
Does your software do what it should?
Specification and verification with the Java Modeling

Language and OpenJML.
The OpenJML User Guide

DRAFT IN PROGRESS

David R. Cok
GrammaTech, Inc.

April 6, 2015

The most recent version of this document is available at
http://jmlspecs.sourceforge.net/OpenJMLUserGuide.pdf.

Copyright (c) 2010-2015 by David R. Cok. Permission is granted to make and dis-
tribute copies of this document for educational or research purposes, provided that the
copyright notice and permission notice are preserved and acknowledgment is given in
publications. Modified versions of the document may not be made. Please forward
corrections to the author. Incorporating this document within a larger collection, or dis-
tributing it for commercial purposes, or including it as part or all of a product for sale is
allowed only by separate written permission from the author.

http://jmlspecs.sourceforge.net/OpenJMLUserGuide.pdf

2

Contents

1 Why specify? Why check? 5

2 Background of verification, JML, and OpenJML 6

3 Organization of this document 7

4 Some details 8
4.1 Disambiguating ‘annotation’ . 8
4.2 Syntactic conflicts with @ . 8
4.3 .jml files and .java files . 9

5 Quick start to OpenJML 10
5.1 Installing OpenJML . 10

6 Other resources 11

I Tutorial introduction to specifying and checking Java programs 12

7 Tutorial 13

II The Java Modeling Language (JML) 14

8 JML concepts 15
8.1 JML modifiers and Java annotations . 15
8.2 Model and Ghost . 15
8.3 Visibility . 15
8.4 JML types . 15
8.5 Evaluation and well-formedness of JML expressions 15
8.6 Null and non-null references . 15
8.7 Static and Instance . 15
8.8 Location sets . 15
8.9 Arithmetic modes . 15
8.10 org.jmlspecs.lang.JML . 15

9 Summary of JML Features 17
9.1 JML Syntax . 17

9.1.1 Syntax of JML specifications . 17
9.1.2 Conditional JML specifications . 17
9.1.3 Finding specification files and the refine statement 18

1

9.1.4 JML specifications and Java annotations . 19
9.1.5 Model import statements . 19
9.1.6 Modifiers . 19
9.1.7 Method specification clauses . 19
9.1.8 Class specification clauses . 20
9.1.9 Visibility of specifications . 20
9.1.10 Statement specifications . 20
9.1.11 JML expressions . 21
9.1.12 JML types . 23
9.1.13 Non-Null and Nullable . 24
9.1.14 Observable purity: \query and \secret . 24
9.1.15 Race condition detection . 24
9.1.16 Arithmetic modes . 24
9.1.17 Universe types . 24
9.1.18 Dynamic frames . 24
9.1.19 Code contracts . 24
9.1.20 redundantly suffixes . 24
9.1.21 nowarn lexical construct . 25

9.2 Interaction with Java features . 25
9.3 Other issues . 25

9.3.1 Interaction with JSR-308 . 25
9.3.2 Interaction with FindBugs . 25

III The OpenJML tool 26

10 Introduction 27
10.1 OpenJML . 27

10.1.1 Command-line tool . 27
10.1.2 Eclipse plug-in . 27
10.1.3 Development of OpenJML . 28

10.2 JML . 28
10.3 OpenJDK . 28
10.4 License . 28

11 The command-line tool 29
11.1 Installation and System Requirements . 29
11.2 Running OpenJML . 29

11.2.1 Exit codes . 30
11.2.2 Files . 30
11.2.3 Exit values . 30
11.2.4 Specification files . 32
11.2.5 Annotations and the runtime library . 32
11.2.6 Java properties and the openjml.properties file 32
11.2.7 Options: Finding files and classes: class, source, and specs paths 33
11.2.8 Options: JML tools . 34
11.2.9 Options: OpenJML options applicable to all OpenJML tools 35
11.2.10 Options: Extended Static Checking . 35
11.2.11 Options: Runtime Assertion Checking . 36
11.2.12 Options: Version of Java language or class files 36
11.2.13 Options: Other Java compiler options applicable to OpenJML 36
11.2.14 Options: Information and debugging . 37

2

11.2.15 Options related to Static Checking . 38
11.2.16 Options related to parsing and typechecking . 38
11.2.17 Java options related to annotation processing 38
11.2.18 Other JML Options . 38

12 The Eclipse Plug-in 39
12.1 Installation and System Requirements . 39
12.2 GUI Features . 39

13 OpenJML tools 40
13.1 Options controlling OpenJML behavior . 40
13.2 Parsing and Type-checking . 42

13.2.1 Classpaths, sourcepaths, and specification paths in OpenJML 42
13.2.2 Command-line options for type-checking . 43

13.3 Static Checking and Verification . 43
13.3.1 Options specific to static checking . 43

13.4 Runtime Assertion Checking . 44
13.4.1 Options specific to runtime checking . 44

13.5 Generating Documentation . 44
13.6 Generating Specification File Skeletons . 44
13.7 Generating Test Cases . 44
13.8 Limitations of OpenJML’s implementation of JML . 45

13.8.1 model import statement . 45
13.8.2 purity checks and system library annotations 45
13.8.3 TBD - other unimplemented features . 45

14 Using OpenJML and OpenJDK within user programs 46
14.1 Concepts . 47

14.1.1 Compilation Contexts . 47
14.1.2 JavaFileObjects . 48
14.1.3 Interfaces and concrete classes . 48
14.1.4 Object Factories . 49
14.1.5 Abstract Syntax Trees . 49
14.1.6 Compilation Phases and The tool registry . 49

14.2 OpenJML operations . 51
14.2.1 Methods equivalent to command-line operations 51
14.2.2 Parsing . 53
14.2.3 Type-checking . 55
14.2.4 Static checking . 55
14.2.5 Compiling run-time checks . 55
14.2.6 Creating JML-enhanced documentation . 55

14.3 Working with ASTs . 55
14.3.1 Printing parse trees . 55
14.3.2 Source location information . 55
14.3.3 Exploring parse trees with Visitors . 55
14.3.4 Creating parse trees . 61

14.4 Working with JML specifications . 61
14.5 Utilities . 61
14.6 Extending or modifying JML . 61

14.6.1 Adding new command-line options . 61
14.6.2 Altering IAPI . 61
14.6.3 Changing the Scanner . 61

3

14.6.4 Enhancing the parser . 61
14.6.5 Adding new modifiers and annotations . 61
14.6.6 Adding new AST nodes . 61
14.6.7 Modifying a compiler phase . 61

IV Contributing to OpenJML 62

V Semantics and translation of Java and JML in OpenJML 63

15 Introduction 64

16 Statement translations 65
16.1 While loop . 65

17 Java expression translations 66
17.1 Implicit or explicit arithmetic conversions . 66
17.2 Arithmetic expressions . 66
17.3 Bit-shift expressions . 67
17.4 Relational expressions . 67
17.5 Logical expressions . 67

4

Chapter 1

Why specify? Why check?

5

Chapter 2

Background of verification, JML, and
OpenJML

6

Chapter 3

Organization of this document

This document addresses three related topics: how to read, write, and use specifications; the Java Model-
ing Language (JML) in which specifications are written; and the OpenJML tool that provides editing and
checking support for Java programs using JML.

These three topics are best learned in an interleaved fashion. The tutorial section (Part I) does just
this. It introduces the simpler topics of specification, using Java programs with JML as the specification
language, and using OpenJML as the tool to aid editing and checking, with motivating examples. A
reader new to JML or to using specifications will find this tutorial to be the easiest introduction to the
topics of this book.

However, it is also useful to have a compact description of each of the JML language and the OpenJML
tool. These descriptions are found in Parts II and III) respectively. After some introduction, a reader may
well want to take a break from the tutorial to read through and experiment with the details of JML and
OpenJML. Once a reader has graduated from the tutorial and is specifying and verifying new examples,
the description of JML serves as a summary of the JML language and the description of OpenJML is the
user guide and reference manual for the tool. These two parts stand on there own.

Part IV contains information for those interested in contributing to the document. Contributions in the
form of bug reports and experience reports with substantial use cases or experience in teaching are always
welcome; this information can be shared directly with the developers or through the jmlspecs mailing
list. Part IV, however, contains information primarily of interest to those developing and extending the
OpenJML code itself.

The final part of the document, Part V, describes details of how OpenJML translates the combination of
Java and JML. This is not meant to be read through and is only intended for the reader interested in the
detailed semantics of JML and the implementation of OpenJML.

FIXME - what about a mailing list

7

Chapter 4

Some details

4.1 Disambiguating ‘annotation’

. Formal specifications for code are often called annotations; in this document we often use the term ‘JML
annotations’ to refer to specifications written in JML. There is also a specific syntactic construct in Java
called ‘annotations’: the interfaces labeled with ‘@’ symbols that can modify various syntactic elements
of Java. Thus the simple term ’annotation’ can be ambiguous. The ambiguity is heightened by the fact
that JML annotations, such as /*@ pure */, can be expressed as Java annotations, @Pure.

In this document, we will generally disambiguate the term ‘annotation’ as either ’JML annotation’ or
’Java annotation’; if used alone, ’annotation’ will generally mean a JML annotation.

4.2 Syntactic conflicts with @

For historical reasons, specifications are often written as structured programming language comments,
with the @ symbol denoting a comment containing specifications. Java comments begin with either // or
/*; those comments that contain JML specifications begin with //@ or /*@. Similarly, // or /* are also
used for comments in C and C++; the ANSI-C Specification Language also uses //@ or /*@ to indicate
comments containing specifications.

Unfortunately, since the @symbol is also used for Java annotations, the following problem can arise. Some
Java code is written something like (the particular Java annotation and its content are irrelevant)

@SuppressWarning("...")

class X

and then the user comments out the Java annotation without any whitespace:

//@SuppressWarning("...")

class X

Now JML tools will interpret the //@ as the beginning of a JML annotation that will generally have
parsing errors.

If the user includes whitespace, as in

8

// @SuppressWarning("...") class X

there is then no problem. The workaround for this conflict is to edit the original Java source to include the
whitespace. In some situations, placing all JML annotations in a .jml file may solve the problem; however,
some tools, including OpenJML, may still parse the .java file, including the erroneous apparently-JML
annotations, even though those annotations are ignored when a .jml file is present.

4.3 .jml files and .java files

-TBD - .jml files hide annotations in .java files, except those in body of methods

9

Chapter 5

Quick start to OpenJML

The details of installing and running OpenJML are presented in Part III. However, an installation of
the tool is needed to work through the tutorial. Some impatient readers may also wish to have a quick
installation of the tool prior to diving into the full description. This section provides initial installation
and use instructions.

5.1 Installing OpenJML

OpenJML is available as a command-line tool and as an Eclipse plug-in. Complete the following steps
to install the command-line tool:

• Create or identify a directory (folder) in which to place the installation. Let $OPENJML represent
the path to this installation directory.

• Download into $OPENJML either the zip file at http://jmlspecs.sourceforge.net/openjml.
zip or a gzipped tar file from http://jmlspecs.sourceforge.net/openjml.tar.gz

• cd into the directory and either unzip (unzip openjml.zip) or untar (tar xvzf openjml.tar.gz)
the downloaded file.

•

10

http://jmlspecs.sourceforge.net/openjml.zip
http://jmlspecs.sourceforge.net/openjml.zip
http://jmlspecs.sourceforge.net/openjml.tar.gz

Chapter 6

Other resources

There are several other useful resources related to JML and OpenJML:

• http://www.jmlspecs.org is a web site describing current on JML, including references to
many publications, other tools, and links to various groups using JML.

• http://www.jmlspecs.org/OldReleases/jmlrefman.pdf is the official reference manual
for JML, though it sometimes lags behind agreed-upon changes that are implemented in tools.
(FIXME - make a better link)

• http://www.openjml.org contains a set of on-line resources for OpenJML

• http://jmlspecs.sourceforge.net/OpenJMLUserGuide.pdf is the most current version of
this document

• http://jmlspecs.sourceforge.net/OpenJMLUserGuide.html is an HTML version, with
frames, of this document; http://jmlspecs.sourceforge.net/OpenJMLUserGuide-onepage.
html is the same material in one large HTML page.

