Prover

In this section we give a short introduction into the handling of the KeY-Prover
which is shown in Figure 1. The KeY-Prover window consists of three panes where
the lower left pane is additionally tabbed. Each pane is described below.

Upper left pane: Every problem you want to prove with the KeY-Prover is loaded
in a proof environment. In this pane all currently loaded problems respectively
their proof environments are listed.?

Lower left pane: This pane contains the following five tabs.

Proof: This pane contains the whole proof tree which represents the current
proof. The nodes of the tree correspond to sequents (goals) at different
proof stages. Click on a node to see the corresponding sequent and the
rule that was applied on it in the following proof step (except the node

IDuring this quicktour you should always load a problem in a new proof environment. So if
you are asked whether you want to re-use a proof, please select Cancel.

is a leaf). Leaf nodes of an open proof branch are colored red whereas
leaves of closed branches are colored green.

Pushing the right mouse button on a node of the proof tree will open a
pop-up context menu. If you choose now Prune Proof, the proof tree will
be cut off at this node, so all nodes lying below will be deleted. Choosing
Apply Strategy will start an automatic proof search (see later Automatic
Proving), but only on that branch the node you had clicked on belongs
to.

Goals: In this pane the open goals of a certain proof (corresponding to one
entry in the upper left pane) are listed. To work on a certain goal just
click on it and the selected sequent will be shown in the right pane.

User Constraint: To explain this functionality would go beyond the scope
of this quicktour. It won’t be required in the sequel.

Proof Search Strategy: This tab allows you to define the active strategy
from a set of available strategies. If you want to prove some properties of
a JAVA-program you should use the strategy Java DL, as in the sequel of
this quicktour. For pure logic problems use the strategy FOL. Further-
more, you can set the maximum number of automatic rule applications
by moving the slider. If the checkbox Autoresume strategy is selected, the
prover automatically resumes applying the strategy after an interactive
rule application. The Loop-, Method- and Query treatment options allow
you to specify which strategy KeY ought to follow when these constructs
are encountered and are, except for the latter, set to Expand by default.
The other two options (OCL simplification and Specification extraction)
are of no relevance for the remainder of the quicktour.

Rules: In this pane all the rules available in the system are indicated. KeY
distinguishes between aziomatic taclets (rules that are always true in
the given logic), lemmas (that are derived from and thus provable by
axiomatic taclets) and built-in rules (for example how certain expressions
can be simplified).

By clicking on a rule of the list, a window comes up where the corre-
sponding rule is explained.

Right pane: In this pane you can either inspect inner, already processed, nodes
of the proof tree or you can continue the proof by applying rules to the open
goals, whichever you choose in the left pane.

Rules can be applied either interactively or non-interactively using strategies:

Interactive Proving: By moving the mouse over the current goal you will

notice that a subterm of the goal is highlighted (henceforth called the
focus term). Pressing the left mouse button displays a list of all proof
rules currently applicable to the focus term.
A proof rule is applied to the focus term simply by selecting one of
the applicable rules and pressing the left mouse button. The effect is
that a new goal is generated. By pushing the button Goal Back in the
main window of the KeY-Prover it is possible to undo one or several rule
applications. Note, that it is currently not possible to backtrack from an
already closed goal.

Automatic Proving: Automatic proof search is performed applying so-called
strategies which can be seen as a collection of rules suited for a certain
task. To determine which strategy should be used select the tab item
Proof Search Strategy in the left pane as described above.

To start (respectively continue) the proof push the run strategy-button
on the toolbar labelled with the > - symbol.

In the following we describe some menu items available in the main menu of the
KeY-Prover. In this quicktour we will restrict ourselves to the most important ones.

File — Save: Saves current proof. Note, that if there are several proofs loaded
(see the upper left pane) only the one currently worked on is saved.

File — Exit: Quits the KeY-Prover (be warned: the current proof is lost!).

View — Use pretty syntax: This menu item allows you to toggle between two
different syntax representations. If checked a nicer and easier to read syntax
is used.

View — Font size — Smaller: Decreases the font size in the right prover pane.
View — Font size — Larger: Increases the font size in the right prover pane.

Proof — Abandon Task: Quits the currently active proof. All other loaded
problems will stay in the KeY-Prover.