• The source code for OpenJML, the original JML tools, and some other JML projects is contained
in the jmlspecs sourceforge project at http://sourceforge.net/projects/jmlspecs.

There are also other tools that make use of JML. An incomplete list follows:

• Key - FIXME - need url

• The previous generation of JML tools prior to OpenJML is available at http://www.jmlspecs.
org/download.shtml.

• FIXME - need others

11

http://www.jmlspecs.org
http://www.jmlspecs.org/OldReleases/jmlrefman.pdf
http://www.openjml.org
http://jmlspecs.sourceforge.net/OpenJMLUserGuide.pdf
http://jmlspecs.sourceforge.net/OpenJMLUserGuide.html
http://jmlspecs.sourceforge.net/OpenJMLUserGuide-onepage.html
http://jmlspecs.sourceforge.net/OpenJMLUserGuide-onepage.html
http://sourceforge.net/projects/jmlspecs
http://www.jmlspecs.org/download.shtml
http://www.jmlspecs.org/download.shtml

Part I

Tutorial introduction to specifying and
checking Java programs

12

Chapter 7

Tutorial

13

Part II

The Java Modeling Language (JML)

14

Chapter 8

JML concepts

8.1 JML modifiers and Java annotations

8.2 Model and Ghost

8.3 Visibility

8.4 JML types

8.5 Evaluation and well-formedness of JML expressions

8.6 Null and non-null references

8.7 Static and Instance

8.8 Location sets

8.9 Arithmetic modes

8.10 org.jmlspecs.lang.JML

Some JML features are defined in the org.jmlspecs.lang.JML class. The org.jmlspecs.lang pack-
age is included as a model import by default, just as the java.lang package is included by default in a
Java file. org.jmlspecs.lang.* contains these elements:

• JML.informal(<string>) : This method is a replacement for (and is equivalent to) the informal
expression syntax (§??) (* ... *). Both expressions return a boolean value, which is always
true.

15

• TBD

16

Chapter 9

Summary of JML Features

The definition of the Java Modeling Language is contained in the JML reference manual.[?] This docu-
ment does not repeat that definition in detail. However, the following sections summarize the features of
JML, indicate what is and is not implemented in OpenJML, describes any extensions to JML contained
in OpenJML, and includes comments about relevant implementation aspects of OpenJML.

9.1 JML Syntax

9.1.1 Syntax of JML specifications

JML specifications may be written as Java annotations. Currently these are only implemented for modi-
fiers (cf. section TBD). In Java 8, the use of Java annotations for JML features will be expanded.

JML specifications may also be written in specially formatted Java comments: a JML specification in-
cludes everything between either (a) an opening /*@ and closing */ or (b) an opening //@ and the next
line ending character (\n or \r) that is not within a string or character literal.

Such comments that occur within the body of a class or interface definition are considered to be a spec-
ification of the class, a field, or a method, depending on the kind of specification clause it is. JML
specifications may also occur in the body of a method.

Obsolete syntax. In previous versions of JML, JML specifications could be placed within javadoc
comments. Such specifications are no longer standard JML and are not supported by OpenJML.

9.1.2 Conditional JML specifications

JML has a mechanism for conditional specifications, based on a system of keys. A key is a Java identifier
(consisting of alphanumeric characters, including the underscore character, and beginning with a non-
digit). A conditional JML comment is guarded by one or more positive or negative keys (or both). The
keys are placed just before the @ character that is part of the opening sequence of the JML comment (the
//@ or the /*@). Each key is preceded by a ’+’ or a ’-’ sign, to indicate whether it is a positive or negative
key, respectively. No white-space is allowed. If there is white-space anywhere between the initial // or
/* and the first @ character, the comment will appear to be a normal Java comment and will be silently
ignored.

17

The keys are interpreted as follows. Each tool that processes the Java+JML input will have a means (e.g.
by command-line options) to specify the set of keys that are enabled.

• If the JML annotation has no keys, the annotation is always processed.

• If there are only positive keys, the annotation is processed only if at least one of the keys is enabled.

• If there are only negative keys, the annotation is processed unless one of the keys is enabled.

• If there are both positive and negative keys, the annotation is processed only if (a) at least one of
the positive keys is enabled AND (b) none of the negative keys are enabled.

JML previously defined one conditional annotation: those that began with /*+@ or //+@. ESC/Java2 also
defined /*-@ and //-@. Both of these are now deprecated. OpenJML does have an option to enable the
+-style comments.

The particular keys do not have any defined meaning in the JML reference manual. OpenJML implicitly
enables the following keys:

• ESC : the ESC key is enabled when OpenJML is performing ESC static checking;

• RAC : the RAC key is enabled when OpenJML is performing Runtime-Assertion-Checking.

• OPENJML : The OPENJML key is enabled whenever OpenJML is processing annotations (and
presumably is not enabled by other tools).

• DEBUG : The DEBUG key is not implicitly enabled. However it is defined as the key that en-
ables the debug JML statement. That is the debug statement is ignored by default and is used by
OpenJML if the user enables the DEBUG key.

Thus, for example, one can turn off a non-executable assert statement for RAC-processing by writing
//-RAC@ assert ...

9.1.3 Finding specification files and the refine statement

JML allows specifications to be placed directly in the .java files that contain the implementation of meth-
ods and classes. Indeed, specifications such as assert statements or loop invariants are necessarily placed
directly in a method body. Other specifications, such as class invariants and method pre- and post-
conditions, may be placed in auxiliary files. For classes which are only present as .class files and not as
.java files, the auxiliary file is a necessity.

Current JML allows one such auxiliary file. It is similar to the corresponding .java file except that

• it has a .jml suffix
• it contains no method bodies (method declarations are terminated with semi-colons, as if they were

abstract)

The .jml file is in the same package as the corresponding .java file and has the same name, except for
the suffix. It need not be in the same folder. If there is no source file, then there is a .jml file for each
compilation unit that has a specification. All the nested, inner, or top-level classes that are defined in one
Java compilation unit will have their specifications in one corresponding jml file.

The search for specification files is analogous to the way in which .class files are found on the classpath,
except that the specspath is used instead. To find the specifications for a public top-level class T:

• look in each element of the specspath (cf. section TBD), in order, for a fully-qualified file whose
name is T.jml. If found, the contents of that file are used as the specifications of T.

18

• if no such .jml file is found, look in each element of the specspath, in order, for a fully-qualified
file whose name is T.java.

There are two (silent) consequences of this search algorithm that can be confusing:

• If both a .jml and a .java file exist on the specspath and both contain JML specification text, the
specifications in the .java file will be (silently) ignored.

• If a .java file is listed on the command-line it will be compiled (for its Java content), but if it is not a
member of an element of the specspath, it will (silently) not be used as the source of specifications
for itself.

Obsolete syntax. The refine and refines statements are no longer recognized. The previous (com-
plicated) method of finding specification files and merging the specifications from multiple files is also no
longer implemented. The only specification file suffix allowed is .jml; the others — .spec, .refines-java,
.refines-spec, .refines-jml — are no longer implemented.

In addition, the .jml file is sought before seeking the .java file; if a .jml file is found anywhere in the
specs path, then any specifications in the .java file are ignored. This is a different search algorithm than
was previously used.

9.1.4 JML specifications and Java annotations

This section will be added later.

9.1.5 Model import statements

This section will be added later. Java import statements introduce class names into the namespace of a
.java file. JML has a model import statement:

//@ model import ...

The effect of a JML model import statement is the same as a Java import statement, except that the names
imported by the JML statement are only visible within JML annotations. If the model import statement is
within a .jml file, the imported names are visible only within annotations in the .jml file, and not outside
JML annotations and not in the .java file.

Note: Most tools only approximately implement this feature. For example, see FIXME for a discussion
of this feature in OpenJML.

9.1.6 Modifiers

This section will be added later.

- note elimination of weakly

9.1.7 Method specification clauses

This section will be added later.

19

Behaviors

9.1.8 Class specification clauses

This section will be added later.

9.1.9 Visibility of specifications

This section will be added later.

9.1.10 Statement specifications

This section will be added later.

JML defines some statements that are used in the body of a method’s implementation. These are not
method specifications per se; rather, they are assertions or assumptions that are used to aid the proof of
the specifications themselves, in the way that lemmas are aids to proving a resulting theorem. They can
also be used to state predicates that the user believes to be true, and wants checked, or assumptions that
are true but are too difficult for the prover to prove itself.

JML assert statement

This section will be added later.

Java assert statement

This section will be added later.

JML assume statement

This section will be added later.

Ghost declaration

This section will be added later.

set statement

This section will be added later.

debug statement

This section will be added later.

20

loop invariants

This section will be added later.

loop variants

This section will be added later.

loop assignable declarations

This section will be added later.

Refining statement specifications

This section will be added later.

9.1.11 JML expressions

Expressions in JML annotations are Java expressions with three adjustments:

• Expressions with side-effects are not allowed. Specifically, JML excludes

– the ++ and � pre- and post- increment and decrement operations
– the assignment operator
– assignment operators that combine an operation with assignment (e.g., +=)
– method invocations that are not explicitly declared pure (cf. §TBD)

• JML adds additional operators to the Java set of operators, discussed in subsection §9.1.11 below.

• JML adds specific keywords that are used as constants or function-like expressions within JML
expressions, discussed in subsection §9.1.11 below

JML operators

Table ?? lists all of the Java and JML operators, in order of precedence. The JML operators have identified
by a comment and a reference to a subsection describing them. All of the JML keyword expressions in
§9.1.11 are primitives with precedence higher than any operator.

Most operators are left-associative, if associativity is applicable. The exceptions are TBD...

JML implies (==>) and reverse implies (<==) The ==> and <== are the JML implication and re-
verse implication operators. They are short circuit operations taking boolean operands with these equiv-
alences:

• p ==> q is equivalent to !p || q
• p <== q is equivalent to p || !q

Note that because of the short-circuit characteristic, p <== q is not quite equivalent to q ==> p

21

new () [] . and method calls
unary + unary - ! (typecast) -

* / % L
+ (binary) - (binary) L

� � �> L
< <= > >= <: instanceof <# <#= - <: is the JML subtype operation (§9.1.11);

<# and <#= are lock ordering operators (§9.1.11)
== != L

& L
� L
| L
&& L
|| L

==> <== ? JML implies and reverse implies (§9.1.11)
<==> <=!=> ? JML equivalence and inequivalence (§9.1.11)

?: -
= *= /= %= += -= �= �= �>= &= �= |= L Java only

Table 9.1: Java and JML operators, in order of precedence, from highest (most tightly binding) to lowest
precedence. Operators on the same line have the same precedence. The associativity is given in the
central column.

JML equivalence (<==>) and inequivalence (<=!=>) The <==> and <=!=> are the JML equivalence
and inequivalence operators. They are equivalent to == and != except that they take only boolean
operands and have much lower precedence.

JML subtype operator (<:) In JML expressions, <: denotes the subtype operation among classes and
interfaces; the operands both have type \TYPE (cf. §??). Note that the subtype operation (despite not
including the = character) includes both type equality and proper subtypes. Note also that in JML, types
can express the full parameterized type, not just the erased type in runtime Java. More discussion of JML
types is found in §??.

JML lock ordering operators (<#) and <#=) The lock ordering oeprators are used to determine or-
dering among objects used for locking in a multi-threaded application; the operands are any Java objects.
The only predefined property of these operators is that for any two object references o and oo, o <#=

oo is equivalent to o == oo || o <# oo; that is <# is like less than and <#= is like less-than-or-equals.
There is no predefined ordering among objects. The user must define an intended ordering with some
axioms or invariants. An example of using the lock ordering operators for specification and reasoning
about concurrency is found in §??.

TBD - add ++ – into the table as Java only; check precedence

JML expression keywords

This section will be added later.

Referring to the result of a method: \result

22

informal specification . In some situations a specification needs to be expressed informally, in natural
language, perhaps in anticipation of a formal expression or because a formal expression is too complex.
The original JML informal expression is

(* ... *) where the text between the delimiters is any natural language text not including the charac-
ters *). An alternate expression (cf. §8.10) is the form JML.informal(...), where the argument is a
"‘-delimited String, as permitted by Java.

In both cases the expression always has the value true.

Advanced quantifiers: \max \min \num_of \product \sum

Evaluating expressions in previous program states: \old, \pre, \past

Newly allocated objects: \fresh

Type expressions: \type, \typeof, \elemtype

Loop expressions: \index and \values

\not_modified

\nonnullelements

\not_assigned, \only_accessed, \only_assigned, \only_called, \only_captured TBD -
reach, duration, space, working_space

TBD - lockset, max

TBD - is_initialized, invariant_for

TBD - lblneg, lblpos, lbl (JML extension)

TBD - reach (object sets?)

9.1.12 JML types

Specifications are sometimes best written using infinite-precision mathematical types, rather than the
fixed bit-width types of Java. JML’s arithmetic modes (§??) allow choosing among various numerical
precisions. In this section we simply note the type names that JML defines.

All of the Java type names are legal and useful in JML: int short long byte char boolean double

real and class and interface types. In addition, JML defines the following:

• \bigint - the type of infinite-precision integers, represented as java.lang.BigInteger during run-
time checking

• \real - the type of mathematical real numbers, represented as TBD during runtime-checking

• \TYPE - the type of JML type objects

23

The familiar operators are defined on values of the \bigint and \real types: unary and binary + and
-, *, /, %. Also, these types can be used in quantified expressions and variables of these types can be
declared as ghost or model variables.

The set of \TYPE values includes non-generic types such has \type(org.lang.Object), fully pa-
rameterized generic types, such as \type(org.utils.List<Integer>), and primitive types, such as
\type(int). The subtype operator (<:) is defined on values of type \TYPE.

TBD - what about other constructors or acccessors of TYPE values

9.1.13 Non-Null and Nullable

This section will be added later.

9.1.14 Observable purity: \query and \secret

This section will be added later.

9.1.15 Race condition detection

This section will be added later.

9.1.16 Arithmetic modes

This section will be added later.

9.1.17 Universe types

This section will be added later.

9.1.18 Dynamic frames

This section will be added later.

9.1.19 Code contracts

This section will be added later.

9.1.20 redundantly suffixes

This section will be added later.

24

9.1.21 nowarn lexical construct

This section will be added later.

9.2 Interaction with Java features

This section will be added later.

9.3 Other issues

9.3.1 Interaction with JSR-308

This section will be added later.

9.3.2 Interaction with FindBugs

This section will be added later.

25

Part III

The OpenJML tool

26

Chapter 10

Introduction

10.1 OpenJML

OpenJML is a tool for processing Java Modeling Language (JML) specifications of Java programs. The
tool parses and type-checks the specifications and performs static or run-time checking of the validity of
the specifications. Other tools are anticipated, such as test case generation and an enhanced version of
javadoc that includes the specifications in the javadoc documentation.

The functionality is available

• as a command-line tool to do type-checking, static checking or runtime checking,

• as an Eclipse plug-in to perform those tasks, and

• programmatically from a user’s Java program

OpenJML uses program specifications written in JML, the Java Modeling Language, and it is constructed
by extending OpenJDK, the open source Java compiler. OpenJML currently requires Java 1.7 to run. Re-
leases of Java can be obtained from the Oracle release site (http://www.oracle.com/technetwork/
java/javase/downloads).

The source code for OpenJML is kept in SourceForge as a module of the JML Project (https://
sourceforge.net/p/jmlspecs/code/HEAD/tree/). The JMLAnnotations and Specs projects (also
modules of JML) are used by OpenJML. Information about creating a developer’s environment for the
OpenJML source can be found below (section 10.1.3).

10.1.1 Command-line tool

The OpenJML command line tool can be downloaded from http://jmlspecs.sourceforge.net/

openjml.tar.gz.

The command line tool is described in chapter 11.

10.1.2 Eclipse plug-in

The Update site for the Eclipse plug-in that encapsulates the OpenJML tool is http://jmlspecs.

sourceforge.net/openjml-updatesite.

27

http://www.oracle.com/technetwork/java/javase/downloads
http://www.oracle.com/technetwork/java/javase/downloads
https://sourceforge.net/p/jmlspecs/code/HEAD/tree/
https://sourceforge.net/p/jmlspecs/code/HEAD/tree/
http://jmlspecs.sourceforge.net/openjml.tar.gz
http://jmlspecs.sourceforge.net/openjml.tar.gz
http://jmlspecs.sourceforge.net/openjml-updatesite
http://jmlspecs.sourceforge.net/openjml-updatesite

The plug-in is described in section 12 and in the online documentation available in Eclipse Help.

10.1.3 Development of OpenJML

Developers wishing to contribute to OpenJML can retrieve a project-set file to download source code from
SVN and create the corresponding projects within Eclipse from http://jmlspecs.sourceforge.

net/OpenJML-projectSet.psf. <p>Alternately, the set of SVN commands needed to checkout all
the pieces of the OpenJML source code into the directory structure expected by Eclipse is found at this
link: http://jmlspecs.sourceforge.net/svn_commands.

The general instructions for setting up a development environment are found at the JML wiki: https:
//sourceforge.net/apps/trac/jmlspecs/wiki/OpenJmlSetup.

10.2 JML

The Java Modeling Language (JML) is a language that enables logical assertions to be made about Java
programs. The assertions are expressed as structured Java comments or Java annotations. Various tools
can then read the JML information and do static checking, runtime checking, display for documentation,
or other useful tasks.

More information about JML can be found on the JML web site: http://www.jmlspecs.org. The
information includes publications, a list of groups using or contributing to JML, mailing lists, etc. There
is also a SourceForge project for JML : https://sourceforge.net/projects/jmlspecs/.

10.3 OpenJDK

OpenJDK (http://openjdk.net) is the project that produces the Java JDK and JRE releases. Open-
JML extends OpenJDK to produce the OpenJML tools. OpenJML is a fully encapsulated, stand-alone
tool, so the OpenJDK foundation is only of interest to OpenJML developers. Users, however, can be
assured that OpenJML is built on ’official’ Java tooling and can readily stay up to date with changes in
the Java language.

10.4 License

The OpenJML command-line tool is built from OpenJDK, which is licensed under GPLv.2 (http://
openjdk.java.net/legal/). Hence OpenJML is correspondingly licensed.

The OpenJML plug-in is a pure Eclipse plug-in, and therefore is not required to be licensed under the
EPL.

The source code for both tools is available as a SourceForge project at https://sourceforge.net/p/
jmlspecs/code/HEAD/tree/OpenJML/trunk.

28

http://jmlspecs.sourceforge.net/OpenJML-projectSet.psf
http://jmlspecs.sourceforge.net/OpenJML-projectSet.psf
http://jmlspecs.sourceforge.net/svn_commands
https://sourceforge.net/apps/trac/jmlspecs/wiki/OpenJmlSetup
https://sourceforge.net/apps/trac/jmlspecs/wiki/OpenJmlSetup
http://www.jmlspecs.org
https://sourceforge.net/projects/jmlspecs/
http://openjdk.net
http://openjdk.java.net/legal/
http://openjdk.java.net/legal/
https://sourceforge.net/p/jmlspecs/code/HEAD/tree/OpenJML/trunk
https://sourceforge.net/p/jmlspecs/code/HEAD/tree/OpenJML/trunk

Chapter 11

The command-line tool

11.1 Installation and System Requirements

The command-line tool is supplied as a .tar.gz file, downloadable from http://jmlspecs.sourceforge.

net/. Download the file to a directory of your choice and unzip and untar it in place. It contains the fol-
lowing files:

• openjml.jar - the main jar file for the application
• jmlruntime.jar - a library needed on the classpath when running OpenJML’s runtime-assertion-

checking
• jmlspecs.jar - a library containing specification files
• openjml-template.properties - a sample file, which should be copied and renamed openjml.properties,

containing definitions of properties whose values depend on your local system
• LICENSE.rtf - a copy of the modified GPL license that applies to OpenJDK and OpenJML
• OpenJMLUserGuide.pdf - this document

You can run OpenJML in a Java 1.7 JRE.

You should ensure that the jmlruntime.jar and jmlspecs.jar files remain in the same folder as the
openjml.jar file.

11.2 Running OpenJML

To run OpenJML, be sure that the java command uses a 1.7 JVM and use the following command line.
Here $OPENJML designates the folder in which the openjml.jar file resides.

java -jar $OPENJML /openjml.jar <options> <files>

Here <files> and <options> stand for text described below.

The following command is currently a viable alternative as well.

java -cp $OPENJML /openjml.jar org.jmlspecs.openjml.Main <options> <files>

29

http://jmlspecs.sourceforge.net/
http://jmlspecs.sourceforge.net/

The valid options are listed in Table 11.1 and are described in subsections below. Options and files can
appear in any order.

11.2.1 Exit codes

When OpenJML runs as a command-line tool, it emits one of several exit codes:

• 0 (EXIT_OK) : successful operation, no errors, there may be warnings (including static checking
warnings)

• 1 (EXIT_ERROR) : normal operation, but with errors (parsing or type-checking)
• 2 (EXIT_CMDERR) : an error in the formulation of the command-line, such as invalid options
• 3 (EXIT_SYSERR) : a system error, such as out of memory
• 4 (EXIT_ABNORMAL) : a fatal error, such as a program crash or internal inconsistency, caused by an

internal bug

11.2.2 Files

In the command templates above, <files> refers to a list of .java or .jml files. Each one must be
specified with an absolute file system path or with a path relative to the current working directory (in
particular, not with respect to the classpath or the sourcepath).

You can also specify directories on the command line using the -dir and -dirs options. The -dir

<directory> option indicates that the <directory> value (an absolute or relative path to a folder) should
be understood as a folder; all .java or specification files within the folder are included as if they were
individually listed on the command-line. The -dirs option indicates that each one of the remaining
command-line arguments is interpreted as either a source file (if it is a file with a .java or .jmlsuffix)
or as a folder (if it is a folder) whose contents are processed as if listed on the command-line. Note that
the -dirs option must be the last option.

As described later in section 11.2.4, JML specifications for Java programs can be placed either in the
.java files themselves or in auxiliary .jml files. The format of .jml files is defined by JML. OpenJML
can type-check .jml files as well as .java files if they are placed on the command-line. Doing so can
be useful to check the syntax in a specific .jml file, but is usually not necessary: when a .java file is
processed by OpenJML, the corresponding .jml file is automatically found (cf. ??).

11.2.3 Exit values

The command-line tool exits, returning a defined exit value:

• 0 (EXIT_OK) : successful operation, no errors, there may be warnings (including static checking
warnings)

• 1 (EXIT_ERROR) : normal operation, but with errors (parsing or type-checking)

• 2 (EXIT_CMDERR) : an error in the formulation of the command-line, such as invalid options

• 3 (EXIT_SYSERR): a system error, such as out of memory

• 4 (EXIT_ABNORMAL): a fatal error, such as a program crash, caused by an internal bug

In the itemized list above, the symbolic names are defined in org.jmlspecs.openjml.Main. For ex-
ample, when executing OpenJML programmatically (cf. section TBD), the user’s Java program can use
the symbol org.jmlspecsopenjml.Main.EXIT_ERROR.