Options — Taclet Options Defaults : In the following, each taclet option is
described briefly. The respective default settings are given in parenthesis.
The meaning of all settings is beyond the scope of this quicktour. Please use
the default settings unless you know what you are doing.

transactions: Specifies how to handle the JavaCard Transactions (transac-
tionsOff).

testGeneration: Turned only be activated during test generation (testOff).

programRules: Changes between different program languages (Java)?.

initialisation: Specifies whether static initialisation should be considered
(disableStaticInitialisation).

transactionAbort: Turned on by default (transactionAbortOn).
throughout: Turned on by default (toutOn).

intRules: Here you can choose between different semantics for Java integer
arithmetic (for details see [Sch02]). Three choices are offered:

e Java semantics: Corresponds exactly to the semantics defined in the
Java language specification. In particular this means, that arithmeti-
cal operations may cause over-/underflow. This setting provides cor-
rectness but allows over-/underflows causing unwanted side-effects.

e Arithmetic semantics ignoring overflow(default): Treats the primi-
tive finite Java types as if they had the same semantics as mathe-
matical integers with infinite range. Thus this setting does not fulfill
the correctness criteria.

e Arithmetic semantics prohibiting overflow: Same as above but the
result of arithmetical operations is not allowed to exceed the range
of the Java type as defined in the language specification. This set-
ting not only enforces the java semantics but also ascertains that no
overflow occur.

assertions: Turned on by default (on).

2Ensure that Java is selected.

nullPointerPolicy: Specifies if nullpointer-checks should be done or not
(nullCheck).

The current setting of the taclet options can be viewed by choosing Proof —
Show Active Taclet Options.

policies on how updates should be simplified. Like the description of Taclet
Options Defaults above, this goes beyond the scope of this quicktour. Please
use the default settings if you are not familiar with it.

Options — Decision Procedure Configuration: Distincts between different in-
teger decision procedures, e.g. Simplify® [Sim] and ICS [ICS]. During this
quicktour, the procedure Simplify should be selected.

Options — Compute Specification: Here you can choose between different set-
tings for the automatic computation and specification.

Options — Minimize interaction: If this checkbox is selected, checkbacks to
the user are reduced. This simplifies the interactive rule application.

Options — Sound notification: By selecting this checkbox you can turn off the
sound notifications.

Options — Proof Assistant: By selecting this checkbox you can turn off the
proof assistant.

Options — Save Settings: Here you can save changes to the settings in the menu
Options permanently, i.e. for future sessions with the KeY-Prover.

Tools — Extract Specification: Extracts the specification of a program.

Tools — JML Specification Browser: Allows browsing through the available
JML Specifications.

Tools — Check Non interference: (experimental testbed) Generates proof obli-
gation to show non interference.

Tools — Create Unittests: Creates JUnit testcases from the proof.

2 Tutorial Example

In this tutorial we use a simple paycard application to illustrate some basic ca-
pabilities offered by the KeY-Tool. The tutorial example consists of several Java
classes in a folder paycard: PayCard, PayCardJunior, CardException, ChargeUT,
IssueCardUI, and Start. The class Start provides the main method of the ap-
plication. You can compile and execute the application as usual, for instance with
javacc and java. Try this now.

The tutorial scenario executed by the main method in Start is as follows: A
dialog asks the customer (i.e. the user of the application) to obtain a paycard with
a certain limit: a standard paycard with a limit of 1000, a junior paycard with a
limit of 100, or a paycard with a user-defined limit. The initial balance of a newly
issued paycard is zero. In the second dialog the customer may charge his paycard
with a certain amount of money. But the charge operation is only successful if the
current balance of the paycard plus the amount to charge is less than the limit of
the paycard. Otherwise, i.e. if the current balance plus the amount to charge is

3Simplify is part of ESCJava2. We have been allowed to offer a binary download version on
our website.

greater or equal the limit of the paycard, the charge operation does not change the
balance on the paycard and, depending on the class, either an attribute counting
unsuccessful operations is increased or an exception is thrown. The KeY-Tool aims
to formally prove that the implementation actually satisfies such requirements. For
example, one can formally verify the invariant that the balance on the paycard is
always less than the limit of the paycard.

The intended semantics of some classes is specified with the help of invariants
denoted in the Java Modeling Language (JML) [LPCT02, LBR04]. Likewise, the
behavior of most methods is described in form of pre-/postconditions in the JML.
We do not go into details on how JML specifications for Java classes are created. The
tools downloadable from http://jmlspecs.org/download.shtml may be helpful
here. In particular, we require and assume that all JML specifications are
complying to the JML standards [LPC*02]. JMLKeY is no substitute for the
JML parser / type checker.

The UML/OCL version of the KeY-Tool provides more support for creating a
formal specification such as stamping out formal specifications from design patterns
or natural language support [BHS].

3 How to Verify JML Specifications with the KeY-
Tool

Please activate minimize interaction in the Options menu as this will reduce the
need for interactive steps.

JML specifications, in particular pre- and postconditions, can be seen as abstrac-
tions of an implementation. In this context, an implementation is called correct if
it actually implies properties expressed in its specification. The KeY-Tool includes
functionality to verify the correctness of an implementation with respect to its spec-
ification.

1. To verify, you first need to start the KeY prover. This is done by calling the
runProver or startProver script of your KeY distribution, e.g. by running

bin/runProver or bin/startProver

2. You have to choose the Java source files you want to verify. They contain
both the source code and the JML annotations. You can do this by either

e adding on the command line the name of the top level directory under
which your Java sources are collected. In the tutorial example:

bin/runProver paycard or bin/startProver paycard or

e opening File — Load and selecting the top level directory under which
your Java sources reside after having started runProver without any
arguments. For the tutorial example this is again the paycard directory.

3. Now a window, the JML specification browser, pops up and you are asked to
choose a property you would like to verify. The properties are specific to a
method belonging to a class. So, in the browser, first a class of the project
and, then, a method of that class must be selected. Do this by first opening
the folder containing the loaded classes and then clicking with the mouse
pointer on a class displayed in the left most pane. The middle pane of the
browser then displays the methods of the selected class. A click on one of
them shows—in the right pane—properties of the selected method that can

be verified with KeY. The properties are only available if there is a suitable
specification for the selected method.

The next subsection will discuss the various kinds of proof obligations the
KeY-Tool offers and will describe applications to the tutorial examples.

When you have selected a property, you can continue by clicking on the button
Load Proof Obligation. Subsequently, the KeY-Tool generates a suitable proof
obligation in terms of a logical formula. For verification, proof obligations will
contain code of the target programming language (JAVA CARD, in our case).
For these we use a Dynamic Logic* that is able to express properties of JAvVA
CARD programs.

Once you have loaded a proof obligation, you can always return to the JML
specification browser by selecting Tools — JML Specification Browser and
then load another proof obligation.

4. Proof obligations are loaded in the integrated interactive theorem prover KeY-
Prover (see Section 1.4), which is able to handle predicate logic as well as
Dynamic Logic. The KeY-Prover was developed as a part of the KeY-Project
and is implemented in JAVA. It features interactive application of proof rules
as well as automatic application controlled by strategies. In the near future
more powerful strategies will be available.

In Sect. 4.2, we show how to prove the proof obligations generated for the
tutorial example.

4 Provable properties with JMLKeY

In the following the ideas behind the various options for verification are described
informally. A formal description of the generated proof obligations is contained in
Appendix B. For further details on the mapping between JML specifications and the
formulas of the JavaDL logic used in KeY please consult [Eng05]. Examples of usage
within the context of the case study in this tutorial are described in Section 4.2.

4.1 Informal Description of Proof Obligations

The current implementation does not support the full verification of a program.
Instead, the KeY-Tool generates lightweight proof obligations that enable developers
to prove selected properties of their program. These properties are of two kinds:

e properties for method specifications: we show that a method fulfills its method
contract

e properties for class specifications: we show that a method preserves invariants
or history constraints of a class.

4.1.1 Method Specifications

In JML, there are two kinds of method specifications: lightweight and heavyweight
specifications. The main difference is that lightweight specifications set default
values to be not_specified whereas heavyweight specifications have fixed “real”
default values. Essentially we assume for not_specified values the least restricting
value. As an exception to this we require, if not specified otherwise, that methods
terminate, i.e. diverges has false as default value in lightweight specifications.
Since the default values are then the same for (our treatment of) lightweight and

4Dynamic Logic can be seen as an extension of Hoare logic.

heavyweight specifications, this implies that KeY treats lightweight specifications
like heavyweight specifications. Nested specifications are treated as being desugared
correctly.

We distinguish between the following specification cases:

Normal Behavior Specification Cases. These specifications have the following
general form:

normal_behavior
requires P;
diverges D;
assignable A;
ensures Q;

To reduce the cognitive burden when proving interactively, the KeY-Tool has
currently no proof obligation that checks for the complete correctness criteria im-
posed by JML (see Sect. A). Instead there are several lightweight proof obligations
available. The first one is the one titled normal_behavior speccase in the right part
of the JML specification browser. Informally this property checks:

if the method is invoked in a pre-state that satisfies P and
the invariants of the considered class (Sect.4.1.3) hold
then if the method does not terminate (i.e. loops forever or

aborts) D holds in the pre-state
or the method terminates without throwing an exception and
Q holds in the post-state
The generated proof obligation does not check for invariants in the visible states
nor for assignable clauses and it does only assume invariants of the class the con-
sidered method is declared in. KeY always assumes that no Errors are thrown.
See below for the preservation of invariants and the checking of assignable
clauses.