30

Options specific to JML
– no more options
-check [11.2.8] typecheck only

(-command check)
-checkSpecsPath [11.2.9] warn about non-

existent specs path entries
-command <action> [11.2.8] which action to do:

check esc rac compile
-compile [11.2.8] TBD
-counterexample [11.2.10] show a coun-

terexample for failed static
checks

-dir <dir> [11.2.9] argument is a folder
or file

-dirs [11.2.9] remaining ar-
guments are folders or
files

-esc [11.2.8] do static checking
(-command esc)

-internalRuntime [11.2.9] add internal run-
time library to classpath

-internalSpecs [11.2.9] add internal specs
library to specspath

-java [11.2.8] use the native
OpenJDK tool

-jml [11.2.8] process JML con-
structs

-jmldebug [11.2.14] very verbose out-
put (includes -progress)

-jmlverbose [11.2.14] JML-specific ver-
bose output

-keys [11.2.9] define keys for op-
tional annotations

-method
-nonnullByDefault [11.2.9] values are not null

by default
-normal [11.2.14]
-nullableByDefault [11.2.9] values may be null

by default
-progress [11.2.14]
-purityCheck [11.2.9] check for purity
-quiet [11.2.14] no informational

output
-rac [11.2.8] compile runtime as-

sertion checks (-command
rac)

-racCheckAssumptions [11.2.11] enables (default
on) checking assume state-
ments as if they were asserts

-racCompileToJavaAssert [11.2.11] compile RAC
checks using Java asserts

-racJavaChecks [11.2.11] enables (default
on) performing JML check-
ing of violated Java features

JML options, continued
-racShowSource [11.2.11] includes source

location in RAC warning
messages

-showNotImplemented warn if feature not imple-
mented

-specspath [11.2.9] location of specs
files

-stopIfParseErrors stop if there are any parse
errors

-subexpressions [11.2.10] show subexpres-
sion detail for failed static
checks

-trace [11.2.10] show a trace for
failed static checks

Options inherited from Java
-Akey
-bootclasspath <path> See Java documentation.
-classpath <path> location of class files
-cp <path> location of class files
-d <directory> location of output class files
-encoding <encoding>
-endorsedirs <dirs>
-extdirs <dirs>
-deprecation
-g
-help output help information
-implicit
-J<flag>
-nowarn show only errors, no warn-

ings
-proc
-processor <classes>
-processorpath <path> where to find annotation

processors
-s <directory> location of output source

files
-source <release> the Java version of source

files
-sourcepath <path> location of source files
-target <release> the Java version of the out-

put class files
-X Java non-standard exten-

sions
-verbose verbose output
-version output (OpenJML) version
-Werror treat warnings as errors

Table 11.1: OpenJML options. See the text for more detail on each option.

31

11.2.4 Specification files

JML specifications for Java classes (either source or binary) are written in files with a .jml suffix or
are written directly in the source .java file. When OpenJML needs specifications for a given class, it
looks for a .jml file on the specspath. If one is not found, OpenJML then looks for a .java file on the
specspath. Note that this rule requires that source files (that have specifications you want to use) must be
listed on the specspath. Note also that there need not be a source file; a .jml file can be (and often is)
used to provide specifications for class files.

Previous versions of JML had a more complicated scheme for constructing specifications for a class
involving refinements, multiple specification files, and various prefixes. This complicated process is now
deprecated and no longer supported.

[TBD: some systems might find the first .java or .jml file on the specspath and use it, even if there were
a .jml file later.]

11.2.5 Annotations and the runtime library

JML uses Java annotations as introduced in Java 1.6. Those annotation classes are in the package
org.jmlspecs.annotation. In order for files using these annotations to be processed by Java, the
annotation classes must be on the classpath. They may also be required when a compiled Java program
that uses such annotations is executed. In addition, running a program that has JML runtime assertion
checks compiled in will require the presence of runtime classes that define utility functions used by the
assertion checking code.

Both the annotation classes and the runtime checking classes are provided in a library named jmlruntime.jar.
The distribution of OpenJML contains this library, as well as containing a version of the library within
openjml.jar. When OpenJML is applied to a set of classes, by default it finds a version of the runtime
classes and appends the location of the runtime classes to the classpath.

You can prevent OpenJML from automatically adding jmlruntime.jar to the classpath with the option
-noInternalRuntime. If you use this option, then you will have to supply your own annotation classes
and (if using Runtime Assertion Checking) runtime utility classes on the classpath. You may wish to do
this, for example, if you have newer versions of the annotation classes that you are experimenting with.
You could simply put them on the classpath, since they would be in front of the automatically added
classes and used in favor of default versions; however, if you want to be sure that the default versions are
not present, use the -noInternalRuntime option.

The symptom that no runtime classes are being found at all is error messages that complain that the
org.jmlspecs.annotation package is not found.

11.2.6 Java properties and the openjml.properties file

OpenJML uses a number of properties that may be defined in the environment; these properties are
typically characteristics of the local environment that vary among different users or different installations.
They can also be to set default values of options, so they do not need to be set on the command-line. An
example is the file system location of a particular solver.

The tool looks for a file named openjml.properties in several locations. It loads the properties it finds
in each of these, in order, so later definitions will supplant earlier ones.

• System properties, including those defined with -D options on the command-line
• On the system classpath

32

• In the users home directory (the value of the Java property user.home

• In the current working directory (the value of the Java property user.dir

[TBD: Check the above]

The properties that are currently recognized are these:

• openjml.defaultProver - the value is the name of the prover to use by default
• openjml.prover.<name>, where <name> is the name of a prover, and the value is the file

system path to the executable to be invoked for that prover

[TBD: Check the above]

The distribution includes a file named openjml-template.properties that contains stubs for all the
recognized options. You should copy that file, rename it as openjml.properties, and edit it to reflect
your system configuration. (If you are an OpenJML developer, take care not to commit your system’s
openjml.properties file into the OpenJML shared SVN repository.)

11.2.7 Options: Finding files and classes: class, source, and specs paths

A common source of confusion is the various different paths used to find files, specifications and classes
in OpenJML. OpenJML is a Java application and thus a classpath is used to find the classes that constitute
the OpenJML application; but OpenJML is also a tool that processes Java files, so it uses a (different)
classpath to find the files that it is processing. As is the case for other Java applications, a <path>
contains a sequence of individual paths to folders or jar files, separated by the path separator character (a
semicolon on Windows systems and a colon on Unix and MacOSX systems). You should distinguish the
following:

• the classpath used to run the application: specified by one of

– the CLASSPATH environment variable
– the .jar file given with the java -jar form of the command is used
– the value for the -classpath (equivalently, -cp) option when OpenJML is run with the java
-cp openjml.jar org.jmlspecs.openjml.Main command

This classpath is not of much concern to OpenJML, but is the classpath that Java users will be
familiar with. The value is implicitly given in the -jar form of the command. The application
classpath is explicitly given in the alternate form of the command, and it may be omitted; if it is
omitted, the value of the system property CLASSPATH is used and it must contain the openjml.jar
library.

• the classpath used by OpenJML. This classpath determines where OpenJML will find .class files
for classes referenced by the .java files it is processing. The classpath is specified by

-classpath <path>
or

-cp <path>
after the executable is named on the commandline. That is,

java -jar openmjml.jar -cp <openjml-classpath> ...

or

java -cp openjml.jar org.jmlspecs.openjml.Main -cp <openjml-classpath> ...

If the OpenJML classpath is not specified, its value is the same as the application classpath.

33

• the OpenJML sourcepath - The sourcepath is used by OpenJML as the list of locations in which
to find .java files that are referenced by the files being processed. For example, if a file on
the command-line, say T.java, refers to another class, say class U, that is not listed on the
command-line, then U must be found. OpenJML (just as is done by the Java compiler) will look
for a source file for U in the sourcepath and a class file for U in the classpath. If both are found then
TBD.

The OpenJML sourcepath is specified by the -sourcepath <path> option. If it is not specified,
the value for the sourcepath is taken to be the same as the OpenJML classpath.

In fact, the sourcepath is rarely used. Users often will specify a classpath containing both .class

and .java files; by not specifying a sourcepath, the same path is used for both .java and .class

files. This is simpler to write, but does mean that the application must search through all source
and binary directories for any particular source or binary file.

• the OpenJML specspath - The specspath tells OpenJML where to look for specification (.jml)
files. It is specified with the -spacspath <path> option. If it is not specified, the value for the
specspath is the same as the value for the sourcepath. In addition, by default, the specspath has
added to it an internal library of specifications. These are the existing (and incomplete) specifica-
tions of the Java standard library classes.

The addition of the Java specifications to the specspath can be disabled by using the -noInternalSpecs
option. For example. if you have your own set of specification files that you want to use instead of
the internal library, then you should use the -noInternalSpecs option and a -specspath option
with a path that includes your own specification library.

Note also that often source (.java) files contain specifications as well. Thus, if you are specifying
a specspath yourself, you should be sure to include directories containing source files in the spec-
spath; this rule also includes the .java files that appear on the command-line: they also should
appear on the specspath.

TBD - describe what happens if the above guidelines are not followed. (Can we make this more
user friendly).

The -noInternalSpecs option. As described above, this option turns off the automatic adding of
the internal specifications library to the specspath. If you use this option, it is your responsibility to
provide an alternate specifications library for the standard Java class library. If you do not you will likely
see a large number of static checking warnings when you use Extended Static Checking to check the
implementation code against the specifications.

The internal specifications are written for programs that conform to Java 1.7. [TBD - change this to ad-
here to the -source option?] [TBD - what about the specs in jmlspecs for different source levels.]

11.2.8 Options: JML tools

The following mutually exclusive options determine which OpenJML tool is applied to the input files.

• -command <tool> : initiates the given function; the value of <tool> may be one of check, esc,
rac, TBD. The default is to use the OpenJML tool to do only typechecking of Java and JML in the
source files.

• -java : causes OpenJML to ignore all OpenJML extensions and use only the core OpenJDK func-
tionality, so the tool should run precisely like the OpenJDK javac tool

34

• -noJML : causes OpenJML to use its extensions but to ignore all JML constructs (TBD - does this
still recognize -check, -compile?)

• -check : causes OpenJML to do only type-checking of the Java and JML in the input files

• -compile : TBD

• -esc : causes OpenJML to do (type-checking and) static checking of the JML specifications against
the implementations in the input files

• -rac : compiles the given Java files as OpenJDK would do, but with JML checks included for
checking at runtime

• -doc : TBD

11.2.9 Options: OpenJML options applicable to all OpenJML tools

• -dir <folder> : abbreviation for listing on the command-line all of the .java files in the given folder,
and its subfolders; if the argument is a file, use it as is

• -dirs : treat all subsequent command-line arguments as if each were the argument to -dir

• -specspath <path> : defines the specifications path, cf. section TBD

• -keys <keys> : the argument is a comma-separated list of options JML keys (cf. section TBD)

• -strictJML : warns about an OpenJML extensions to standard JML

• -nullableByDefault : sets the global default to be that all declarations are implicitly @Nullable

• -nonnullByDefault : sets the global default to be that all declarations are implicitly @NonNull (the
default)

• -purityCheck : turns on (default is on) purity checking (recommended since the Java library spec-
ifications are not complete for @Pure declarations)

11.2.10 Options: Extended Static Checking

These options apply only when performing ESC:

• -prover <prover> : the name of the prover to use: one of z3_4_3, cvc4, yices2

• -exec <file> : the path to the executable corresponding to the given prover

• -boogie : enables using boogie (-prover option ignored; -exec must specify the Z3 executable for
Boogie to use)

• -method <methodlist> : a comma-separated list of method names to check (default is all methods
in all listed classes)

• -exclude <methodlist> : a comma-separated list of method names to exclude from checking

• -checkFeasibility <where> : checks feasibility of the program at various points — a comma-
separated list of one of none, all, exit [TBD, finish list, give default]

• -escMaxWarnings <int> : the maximum number of assertion violations to look for; the argument
is either a positive integer or All; the default is All

• -counterexample : prints out a counterexample for failed proofs

35

• -trace : prints out a counterexample trace for each failed assert (includes -counterexample)

• -subexpressions : prints out a counterexample trace with model values for each subexpression
(includes -trace)

11.2.11 Options: Runtime Assertion Checking

These options apply only when doing RAC:

• -showNotExecutable : warns about the use of features that are not executable (and thus ignored);
turn off with -no-shownotExecutable

• -showRacSource : enables including source code information in RAC error messages (default is
enabled; disable with -no-showRacSource)

• -racCheckAssumptions : enables checking assume statements as if they were asserts (default is
enabled; disable with-no-racCheckAssumptions)

• -racJavaChecks : enables performing JML checking of violated Java features (which will just
proceed to throw an exception anyway) (default is enabled; disable with -no-racJavaChecks)

• -racCompileToJavaAssert : compile RAC checks using Java asserts (which must then be enabled
using -ea) (default is disabled; disable with -no-racCompileToJavaAssert)

11.2.12 Options: Version of Java language or class files

• -source <level> : this option specifies the Java version of the source files, with values of 1.4,
1.5, 1.6, 1.7... or 4, 5, 6, 7, This controls whether some syntax features (e.g. annotations,
extended for-loops, autoboxing, enums) are permitted. The default is the most recent version of
Java, in this case 1.7. Note that the classpath should include the Java library classes that correspond
to the source version being used.