Exceptional Behavior Specification Cases. The general form is:

exceptional_behavior
requires P;
diverges D;
assignable A;
signals (Exception_1 el) R1

signals (Exception_n en) Rn

Again the generated proof obligation of the KeY-Tool does not check for all
the conditions that JML requires (see Sect. A). Instead the following property
(exzceptional_behavior speccase) can be loaded:

if the method is invoked in a pre-state that satisfies P and
the invariants of the considered class (Sect.4.1.3) hold
then if the method does not terminate (i.e. loops forever or

aborts) D holds in the pre-state

or the method completes abruptly by throwing an exception
and
if an instance of Exception_i (i = 1,...,n) is the reason
for abrupt completion, Ri holds in the post-state

Generic Behavior Specification Cases. The generic behavior specification
case is the most general one and subsumes both aforementioned cases, that is, they
may be desugared into a behavior specification case. The general form is:

behavior
requires P;
diverges D;
assignable A;
ensures Q;
signals (Exception_1 el) R1

signals (Exception_n en) Rn

The proof obligation generated by the KeY-Tool does not check for all the con-
ditions imposed by this specification (Sect. A). Instead the following property
(behavior speccase) can be loaded:

if the method is invoked in a pre-state that satisfies P and
the invariants of the considered class (Sect.4.1.3) hold
then if the method does not terminate (i.e. loops forever or

aborts) D holds in the pre-state

or the method terminates normally or completes abruptly by
throwing an exception and
Q holds in the post-state if the method returns normally
if an instance of Exception_i (i = 1,...,n) is the reason
for abrupt completion, Ri holds in the post-state

4.1.2 Type Specifications

The parts of type specifications in JML that the KeY-Tool checks are invariants and
history constraints. Proofs are performed on a per (non-abstract) method basis. For
every implemented method the KeY-Tool checks whether the method preserves the
invariants and satisfies the history constraints imposed on the type the method is
declared in.
The KeY-Tool offers a proof obligation, called Class specification generated for
the following property:
if the method is invoked in a pre-state that satisfies an arbitrary
precondition of the method and the invariants I of the considered
class (Sect.4.1.3) hold and the method terminates
then I hold in the post-state
and the history constraints of the considered class (Sect.4.1.3) hold
in the post-state (w.r.t. the pre-state)

4.1.3 Proof Obligation Options

Invariants and Constraints Taken into Account The proof obligations above
restricted invariants (and history constraints) to be assumed and established to
those of the considered class. Correctly, the JML semantics requires to assume and
/ or establish all applicable invariants. Though this obviously leads to more complex
proof obligations, it is possible to enforce the correct JML variant by checking the
Use All Applicable Invariants checkbox at the bottom of the specification browser.
By default the proof obligation described above is taken, as already advocated in
the JML reference manual [LBRO4].

Ensuring Invariants already in the Method Specification For method spec-
ifications it is usually not required to prove that the invariants and history con-

straints are established. Instead, this is done separately by using the Class Specifi-
cation proof obligation. Alternatively you may select the option Add Invariants to
Postcondition checkbox at the bottom of the specification browser to obtain a proof
obligation that requires showing this property already when proving the method
specification. This leads to more intricate proof obligations. Thus, by checking Add
Invariants to Postcondition and Use All Applicable Invariants you get the most
comprehensive proof obligation for a method that the KeY-Tool provides.

Integer Semantics As already pointed out in Sect. 1.4, the KeY-Tool provides
several alternatives for treating integer values. Which integer semantics you have
chosen affects the generated proof obligations. A JML expression a+b may either
be translated into a mathematical addition expression or into the Java + operation
(with overflow), depending on the selection.

4.2 Application to the Tutorial Example

Now we apply the described proof obligations to the tutorial example. First we
demonstrate the generation of proof obligations, then we show how these can be
handled by the KeY-Prover. Please make sure that the default settings of the KeY-
Prover are selected (see chapter 1.4), especially that the current strategy is Java
DL and the maximum number of automatic rule applications is 1000. Be warned
that the names of the proof rules and the structure of the proof obligations may be
subject to changes in the future.

4.2.1 Method Specifications

Normal Behavior Specification Case. In the left part of the JML specifica-
tion browser, expand the directory Paycard. From the now available classes select
PayCard and then the method charge in the second list. This method is specified
by the JML annotation

public normal_behavior
requires amount>0 ;
assignable unsuccessfulOperations, balance;
ensures balance >= \old(balance);

Choose the proof obligation normal_behavior speccase for method charge in the right
list and press the button Load Proof Obligation. This property says that if the
parameter amount is greater than zero and the invariants hold then a call to this
method implementation terminates normally and the balance attribute is greater
or equal to balance in the pre-state. The sequent displayed in the large prover
window after loading the proof obligation exactly reflects this property.

First, select the checkbox Autoresume strategy in the tab Proof Search Strategy in
the lower left pane and then start the proof by pushing the run strategy-button. The
proof is closed automatically by the strategies. In older versions it was necessary
to perform a few interactive proof steps or to run the decision procedure Simplify.
The latter is done by pushing the button Run Simplify, which will succeed right
away.

Exceptional Behavior Specification Case. The exceptional behavior specifi-
cation of the method charge0 in the class PayCardJunior is

public exceptional_behavior
requires amount <= 0 || checkSum(this.balance + amount) == 0;
assignable \nothing;

10

signals (CardException) amount <= 0
| | checkSum(this.balance + amount) == 0;

The KeY proof obligation for this specification requires that if the parameter amount
is negative or equal to 0 or if the pure method checkSum returns 0 with the argu-
ment this.balance + amount and the invariants of PayCardJunior hold, then the
method throws a CardException in a state that satisfies the pre-condition.

Using the JML specification browser and selecting the property exceptional_be-
havior for charge0 loads a proof obligation with a JavaDL formalization of this
property.

As this specification contains a query to checkSum, you should set Quey Treat-
ment to Exzpand, or expand the query interactively. Start the proof again by pushing
the run strategy-button. The proof is closed automatically by the strategies.

Generic Behavior Specification Case. The method specification for method
createCard in PayCardJunior is:

ensures \result.limit==100;

This is a lightweight specification, for which KeY provides a proof obligation that
requires the method to terminate (maybe abruptly) and to ensure that, if it termi-
nates normally, the 1imit attribute of the result equals 100 in the post-state. We
may assume the invariants of PayCardJunior. By selecting the createCard method
and then behavior speccase 0 for method createCard, an appropriate JavaDL formula

is loaded in the prover. The proof can be closed automatically by the strategy Java
DL.

4.2.2 Type Specifications
The instance invariant of type PayCardJunior is

this.balance >= 0
&& this.balance < juniorLimit && juniorLimit < limit;

There is also a static invariant available:
juniorLimit==100;

The method charge of PayCardJunior must preserve these invariants unless it
does not terminate. The KeY proof obligation to check this property is called Class
specification for class PayCardJunior.

The proof is done automatically with the strategy Java DL.

4.2.3 Proof-Supporting JML Annotations

In KeY, JML annotations are not only input to generate proof obligations but also
support proof search. An example are loop invariants. In our scenario there is a class
LogFile which keeps track of a number of recent transactions by storing the balances
at the end of the transactions. Consider the method getMaximumRecord() in that
class. It returns the stored log entry (LogRecord) with the greatest balance. To
prove the normal_behavior specification proof obligation of the method, one needs
to reason about the incorporated while loop. Basically there are two possibilities
do this in KeY: use induction or use loop invariants. In general, both methods
require interaction with the user during proof construction. For loop invariants
however, no interaction is needed if the JML loop_invariant annotation is used.
In the example the loop invariant, written in the JML notation, indicates that the
variable max contains the largest value of the traversed part of the array (up to
position j):

11

/%@ loop_invariant 0<=i && i <= logArray.length

c] && max!=null &&

@ (\forall int j; O <= j && j<i;

@ max.balance >= logArray[j].balance);
@ assignable max, i;

@x/

while(i<logArray.length){
LogRecord 1lr = logArray[i++];
if (lr.getBalance() > max.getBalance()){
max = 1r;
3
}

If the annotation had been skipped we would have been asked during the proof
to enter an invariant or an induction hypothesis. With the annotation no further
interaction is required to resolve the loop.