• -target <level> : this option specifies the Java version of the output class files

11.2.13 Options: Other Java compiler options applicable to OpenJML

These options control where output is written:

• -d <dir> : specifies the directory in which output class files are placed

• -s <dir> : specifies the directory in which output source files are placed (such as those produced
by annotation processors)

Other Java options, whose meaning and use is unchanged from javac:

• @<filename> : reads the contents of <filename> as a sequence of command-line arguments (op-
tions, arguments and files)

• -Akey

• -bootclasspath

• -deprecation : warn about the use of deprecated Java elements

• -encoding

• -endorsedirs

36

• -extdirs

• -g

• -implicit

• -J

• -nowarn : only print errors, not warnings, including not printing static check warnings

• -Werror : turns all warnings into errors

• -X... : Java’s extended options

These Java options are discussed elsewhere in this document:

• -cp <path> or -classpath <path> : section 11.2.7

• -sourcepath <path> : section 11.2.7

• -verbose : section 11.2.14

• -source :

• -target :

11.2.14 Options: Information and debugging

These options print summary information and immediately exit (despite the presence of other command-
line arguments):

• -help : prints out help information about the command-line options

• -version : prints out the version of the OpenJML tool software

The following options provide different levels of verboseness. If more than one is specified, the last one
present overrides earlier ones.

• -quiet : no informational output, only errors and warnings

• -normal : (default) some informational output, in addition to errors and warnings

• -progress : prints out summary information as individual files are processed (includes -normal)

• -verbose : prints out verbose information about the Java processing

• -jmlverbose : prints out verbose information about the JML processing (includes -verbose and
-progress)

• -jmldebug : prints out (voluminous) debugging information (includes -jmlverbose)

• -verboseness <int> : sets the verboseness level to a value from 0 - 4, corresponding to -quiet,
-normal, -progress, -jmlverbose, -jmldebug

Other debugging options:

• -show : prints out rewritten versions of the Java program files for informational and debugging
purposes; disable with -no-show; the default is disabled

• -showNotImplemented : prints warnings about JML features that are ignored because they are not
implemented; disable with -no-showNotImplemented; the default is disabled.

37

11.2.15 Options related to Static Checking

• -counterexample

• -trace

• -subexpressions

• -method

11.2.16 Options related to parsing and typechecking

• -Werror

• -nowarn

• -stopIfParseError

• -checkSpecsPath

• -purityCheck

• -nonnullbydefault

• -nullablebydefault

• -keys

11.2.17 Java options related to annotation processing

• -proc

• -processor

• -processorpath

11.2.18 Other JML Options

• -roots

This section will be completed later.

38

Chapter 12

The Eclipse Plug-in

Since OpenJML operates on Java files, it is natural that it be integrated into the Eclipse IDE for Java.
OpenJML provides a conventional Eclipse plug-in that encapsulates the OpenJML command-line tool
and integrates it with the Eclipse Java development environment.

12.1 Installation and System Requirements

Your system must have the following:

• A Java 1.7 JRE as described in section 11.2. This must be the JRE in use in the environment in
which Eclipse is invoked. If you start Eclipse by a command in a shell, it is straightforward to
make sure that the correct Java JRE is defined in that shell. However, if you start Eclipse by, for
example, double-clicking a desktop icon, then you must ensure that the Java 1.7 JRE is set by the
system at startup.

• Eclipse 4.2 or later

Installation of the plug-in follows the conventional Eclipse procedure.

• Invoke the "Install New Software" dialog under the Eclipse "Help" menubar item.

• "Add" a new location, giving the URL http://jmlspecs.sourceforge.net/openjml-updatesite

and some name of your choice (e.g. OpenJML).

• Select the "OpenJML" category and push "Next"

• Proceed through the rest of the wizard dialogs to install OpenJML.

• Restart Eclipse when asked to obtain full functionality.

If the plug-in is successfully installed, a yellow coffee cup (the JML icon) will appear in the menubar
(along with other menubar items). The installation will fail (without obvious error messages), if the
underlying Java VM is not a suitable Java 1.7 VM.

12.2 GUI Features

This section will be added later.

39

http://jmlspecs.sourceforge.net/openjml-updatesite

Chapter 13

OpenJML tools

TBD - exit codes

13.1 Options controlling OpenJML behavior

There are many options that control or modify the behavior of OpenJML. Some of these are inherited
from the Java compiler on which OpenJML is based. Options for the command-line tool are expressed
as standard command-line options. In the Eclipse GUI, the values of options are set on a typical Eclipse
preference or properties page for OpenJML.

The command-line options follow the style of the OpenJDK compiler — they begin with a single hyphen
and there are no two-hyphen versions. OpenJML (but not OpenJDK) options that require a parameter
may either use an = followed directly by the argument with no whitespace or may provide the argument
as the subsequent entry of the argument list. For example, either �racbin=output or �racbin output

is permitted. If the argument is optional but present, the = form must be used. Values of options that
contain whitespace must be quoted as appropriate for the operating system being used.

Options that are boolean in nature can be enabled and disabled by either

• adding a prefix -no, as in -showRacSource and -no-showRacSource

• or using the = form, as in -showRacSource=true and -showRacSource=false

Informational options

• -help: gives information about the command-line options and exits, with no further processing
• -version: gives the version of this OpenJML tool and exits, with no further processing

OpenJML operational modes (mutually exclusive)

• -jml (default) : use the OpenJML implementation to process the listed files, including embedded
JML comments and any .jml files

• -no-jml: uses the OpenJML implementation to type-check and possibly compile the listed files,
but ignores all JML annotations in those files

• -java: processes the command-line options and files using only OpenJDK functionality. No Open-
JML functionality is invoked. Must be the first option and overrides the others.

40

OpenJML tools (mutually exclusive) — presumes -jml

• -check: (default) runs JML parsing and type-checking
• -esc: runs extended static checking
• -rac: compiles files with runtime assertions
• -doc: runs the jmldoc tool (not yet implemented)
• -command command: runs the given command, for arguments check, esc, rac, or doc; the

default is check

Relevant Java compiler options All the OpenJDK compiler options apply to OpenJML as well. The
most commonly used or important OpenJDK options are listed here.

• -cp or -classpath: the parameter gives the classpath to use to find unnamed but referenced class
files (cf. section TBD)

• -sourcepath: the parameter gives the sequence of directories in which to find source files for
unnamed but referenced classes (cf. section TBD)

• -d: specifies the output directory for compiled files - the directory must exist
• -deprecation: enables warnings about the use of deprecated features (applies to deprecated JML

features as well)
• -nowarn: shuts off all compiler warnings, including the static check warnings produced by ESC
• -Werror: turns all warnings into errors, including JML (and static check) warnings
• @filename: the given filename contains a list of arguments
• -source: specifies the Java version to use (default 1.7)
• -verbose: turn on Java verbose output
• -Xprefer:source or -Xprefer:newer: when both a .java and a .class file are present, whether to

choose the .java (source) file or the file that has the more recent modification time [TBD - check
that this works]

• -stopIfParseErrors: if enabled (disabled by default), processing stops after parsing if there are
any parsing errors (TBD - check this, describe the default)

General options

• -dir: Indicates that its argument is a directory. All the .java and .jml files in the directory and its
subdirectories are processed. (TBD - is this necessary?)

• -dirs: Indicates that all subsequent command-line arguments are directories, to be processed as for
-dir, until an argument is reached that begins with a hyphen.

• -specspath: the parameter gives the sequence of directories in which to find .jml specification files
for unnamed but referenced classes (cf. section TBD)

• -checkSpecsPath: if enabled (the default), warns about specspath elements that do not exist
• -keys: comma-separated list of the optional JML comment keys to enable (empty by default)
• -strictJML: (disabled by default) warns about the use of any OpenJML extensions to standard

JML; disable with -no-strictJML
• -showNotImplemented: (disabled by default) warns about the use of features that are not imple-

mented; disable with -no-showNotImplemented

Options that control output

• -quiet: turns off all output except errors and warnings. Equivalent to -verboseness=0

• -normal: quiet output plus a modest amount of informational and progress output. Equivalent to
-verboseneness=1

• -progress: normal output plus output about progress through the phases of activity and the files
being processed. Equivalent to -verboseneness=2

41

• -jmlverbose: progress output plus a verbose amount of output about the phases of activity and the
files being processed. Equivalent to -verboseneness=3

• -jmldebug: output useful only for detailed debugging (includes the jmlverbose output). Equivalent
to -verboseneness=4

• -verboseness level: sets the verbosity level (0-4)
• -show: prints out the various translated versions of the methods
• -verbose: enables openJDK output
• -jmltesting: adjusts the output so that test output is more stable

13.2 Parsing and Type-checking

The basic function of OpenJML is to parse and check the well-formedness of JML annotations in the
context of the associated Java program. Such checking includes conventional type-checking and checking
that names are used consistently with their visibility and purity status.

A set of Java files with JML annotations is type-checked with the command

java -jar $INSTALL /openjml.jar -check options files

or

java -jar $INSTALL /openjml.jar options files

since -check is the default action.

A key concept to understand is how class files, source files, and specification files are found and used
by the OpenJML tool. This process is described in the following subsection. The command-line options
relevant to parsing and type-checking are discussed in the subsequent subsection.

13.2.1 Classpaths, sourcepaths, and specification paths in OpenJML

When a Java compiler compiles source files, it considers three types of files:

• Source files listed on the command-line
• Other source files referenced by those listed on the command-line, but not on the command-line

themselves
• Already-compiled class files

The OpenJML tool considers the same files, but also needs

• Specification files associated with classes in the program

The OpenJML tool behaves in a way similar to a typical Java compiler, making use of three directory
paths - the classpath, the sourcepath, and the specspath. These paths are standard lists of directories or
jar files, separated either by colons (Unix) or semicolons (Windows). Java packages are subdirectories of
these directories.

• classpath: The OpenJML classpath is set using one of these alternatives, in priority order:
– As the argument to the OpenJML command-line option -classpath

– As the value of the Java property org.jmlspecs.openjml.classpath

– As the value of the system environment variable CLASSPATH
• sourcepath: The OpenJML sourcepath is set using one of these alternatives, in priority order:

– As the argument of the OpenJML command-line option -sourcepath

– As the value of the Java property org.jmlspecs.openjml.sourcepath

42

– As the value of the OpenJML classpath (as determined above)
• specspath: The OpenJML specifications path is set using one of these alternatives, in priority

order:
– As the argument of the OpenJML command-line option -specspath

– As the value of the Java property org.jmlspecs.openjml.specspath

– As the value of the OpenJML sourcepath (as determined above)

Note that with no command-line options or Java properties set, the result is simply that the system
CLASSPATH is used for all of these paths. A common practice is to simply use a single directory
path, specified on the command-line using -classpath, for all three paths.