Open the normal_behavior speccase of LogFile’s getMaximumRecord () with the
JML specification browser. Choose the strategy Java DL and the Loop treat-
ment None. Make sure Autoresume strategy is selected and start the prover.
Now select the while loop including the leading updates and execute the rule
unwind_while. Several goals remain after the strategies did most of the work,
of which all but two can be closed by running Simplify. In both goals you will
find a formula similar to self LogFile_1v_0.logArray[i_0] = null respectively
self LogFile_ 1v_0.logArray[0] = null and all-quantified formula similar to

\forall int index_1vO0;
'index_1v0 < O & index_1lv0 < paycard.LogFile.logFileSize ->
Iself _LogFile_lv_0.logArray[index_1v0] = null

and

\forall jint j;
(j>>0& j<=-1+1i0 >
self_LogFile_lv_0.logArray[j].balance <= max_0.balance)

Highlight the term i_0 (resp. 0) with the mouse, and drag and drop it onto
an all-quantified formula (the complete all-quantified formula must be highlighted
(incl. \forall)) to create an instance of the all-quantified formula with the given
variable. If you have instanciated the formula with the correct variable you can
close the proof now. This should happen automatically, if Autoresume is activated,
otherwise you need to restart the strategies.

As can be seen, KeY makes use of an extension to JML, which is that assignable
clauses can be attached to loop bodies, in order to indicate the locations that can
at most be changed by the body. Doing this makes formalizing the loop invariant
considerably simpler. We refer to future work on this issue.

4.2.4 Using the KeY-plugin for Eclipse

This section will give a quick overview on the visualization features added by the
KeY-plugin for Eclipse. We will assume that the plugin has already been installed
as described above. Start Eclipse and open the PayCard project using the Import
dialog from the File menu. The paycard directory should appear on the right
hand side. Now open the proof visualization by selecting Other in the Show View
submenu inside the View menu. Once there select Proof Visualization in the KeY
branch and click OK. Now it is time to actually open one of the classes, in this
example we will use LogFile.

12

Open the KeY-Tool by clicking on the KeY-logo in the toolbar. As before se-
lect the PayCard project and mark the normal_behavior speccase for the method
getMazimumRecord in the LogFile class. Now start the proof. A number of open
goals will remain but this time we won’t deal with them, our focus is on the Eclipse
plugin.

It is time to take a closer look at the visualization options in Eclipse. Return
to it and press the Show Ezecution Traces button from the Proof Visualization
view. A new window should pop up with a number of execution traces available.
Checking the Filter uninteresting traces option hides those traces that appear to be
irrelevant to the understanding of the current proof. In this case it should leave you
with a single trace. Mark it and click OK. Now you will actually see the execution
trace of the selected node in the Proof Visualization view. Additionally all executed
statements, except for the last one, are highlighted in yellow inside the Java editor.
In case of an exception the last statement is highlighted in dark red, otherwise in
dark yellow. You can navigate through the trace using the buttons Step Into and
Step over. The first one allows you to mark the next executed statement while the
last one jumps over substatements and method calls. By right-clicking on a branch
you can also choose to go into it. To return to the main execution trace press the
Home button. Pushing the Mark All Statements button remarks all statements of
the trace in the Java editor. If you want to clear all markers you can press the red
cross. It is possible to receive more information on single statement, like the node
at which the statement was executed, by moving the mouse over the marker bar
left of the Java editor.

In case Eclipse is not available you can use a more rudimentary visualization
built directly in the KeY-Tool. You can access it by right-clicking on a node and
selecting Visualize. This opens a new window with a list of traces. Again you have
the chance to Filter uninteresting traces and you get to see the trace in a tree-like
structure. Statements that produced exceptions are highlighted in red.

The visualization options presented above concentrate on the symbolic execu-
tion. They allow an intuitive way for analyzing the current proof branch in a way
that is similar to classic debuggers.

5 Current Limitations and Restrictions

The current version of the KeY-Tool is far from being a polished and universally ap-
plicable tool. Especially the JML interface, JMLKeY, is very much work in progress.
Moreover the JML semantics are still subject to discussions, not to mention that
there is no formal semantics for JML. Thus, bugs and inadequacies between the
original JML semantics and the (implicitly given) semantics in KeY are be possible.

Concerning KeY, here is an (incomplete) list of open issues we are now working
on and intend to resolve in near future:

1. Restrictions on JML translation:

o default variable initialization is null.

e currently not completely functional in all cases : translation of model
methods and model fields. Fix is pending.

e unsupported constructs, support planned: data groups, assignable clauses
containing *, \reach, asserts, \fresh, \not_modified,

e unsupported constructs, future support possible:

— Accessible, Callable clauses
— \is_initialized, \num_of \product, \sum expressions.

13

e unsupported constructs, support in KeY not planned:

— When, Working Space, Duration, Measured By clauses and model
programs

— \duration, \space, \working space, \invariant_for, \type, \typeof,
\elemtype expressions.