The paths are used as follows to find relevant files:

• Source files listed on the command-line are found directly in the file system. If the command-line
element is an absolute path to a .java file, it is looked up in the file system as an absolute path;
if the command-line element is a relative path, the file is found relative to the current working
directory.

• Classes that are referenced by files on the command-line or transitively by other classes in the
program, can be found in one of two ways:

– The source file for the class is sought as a sub-file of an element of the sourcepath.
– The class file for the class is sought as a sub-file of an element of the classpath.

If there is both a sourcefile and a classfile present, then TBD.
• The OpenJML tool also looks for a specification file for each source or class file used in the pro-

gram. The specification file is a Java-like file that has a .jml suffix, but otherwise has the same
name and Java package as the class that it specifies. The specification file used is the first .jml file
with the correct name and package found in the sequence of directories and jar files that make up
the specspath. If no such specification file is found, any specifications in the .java source file
are used, if one exists (as found on the command-line or on the sourcepath); otherwise default
specifications are used in conjunction with the class file. Note that if a .jml file is found, then any
specifications in the corresponding .java file are (silently) ignored. (TBD: what if the file on the
command-line is not in the sourcepath?)

13.2.2 Command-line options for type-checking
• -nullableByDefault: sets the global default to be that all declarations are implicitly @Nullable

• -nonnullByDefault: sets the global default to be that all declarations are implicitly @NonNull (the
default)

• -purityCheck: enables (default on) checking for purity; disable with -no-purityCheck

• -internalSpecs: enables (default on) using the built-in library specifications; disable with -no-internalSpecs
• -internalRuntime: enables (default on) using the built-in runtime library; disable with -no-internalRuntime

This section will be added later.

13.3 Static Checking and Verification

This section will be added later.

13.3.1 Options specific to static checking
• -prover prover: the name of the prover to use: one of z3_4_3, yices2 [TBD: expand list]
• -exec path: the path to the executable corresponding to the given prover

43

• -boogie: enables using boogie (-prover option ignored; -exec must specify the Z3 executable)
• -method methodlist: a comma-separated list of method names to check (default is all methods in

all listed classes) [TBD - describe wildcards and fully
• -exclude methodlist: a comma-separated list of method names to exclude from checking
• -checkFeasibility where: checks feasibility of the program at various points: one of none, all,
exit [TBD, finish list, give default]

• -escMaxWarnings int: the maximum number of assertion violations to look for; the argument is
either a positive integer or All (or equivalently all, default is All)

• -trace: prints out a counterexample trace for each failed assert
• -subexpressions: prints out a counterexample trace with model values for each subexpression
• -counterexample or -ce: prints out counterexample information

13.4 Runtime Assertion Checking

This section will be added later.

13.4.1 Options specific to runtime checking
• -showNotExecutable: warns about the use of features that are not executable (and thus ignored)
• -racShowSource: includes source location in RAC warning messages [TBD: default?]
• -racCheckAssumptions: enables (default on [TBD - is this default correct?]) checking assume

statements as if they were asserts
• -racJavaChecks: enables (default on) performing JML checking of violated Java features (which

will just proceed to throw an exception anyway)
• -racCompileToJavaAssert: (default off) compile RAC checks using Java asserts (which must then

be enabled using -ea), instead of using org.jmlspecs.utils.JmlAssertionFailure

• -racPreconditionEntry: (default off) enable distinguishing internal Precondition errors from en-
try Precondition errors, appropriate for automated testing; compiles code to generate JmlAssertion-
Error exceptions (rather than RAC warning messages)[TBD - should this turn on -racCheckAssumptions?]

13.5 Generating Documentation

This section will be added later.

13.6 Generating Specification File Skeletons

This section will be added later.

13.7 Generating Test Cases

This section will be added later.

44

13.8 Limitations of OpenJML’s implementation of JML

Currently OpenJML does not completely implement JML. The differences are explained in the following
subsections.

13.8.1 model import statement

OpenJML translates a JML model import statement into a regular Java import statement [TBD - check
this]. COsequently, names introduced in a model import statement are visible in both Java code and JML
annotations. This has consequences in the situation in which a name is imported both through a Java
import and a JML model import. Consider the following examples of involving packages a and b, each
containing a class named X.

In these two examples,

import a.X; //@ model import b.X;

import a.*; //@ model import b.*;

the class named X is imported by both an import statement and a model import statement. In JML, the use
of X in Java code unambiguously refers to a.X; the use of X in JML annotations is ambiguous. However,
in OpenJML, the use of X in both contexts will be identified as ambiguous.

In

import a.*; //@ model import b.X;

a use of X in Java code refers to a.X and a use in JML annotations refers to b.X. However, in OpenJML,
both uses will mean b.X.

However,

import a.X; //@ model import b.*;

is unproblematic. Both JML and OpenJML will interpret X as a.X in both Java code and JML annota-
tions.

TBD - more to be said about .jml files

13.8.2 purity checks and system library annotations

JML requires that methods that are called within JML annotations must be pure methods (cf. section
TBD). OpenJML does implement a check for this requirement. However, to be pure, a method must
be annotated as such by either /* pure */ or @Pure. A user should insert such annotations where
appropriate in the user’s own code. However, many system libraries still lack JML annotations, including
indications of purity. Using an unannotated library call within JML annotation will provoke a warning
from OpenJML. Until the system libraries are more thoroughly annotated, users may wish to use the
-no-purityCheck option to turn off purity checking.

13.8.3 TBD - other unimplemented features

45

Chapter 14

Using OpenJML and OpenJDK within
user programs

The OpenJML software is available as a library so that Java and JML programs can be manipulated within
a user’s program. The developer needs only to include the openjml.jar library on the classpath when
compiling a program and to call methods through the public API as described in this chapter. The public
API is implemented in the interface org.jmlspecs.openjml.IAPI; it provides the ability to

• perform compilation actions as would be executed on the command-line

• parse files or Strings containing Java and JML source code, producing parse trees

• print parse trees

• walk over parse trees to perform user-defined actions

• type-check parse trees (both Java and JML checking)

• perform static checking

• compile modules with run-time checks

• emit javadoc documentation with JML annotations

The sections of this chapter describe these actions and various concepts needed to perform them cor-
rectly.

CAUTION: OpenJML relies on parts of the OpenJDK software that are labeled as internal, non-public
and subject to change. Correspondingly, some of the OpenJML API may change in the future. The
definition of the API class is intended to provide a buffer against such changes. However, the names and
functionality of OpenJDK classes (e.g., the Context class in the next section) could change.

List classes CAUTION #2: The OpenJDK software uses its own implementation of Lists, namely
com.sun.tools.javac.util.List. It is a different implementation than java.util.List, with a
different interface. Since one or the other may be in the list of imports, the use of List in the code may
not clearly indicate which type of List is being used. Error messages are not always helpful here. Users
should keep these two types of List in mind to avoid confusion.

46

Example source code The subsections that follow contain many source code examples. Small source
code snippets are shown in in-line boxes like this:

// A Java comment

Larger examples are shown as full programs. These are followed by a box of text with a gray background
that contains the output expected if the program is run (if the program is error-free) or compiled (if there
are compilation errors). Here is a “Hello, world” example program:

// DemoHelloWorld.java

public class DemoHelloWorld {

public static void main(String[] args) {

System.out.println("Hello, World!");

}

}

Hello, World!

All of these full-program example programs are working, tested examples. They are available in the
demos directory of the OpenJML source code. The opening comment line (as well as the class name) of
the example text gives the file name.

The full programs presume an appropriate environment. In particular, they expect the following

• the current working directory is the demos directory of the OpenJML source distribution

• the Java CLASSPATH contains the current directory and a release version of the OpenJML library
(openjml.jar). For example, if the demos directory is the current working directory and a copy
of openjml.jar is in the demos directory, then the CLASSPATH could be set as �.;openjml.jar�
(using the ; on Windows, a : on Mac and Linux)

Note that the examples often use other files that are in subdirectories of the demos directory.

// bash commands to compile and run the DemoHelloWorld example

cd OpenJML/demos # Alter this to match your local installation

export CLASSPATH=�.;openjml.jar� # Use a : instead of ; on Unix or Mac

Copy openjml.jar to the demo directory

javac DemoHelloWorld.java # Be sure java tools from a 1.7 JDK

java DemoHelloWorld # are on the PATH

14.1 Concepts

14.1.1 Compilation Contexts

All parsing and compilation activities within OpenJML are performed with respect to a compilation
context, implemented in the code as a com.sun.tools.javac.util.Context object. There can be
more than one Context at a given time, though this is rare. A context holds all of the symbol tables and
cached values that represent the source code created in that context.

There is little need for the user to create or manipulate Contexts. However it is essential that items created
in one Context not be used in another context. There is no check for such misuse, but the subsequent

47

actions are likely to fail. For example, a Context contains interned versions of the names of source code
identifiers (as Names). Consequently an identifier parsed in one Context will appear different than an
identifier parsed in another Context, even if they have the same textual name. Do not try to reuse parse
trees or other objects created in one Context in another Context.

Each instance of the IAPI interface creates its own Context object and most methods on that IAPI in-
stance operate with respect to that Context. The API.close operation releases the Context object, al-
lowing the garbage collector to reclaim space. 1

14.1.2 JavaFileObjects

OpenJDK works with source files using JavaFileObject objects. This class abstracts the behavior
of ordinary source files. Recall that the definition of the Java language allows source material to be
held in containers other than ordinary files on disk; The JavaFileObject class accommodates such
implementations.

OpenJML currently handles source material in ordinary files and source material expressed as String
objects and contained in mock-file objects. Such mock objects make it easier to create source material
programatically, without having to create temporary files on disk.

Although the basic input unit to OpenJDK and OpenJML is a JavaFileObject, for convenience, methods
that require source material as input have variations allowing the inputs to be expressed as names of files
or File objects. If needed, the following methods create JavaFileObjects:

String filename = ...

File file = new java.io.File(filename);

IAPI m = Factory.makeAPI();

JavaFileObject jfo1 = m.makeJFOfromFilename(filename);

JavaFileObject jfo2 = m.makeJFOfromFile(file);

JavaFileObject jfo3 = m.makeJFOfromString(filename,contents);

The last of the methods above, makeJFOfromString, creates a mock-file object with the given contents
(a String). The contents argument is a String holding the text that would be in a compilation unit. The
mock-object must have a sensible filename as well. In particular, the given filename should match the
package and class name as given in the contents argument. In addition to creating the JavaFileObject
object, the mock-file is also added to an internal database of source mock-files; if a mock-file has a file-
name that would be on the source path (were it a concrete file), then the mock-file is used as if it were a
real file in an OpenJML compilation. [TODO: Test this. Also, how to remove such files from the internal
database.]

14.1.3 Interfaces and concrete classes

A design meant to be extended should preferably be expressed as Java interfaces; if client code uses the
interface and not the underlying concrete classes, then reimplementing functionality with new classes is
straightforward. The OpenJDK architecture uses interfaces in some places, but often it is the concrete
classes that must be extended.

Table 14.1 lists important interfaces, the corresponding OpenJDK concrete class, and the OpenJML re-
placement.

1The OpenJDK software was designed as a command-line tool, in which all memory is reclaimed when the process exits.
Although in principle memory can be garbage collected when no more references to a Context or its consitutent parts exist, the
degree to which this is the case has not been tested.

48

Interface OpenJDK class OpenJML class
IAPI API

com.sun.tools.javac.main.Main org.jmlspecs.openjml.Main
Option

IOption JmlOption
IVisitor
IJmlTree
IJmlVisitor
IProver
IProverResult ProverResult
IProverResult.ICounterexample Counterexample
IProverResult.ICoreIds
JCDiagnostic.DiagnosticPosition SimpleDiagnosticPosition DiagnosticPositionSE, DiagnosticPositionSES
Diagnostic<T> JCDiagnostic

com.sun.tools.javac.main.JavaCompiler JmlCompiler

Table 14.1: Interfaces and Classes

TODO: Add Parser, Scanner, other tools, JCTree nodes, JMLTree nodes, Option/JmlOption, Diagnostic-
Position, Tool, OptionCHecker

14.1.4 Object Factories

14.1.5 Abstract Syntax Trees

14.1.6 Compilation Phases and The tool registry

Compilation in the OpenJDK compiler proceeds in a number of phases. Each phase is implemented
by a specific tool. OpenJDK examples are the DocCommentScanner, EndPosParser, Flow, performing
scanning, parsing and flow checks respectively; the OpenJML counterparts are JmlScanner, JmlParser,
and JmlFlow.

In each compilation context there is one instance of each tool, registered with the context. The Con-
text contains a map of keys to the singleton instance of the tool (or its factory) for that context. The
scanner and parser are treated slightly differently: there is a singleton instance of a scanner factory and
a parser factory, but a new instance of the scanner and the parser are created for each compilation unit
compiled. Tables 14.2 and 14.3 list the tools most likely to be encounterded when programming with
OpenJML.

OpenJML implements alternate versions of many of the OpenJDK tools. The OpenJML versions are
derived from the OpenJDK versions and are registered in the context in place of the OpenJDK versions.
In that way, anywhere in the software that a tool is obtained (using the syntax ZZZ.instance(context)

for a tool ZZZ), the appropriate version and instance of the tool is produced.

In some cases, a tool factory is registered instead of a tool instance. Then a tool instance is created on the
first request for an instance of the tool. The reason for this is the following. Most tools use other tools
and, for efficiency, request instances of those tools in their constructors. Circular dependencies can easily
arise among these tool dependencies. Using factories helps mitigate this, though the problem still does
easily arise.

49

Purpose Java and JML tool Notes
overall compiler JavaCompiler,

JmlCompiler
controls the flow of compilation phases

scanner factory ScannerFactory,
JmlScanner.Factory

Token scanning DocCommentScanner,
JmlScanner

new instance created from the factory for
each compilation unit

parser factory ParserFactory,
JmlFactory

parser EndPosParser,
JmlParser

new instance created from the factory for
each compilation unit

symbol table construction Enter,
JmlEnter

annotation processing Annotate performed in JavaCom-
piler.processAnnotations

type determination and
checking

Attr,
JmlAttr

flow-sensitive checks Flow,
JmlFlow

simple type-checking stops here

static checking
JmlEsc

invoked instead of desugaring if static
checking is enabled (and processing ends
here)

runtime assertion checking
JmlRac

invoked if RAC is enabled, and then pro-
ceeds with the remainder of compilation
and code generation

desugaring generics performed in the method JavaCom-
piler.desugar

code generation Gen not used for ESC

Table 14.2: Compilation phases and corresponding tools as implemented in JavaCompiler and JmlCom-
piler

50

Purpose Java and JML tool Notes
identifier table Names
symbol table SymTab
compiler and command-line options Options, JmlOptions
AST node factory JCTree.Factory, JmlTree.Maker
message reporting Log
printing ASTs Pretty, JmlPretty
name resolution Resolve, JmlResolver
AST utilities TreeInfo, JmlTreeInfo
type checks Check, JmlCheck
creating diagnostic message objects JCDiagnostic.Factory

Table 14.3: Some of the other registered tools

TBD: Others - MemberEnter, JmlMemberEnter, JmlRac, JmlCheck, Infer, Types, Options, Lint, Source,
JavacMessages, DiagnosticListener, JavaFileManager/JavacFileManager, ClassReader/javadocClassReader,
JavadocEnter, DocEnv/DocEnvJml, BasicBlocker, ProgressReporter?, ClassReader, ClassWriter, Todo,
Annotate, Types, TaskListener, JavacTaskImpl, JavacTrees

TBD: Others - JmlSpecs, Utils, Nowarns, JmlTranslator, Dependencies

TBD: Is JmlTreeInfo still used

14.2 OpenJML operations

14.2.1 Methods equivalent to command-line operations

The execute methods of IAPI perform the same operation as a command on the command-line. These
methods are different than others of IAPI in that they create and use their own Context object, ignoring
that of the calling IAPI object.

The simple method is shown here:

import org.jmlspecs.openjml.IAPI;

IAPI m = new org.jmlspecs.openjml.API();

int returnCode = m.execute(�-check�,�-noPurityCheck�,�src/demo/Err.java�);

Each argument that would appear on the command-line is a separate argument to execute. All informa-
tional and diagnostic output is sent to System.out. The value returned by execute is the same as the
exit code returned by the equivalent command-line operation. The String arguments are a varargs list, so

51

they can be provided to execute as a single array:

import org.jmlspecs.openjml.IAPI;

String[] args = new String[]{�-check�,�-noPurityCheck�,�src/demo/Err.java�};

IAPI m = new org.jmlspecs.openjml.API();

int returnCode = m.execute(args);

A full example of using execute on a file with a syntax error is shown below:

// DemoExecute.java

import org.jmlspecs.openjml.*;

public class DemoExecute {

public static void main(String[] argv) {

try {

IAPI m = Factory.makeAPI();

String[] args = new String[]{"-check","src/demo/Err.java"};

int retcode = m.execute(null,args);

System.out.println("Return Code: " + retcode);

} catch (Exception e) {

System.out.println(e);

}

}

}

DemoExecute.java:9: error: ';' expected

String[] args = new String[]{"-check","src/demo/Err.java"}

^

1 error

A longer form of execute takes two additional arguments: a Writer and a DiagnosticListener.
The Writer receives all the informational output. The report method of the DiagnosticListener is

52

called for each warning or error diagnostic generated by OpenJML. Here is a full example of this method:

// DemoExecute2.java

import org.jmlspecs.openjml.*;

import javax.tools.*;

class MyDiagListener implements DiagnosticListener<JavaFileObject> {

public int count = 0;

public void report(Diagnostic<? extends JavaFileObject> diag) {

System.out.println("Line: " + diag.getLineNumber());

count++;

}

}

public class DemoExecute2 {

public static void main(String[] argv) {

try {

IAPI m = Factory.makeAPI();

MyDiagListener listener = new MyDiagListener();

int retcode = m.execute(new java.io.PrintWriter(System.out), listener, null,

"-check","-noPurityCheck","src/demo/Err.java");

System.out.println("Errors: " + listener.count);

System.out.println("Return code: " + retcode);

} catch (Exception e) {

System.out.println(e);

}

}

}

Line: 6

Line: 4

Errors: 2

Return code: 1

14.2.2 Parsing

There are two varieties of parsing. The first parses an individual Java or specification file, producing
an AST that represents that source file. The second parses both a Java file and its specification file, if
there is a separate one. The second form is generally more useful, since the specification file is found
automatically. However, if the parse trees are being constructed programmatically, it may be useful to
parse the files individually and then manually associate them.

Parsing constructs a parse tree. No symbols are created or entered into a symbol table. Nor is any type-
checking performed. The only global effect is that identifiers are interned in the Names table, which is
specific to the compilation context. Thus the only effect of discarding a parse tree is that there may be
orphaned (no longer used) names in the Names table. The Names table cannot be cleared without the risk
of dangling identifiers in parse trees.

53

Other than this consideration, parse trees can be created, manipulated, edited and discarded. Section
TBD describes tools for manually creating parse trees and walking over them. Once a parse tree is
type-checked, it should be considered immutable.

Parsing individual files

There are two methods for parsing an individual file. The basic method takes a JavaFileObject as
input and produces an AST. The convenience method takes a filename as input and produces an AST.
The methods of section 14.1.1 enable you to produce JavaFileObjects from filenames, File objects, or
Strings that hold the equivalent of the contents of a file (a compilation unit).

JmlCompilationUnit parseSingleFile(String filename);

JmlCompilationUnit parseSingleFile(JavaFileObject jfo);

The filename is relative to the current working directory.

Here is a full example that shows both interfaces and shows how to attach a specification parse tree to its
Java parse tree.

// DemoParseSingle.java

import javax.tools.JavaFileObject;

import org.jmlspecs.openjml.*;

public class DemoParseSingle {

public static void main(String[] argv) {

try {

IAPI m = Factory.makeAPI();

String f1 = "src/demo/A.java";

JavaFileObject f2 = m.makeJFOfromFilename("specs/demo/A.jml");

JmlTree.JmlCompilationUnit ast1 = m.parseSingleFile(f1);

JmlTree.JmlCompilationUnit ast2 = m.parseSingleFile(f2);

m.attachSpecs(ast1,ast2);

} catch (Exception e) {

System.out.println(e);

}

}

}

Parsing Java and JML files together

The more common action is to parse a Java file and its specification at the same time. The JML language
defines how the specification file is found for a given source or binary class. In short, the specification
file has syntax very similar to a Java file:

• it must be in the same package and have the same class name as the Java class

• if both are files, the filenames without suffix must be the same

54

• the specification file must be on the specspath

• if a .jml file meeting the above criteria is found anywhere on the specspath, it is used; otherwise a
.java file on the specspath meeting the above criteria is used; otherwise only default specifications
are used.2

Note that a Java file can be specified on the command-line that is not on the specspath. In that case (if
there is no .jml file) no specification file will be found, although the user may expect that the Java file
itself may serve as its own specifications. This is a confusing situation and should be avoided.

14.2.3 Type-checking

14.2.4 Static checking

14.2.5 Compiling run-time checks

14.2.6 Creating JML-enhanced documentation

14.3 Working with ASTs

14.3.1 Printing parse trees

TBD

14.3.2 Source location information

TBD

14.3.3 Exploring parse trees with Visitors

OpenJML defines some Visitor classes that can be extended to implement user-defined functionality
while traversing a parse tree. The basic class is JmlScanner. An unmodified instance of JmlScanner
will traverse a parse tree without performing any actions.

There are three modes of traversing an AST.

• AST_JAVA_MODE - traverses only the Java portion of an AST, ignoring any JML annotations

• AST_JML_MODE - traverses the Java and JML syntax that was part of the original source file

• AST_SPEC_MODE - traverses the Java syntax and its specifications (whether they came from the
same source file or a different one). This mode is only available after the AST has been type-
checked.

A derived class can affect the behavior of the visitor in two ways:

• By overriding the scan method, an action can be performed at every node of an AST

2In the past, JML allowed multiple specification files and defined an ordering and rules for combining the specifications con-
tained in them. The JML has been simplified to allow just one specification file, just one suffix (.jml), and no combining of
specifications from a .jml and a .java file if both exist.

55

• By overriding specific visit... methods, an action can be performed that is specific to the nodes
of the corresponding type

In the example that follows, the scan method of the Visitor is modified to print the node type and count all
nodes in the AST, the visitBinary method is modified to count Java binary operations, and the visitJml-
Binary method is modified to count JML binary operations. The default constructor of the parent Visitor

56

class sets the traversal mode to AST_JML_MODE.