2. Supported platforms:

e Linux and MacOS X are tested, Solaris should work as well

e Windows NT, 2000 and XP should work when using the KeY byte code
version.

3. Restrictions of the KeY-Prover:

e manual not yet available

e automatic insertion of quantifiers is pending
4. Restrictions on JDK:

e problem: tool tips are flickering occasionally
workaround: reduce the number of tool tip lines in the menu View

14

A Informal Semantics of JML Method Specifica-
tions

For the convenience of the reader a brief summary of the informal semantics of JML
specification cases as described in [LPCT02] can be found below.

Normal Behavior Specification Cases. Given the following method specifica-
tion

normal_behavior
requires P;
diverges D;
assignable A;
ensures Q;

JML requires for this specification that

if the method is invoked in a pre-state that satisfies P and all
applicable invariants hold
then an error is thrown

or if the method does not terminate (i.e. loops forever or
aborts) D holds in the pre-state

or the method terminates without throwing an exception and
during execution of the method the modified locations al-
ready existing in the pre-state and not-local to the method
are listed in A and
all applicable invariants and history constraints hold in all
visible states and
Q holds in the post-state

Exceptional Behavior Specification Cases. The general form is:

exceptional_behavior
requires P;
diverges D;
assignable A;
signals (Exception_1 el) R1

signals (Exception_n en) Rn

JML requires for such a specification that

if the method is invoked in a pre-state that satisfies P and all
applicable invariants hold
then an error is thrown

or if the method does not terminate (i.e. loops forever or
aborts) D holds in the pre-state

or the method completes abruptly by throwing an exception
and
the modified locations already existing in the pre-state and
not-local to the method are listed in A and
all applicable invariants and history constraints hold in all
visible states and
if an instance of Exception_i (i = 1,...,n) is the reason
for the abrupt completion, Ri holds in the post-state

15

Generic Behavior Specification Cases. The general form is:

behavior
requires P;
diverges D;
assignable A;
ensures Q;
signals (Exception_1 el) R1

signals (Exception_n en) Rn

JML requires for such a specification that

if the method is invoked in a pre-state that satisfies P and all
applicable invariants hold
then an error is thrown

or if the method does not terminate (i.e. loops forever or
aborts) D holds in the pre-state

or the method terminates normally or completes abruptly by
throwing an exception and
the modified locations already existing in the pre-state and
not-local to the method are listed in A and
all applicable invariants and history constraints hold in all
visible states and
Q holds in the post-state if the method returns normally
if an instance of Exception_i (i = 1,...,n) is the reason
for abrupt completion Ri holds in the post-state

B Formal Description of Generated Proof Obliga-
tions

Proof obligations generated from JML specifications are always generated with re-
spect to a certain method m in a class C'C' and express that m satisfies certain cor-
rectness aspects of the regarded specification. For the proof obligations discussed
in this section we will use the following abbreviations:

e MBS(m) is an abbreviation for the body of method m (in the selected class
CC), appropriately instantiated with receiver and parameter variables, which
depends on the signature of m.

e o stands for the following Java block:

java.lang.Exception exc = null;
try {
MBS (m)
} catch (java.lang.Exception e) {
exc = e;
}

For readers not familiar with JavaDL we note that JavaDL treats abrupt termi-
nation by any exception or error as non-termination. Therefore it is necessary to
use the program « as defined above. Furthermore, JavaDL has an operator called
update, written {loc := val}, for locations loc and side-effect free expressions val,
which makes the formula behind it be interpreted in a state where the assignment
loc=val; has been executed. Finally we mention that the initialisation of classes
and objects is realized by virtual attributes, as for instance <classInitialized> or
<created>.

16

B.1 Proof Obligations for Method Specification Cases

The proof obligations for method specification cases express that a method sat-
isfies the (exceptional and normal) postcondition of a certain specification case if
it is called in a state that implies the corresponding precondition P and that it
terminates if it is called in a state that implies P A =D, where D is the JavaDL
counterpart of the expression specified by the diverges clause.

B.1.1 Normal Behavior Specification Cases

Given the following method specification

normal_behavior
requires P;
diverges D;
assignable A;
ensures Q;

the corresponding proof obligation is:
Vself:CC (P Ninv — (((=D — (a)true) A [a]Q")))
e P and D are the JavaDL representations of P and D.

e We use inv to denote the invariants used in the proof obligation. It is defined
as follows:

1. if Use All Applicable Invariants is checked:

inv:= N\ VoT ({selfT =0}
rrer (((0 # null A 0. <created>= true) — invy)A
(T. <classInitialized>— ian)))

— T is the set of known classes and interfaces.

— 1nw, is a conjunction of the invariants applicable to o, i.e. the instance
invariants of T.

— dnvur are the static invariants of 7.

— self; is a program variable of type T introduced during the transla-
tion of the specification of T'.

2. if Use All Applicable Invariants is not checked and m is nonstatic:
1NV 1= NMVsef N INVCC
or if m is static:
1NU 1= Voo
where

— invce are the static invariants of C'C.

— iNVgef is a conjunction of the invariants applicable to self, i.e. the
instance invariants of C'C.

where

e Let Q be the JavaDL representation of Q. Q' equals @ if the option Add
Invariants to Postcondition is checked and it equals Q A inv otherwise.

17

B.1.2 Exceptional Behavior Specification Cases.

exceptional_behavior
requires P;
diverges D;
assignable A;
signals (Exception_1 el) R1

signals (Exception_n en) Rn
With P, D as above, the proof obligation for this specification is:
Vself:CC (P Ainv — ((-D — (a)true) A [o](exc # null A EAT)))
e F stands for:
n
/\(exc instanceof Exception_i) — {e; := exc}R;.
i=1
and R; (i =1,...,n) is the translation of the expression Ri.
o If Add Invariants to Postcondition is selected I equals true (i.e. is skipped
from the conjunction) and, otherwise, equals inv.
B.1.3 Generic Behavior Specification Cases.

behavior
requires P;
diverges D;
assignable A;
ensures Q;
signals (Exception_1 el) Rl

signals (Exception_n en) Rn

The proof obligation for this specification is:

Vself:CC (P Ninv — ((=D — (o)true)
Ala]((exc =null — Q) A (exc #null — E))AI))

All abbreviations are defined as in the cases above.

B.1.4 Proof Obligations without Diverges

Usually it is required that a method must terminate, i.e. D is false. This is (in KeY)
also the default value if the diverges clause of a method specification is missing.
In this case we get much simpler proof obligations. For instance, for a behavior
specification case, we get (using the abbreviations as above):

Vself:CC (((P Ainv) — (a)((exc =null — Q) A (exc # null — E)))))

The proof obligations for normal and exceptional behavior specification cases with
omitted diverges clauses are simplified accordingly.

18

B.2 Proof Obligations for Invariants and History Constraints

n
Let \/ P; be the disjunction of the preconditions of the specification cases of m and
i=1
INUppe, iNUpost formulas representing the invariants one wants to prove (depending
on the selected options). con stands for the applicable history constraints of CC.

Then the proof obligation for a type specification is:

n

Vself:CC ((\/ P;) N invpre — [afcon A invpost)
i=1

We usually have invp,. = invpest except for the case that Use All Applicable In-
variants is not checked and the regarded method is a constructor (invy.. = inccc
and invpest = iNcoc A invserr) or the implicit method <clinit> (invp,e = true and
NUpost = INCCC).

References

[ABBT05] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Richard Bubel,
Martin Giese, Reiner Hahnle, Wolfram Menzel, Wojciech Mostowski,
Andreas Roth, Steffen Schlager, and Peter H. Schmitt. The KeY tool.
Software and System Modeling, 4:32-54, 2005.

[Bec01] Bernhard Beckert. A dynamic logic for the formal verification of Java
Card programs. In I. Attali and T. Jensen, editors, Java on Smart Cards:
Programming and Security. Revised Papers, Java Card 2000, Interna-
tional Workshop, Cannes, France, LNCS 2041, pages 6-24. Springer,
2001.

[BHS] Thomas Baar, Reiner Hahnle, and Steffen Schlager. Key quicktour. See
download.key-project.org.

[Eng05] Christian Engel. A translation from jml to java dynamic logic. Studien-
arbeit, Fakultét fir Informatik, Universitat Karlsruhe, January 2005.

[ICS] www.icansolve.com.

[LBR0O4] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design
of JML: A behavioral interface specification language for Java. Technical
Report 98-06y, lowa State University, Department of Computer Science,
November 2004. See www. jmlspecs.org.

[LPCT02] Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon, and Clyde
Ruby. Jml reference manual. Department of Computer Science, Iowa
State University. Available from http://www.jmlspecs.org, August
2002.

[Sch02] Steffen Schlager. Handling of Integer Arithmetic in the Verification of
Java Programs. Master’s thesis, Universitdt Karlsruhe, 2002. Avail-
able at: http://il2www.ira.uka.de/ key/doc/2002/DA-Schlager.

ps.gz.

[Sim] http://secure.ucd.ie/products/opensource/ESCJava2/.

19