// DemoWalkTree1.java

import org.jmlspecs.openjml.*;

import com.sun.tools.javac.tree.JCTree;

public class DemoWalkTree1 {

static class Walker extends JmlTreeScanner {

int nodes = 0;

int jmlopcount = 0;

int allopcount = 0;

@Override

public void scan(JCTree node) {

if (node != null) System.out.println("Node: " + node.getClass());

if (node != null) nodes++;

super.scan(node);

}

@Override

public void visitJmlBinary(JmlTree.JmlBinary that) {

jmlopcount++;

allopcount++;

super.visitJmlBinary(that);

}

@Override

public void visitBinary(JCTree.JCBinary that) {

allopcount++;

super.visitBinary(that);

}

}

public static void main(String[] argv) {

try {

IAPI m = Factory.makeAPI();

Walker visitor = new Walker();

JCTree.JCExpression expr = m.parseExpression("(a+b)*c", false);

visitor.scan(expr);

System.out.println("Counts: " + visitor.nodes + " " +

visitor.allopcount + " " + visitor.jmlopcount);

expr = m.parseExpression("a <==> \\result", true);

visitor.scan(expr);

System.out.println("Counts: " + visitor.nodes + " " +

visitor.allopcount + " " + visitor.jmlopcount);

} catch (Exception e) {

System.out.println(e);

}

}

}

57

Node: class com.sun.tools.javac.tree.JCTree$JCBinary

Node: class com.sun.tools.javac.tree.JCTree$JCParens

Node: class com.sun.tools.javac.tree.JCTree$JCBinary

Node: class com.sun.tools.javac.tree.JCTree$JCIdent

Node: class com.sun.tools.javac.tree.JCTree$JCIdent

Node: class com.sun.tools.javac.tree.JCTree$JCIdent

Counts: 6 2 0

Node: class org.jmlspecs.openjml.JmlTree$JmlBinary

Node: class com.sun.tools.javac.tree.JCTree$JCIdent

Node: class org.jmlspecs.openjml.JmlTree$JmlSingleton

Counts: 9 3 1

The second example shows the differences among the three traversal modes. Note that the AST_SPEC_MODE

58

traversal fails when requested prior to type-checking the AST.

// DemoWalkTree2.java

import org.jmlspecs.openjml.*;

import com.sun.tools.javac.tree.JCTree;

public class DemoWalkTree2 {

static class Walker extends JmlTreeScanner {

public Walker(int mode) {

super(mode);

}

int nodes = 0;

int jmlopcount = 0;

int allopcount = 0;

@Override

public void scan(JCTree node) {

if (node != null) System.out.println("Node: " + node.getClass());

if (node != null) nodes++;

super.scan(node);

}

@Override

public void visitJmlBinary(JmlTree.JmlBinary that) {

jmlopcount++;

allopcount++;

super.visitJmlBinary(that);

}

@Override

public void visitBinary(JCTree.JCBinary that) {

allopcount++;

super.visitBinary(that);

}

}

public static void main(String[] argv) {

try {

java.io.File f = new java.io.File("src/demo/A.java");

IAPI m = Factory.makeAPI("-specspath","specs","-sourcepath","src","-noPurityCheck");

JmlTree.JmlCompilationUnit expr = m.parseFiles(f).get(0);

Walker visitor = new Walker(Walker.AST_JAVA_MODE);

visitor.scan(expr);

System.out.println("Counts: " + visitor.nodes + " " +

visitor.allopcount + " " + visitor.jmlopcount);

visitor = new Walker(Walker.AST_JML_MODE);

visitor.scan(expr);

System.out.println("Counts: " + visitor.nodes + " " +

visitor.allopcount + " " + visitor.jmlopcount);

try {

visitor = new Walker(Walker.AST_SPEC_MODE);

visitor.scan(expr);

System.out.println("Counts: " + visitor.nodes + " " +

visitor.allopcount + " " + visitor.jmlopcount);

} catch (Exception e) {

System.out.println("EXCEPTION: " + e);

}

m.typecheck(expr);

visitor = new Walker(Walker.AST_SPEC_MODE);

visitor.scan(expr);

System.out.println("Counts: " + visitor.nodes + " " +

visitor.allopcount + " " + visitor.jmlopcount);

} catch (Exception e) {

System.out.println(e);

}

}

}

59

Node: class org.jmlspecs.openjml.JmlTree$JmlCompilationUnit

Node: class com.sun.tools.javac.tree.JCTree$JCIdent

Node: class org.jmlspecs.openjml.JmlTree$JmlClassDecl

Node: class com.sun.tools.javac.tree.JCTree$JCModifiers

Node: class org.jmlspecs.openjml.JmlTree$JmlMethodDecl

Node: class com.sun.tools.javac.tree.JCTree$JCModifiers

Node: class com.sun.tools.javac.tree.JCTree$JCPrimitiveTypeTree

Node: class com.sun.tools.javac.tree.JCTree$JCBlock

Counts: 8 0 0

Node: class org.jmlspecs.openjml.JmlTree$JmlCompilationUnit

Node: class com.sun.tools.javac.tree.JCTree$JCIdent

Node: class org.jmlspecs.openjml.JmlTree$JmlClassDecl

Node: class com.sun.tools.javac.tree.JCTree$JCModifiers

Node: class org.jmlspecs.openjml.JmlTree$JmlMethodDecl

Node: class org.jmlspecs.openjml.JmlTree$JmlMethodSpecs

Node: class org.jmlspecs.openjml.JmlTree$JmlSpecificationCase

Node: class com.sun.tools.javac.tree.JCTree$JCModifiers

Node: class org.jmlspecs.openjml.JmlTree$JmlMethodClauseExpr

Node: class com.sun.tools.javac.tree.JCTree$JCBinary

Node: class com.sun.tools.javac.tree.JCTree$JCIdent

Node: class com.sun.tools.javac.tree.JCTree$JCLiteral

Node: class com.sun.tools.javac.tree.JCTree$JCModifiers

Node: class com.sun.tools.javac.tree.JCTree$JCPrimitiveTypeTree

Node: class com.sun.tools.javac.tree.JCTree$JCBlock

Node: class org.jmlspecs.openjml.JmlTree$JmlTypeClauseDecl

Node: class org.jmlspecs.openjml.JmlTree$JmlVariableDecl

Node: class com.sun.tools.javac.tree.JCTree$JCModifiers

Node: class com.sun.tools.javac.tree.JCTree$JCAnnotation

Node: class com.sun.tools.javac.tree.JCTree$JCFieldAccess

Node: class com.sun.tools.javac.tree.JCTree$JCFieldAccess

Node: class com.sun.tools.javac.tree.JCTree$JCFieldAccess

Node: class com.sun.tools.javac.tree.JCTree$JCIdent

Node: class com.sun.tools.javac.tree.JCTree$JCPrimitiveTypeTree

Node: class com.sun.tools.javac.tree.JCTree$JCLiteral

Counts: 25 1 0

Node: class org.jmlspecs.openjml.JmlTree$JmlCompilationUnit

Node: class com.sun.tools.javac.tree.JCTree$JCIdent

Node: class org.jmlspecs.openjml.JmlTree$JmlClassDecl

EXCEPTION: java.lang.RuntimeException: AST_SPEC_MODE requires that the Class be type-checked; class A is not.

Node: class org.jmlspecs.openjml.JmlTree$JmlCompilationUnit

Node: class com.sun.tools.javac.tree.JCTree$JCIdent

Node: class org.jmlspecs.openjml.JmlTree$JmlClassDecl

Node: class com.sun.tools.javac.tree.JCTree$JCModifiers

Node: class org.jmlspecs.openjml.JmlTree$JmlMethodDecl

Node: class com.sun.tools.javac.tree.JCTree$JCModifiers

Node: class org.jmlspecs.openjml.JmlTree$JmlMethodSpecs

Node: class com.sun.tools.javac.tree.JCTree$JCModifiers

Node: class com.sun.tools.javac.tree.JCTree$JCBlock

Node: class com.sun.tools.javac.tree.JCTree$JCExpressionStatement

Node: class com.sun.tools.javac.tree.JCTree$JCMethodInvocation

Node: class com.sun.tools.javac.tree.JCTree$JCIdent

Node: class org.jmlspecs.openjml.JmlTree$JmlMethodDecl

Node: class com.sun.tools.javac.tree.JCTree$JCModifiers

Node: class org.jmlspecs.openjml.JmlTree$JmlMethodSpecs

Node: class org.jmlspecs.openjml.JmlTree$JmlSpecificationCase

Node: class com.sun.tools.javac.tree.JCTree$JCModifiers

Node: class org.jmlspecs.openjml.JmlTree$JmlMethodClauseExpr

Node: class com.sun.tools.javac.tree.JCTree$JCLiteral

Node: class com.sun.tools.javac.tree.JCTree$JCModifiers

Node: class com.sun.tools.javac.tree.JCTree$JCPrimitiveTypeTree

Node: class com.sun.tools.javac.tree.JCTree$JCBlock

Node: class com.sun.tools.javac.tree.JCTree$JCModifiers

Counts: 23 0 0

60

There are two other points to make about these examples.

• Note that each derived method calls the superclass version of the method that it overrides. The
superclass method implements the logic to traverse all the children of the AST node. If the super
call is omitted, no traversal of the children is performed. If the derived class wishes to traverse
only some of the children, a specialized implementation of the method will need to be created. It
is easiest to create such an implementation by consulting the code in the super class.

• In the examples above, you can see that the System.out.println statement that prints the node’s class
occurs before the super call. The result is a pre-order traversal of the tree; if the print statement
occurred after the super call, the output would show a post-order traversal.

14.3.4 Creating parse trees

14.4 Working with JML specifications

14.5 Utilities

– version – context – symbols

14.6 Extending or modifying JML

JML is modified by providing new implementations of key classes, typically by derivation from those
that are part of OpenJML. In fact, OpenJML extends many of the OpenJDK classes to incorporate JML
functionality into the OpenJDK Java compiler.

14.6.1 Adding new command-line options

14.6.2 Altering IAPI

14.6.3 Changing the Scanner

14.6.4 Enhancing the parser

14.6.5 Adding new modifiers and annotations

14.6.6 Adding new AST nodes

14.6.7 Modifying a compiler phase

61

Part IV

Contributing to OpenJML

62

Part V

Semantics and translation of Java and
JML in OpenJML

63

Chapter 15

Introduction

– JML section is a summary of material from the reference manual

– Sorted First-order-logic

– individual subexpressions; optional expression form; optimization; usefulness for tracing

– RAC vs. ESC

– nomenclature

64

Chapter 16

Statement translations

TODO: Need to insert both RAC and ESC in all of the following.

16.1 While loop

Java and JML statement:

//@ invariant invariant_condition ;

//@ decreases counter ;
while (condition) {

body
}

Translation: TODO: Needs variant condition, havoc information

{

//@ assert jmltranslate(invariant_condition) ;
//@ assert jmltranslate(variant_condition) > 0 ;

while (true) {

stats(tmp,condition)
if (!tmp) {

//@ assume !tmp;
break;

}

//@ assume tmp;
stats(body)

}

}

65

Chapter 17

Java expression translations

17.1 Implicit or explicit arithmetic conversions

TODO

17.2 Arithmetic expressions

TODO: need arithmetic range assertions

In these, T is the type of the result of the operation. The two operands in binary operations are already
assumed to have been converted to a common type according to Java’s rules.

stats(tmp, - a) ==>
stats(tmpa, a)
T tmp = - tmpa ;

stats(tmp, a + b) ==>
stats(tmpa, a)
stats(tmpb, b)
T tmp = tmpa + tmpb ;

stats(tmp, a - b) ==>
stats(tmpa, a)
stats(tmpb, b)
T tmp = tmpa - tmpb ;

stats(tmp, a * b) ==>
stats(tmpa, a)
stats(tmpb, b)
T tmp = tmpa * tmpb ;

stats(tmp, a / b) ==>
stats(tmpa, a)

66

stats(tmpb, b)
//@ assert tmpb != 0; // No division by zero
T tmp = tmpa / tmpb ;

stats(tmp, a % b) ==>
stats(tmpa, a)
stats(tmpb, b)
//@ assert tmpb != 0; // No division by zero
T tmp = tmpa % tmpb ;

17.3 Bit-shift expressions

TODO

17.4 Relational expressions

No assertions are generated for the relational operations < > <= >= == !=. The operands are presumed
to have been converted to a common type according to Java’s rules.

stats(tmp, a op b) ==>
stats(tmpa, a)
stats(tmpb, b)
T tmp = tmpa op tmpb ;

17.5 Logical expressions

stats(tmp, ! a) ==>
stats(tmpa, a)
T tmp = ! tmpa ;

The && and || operations are short-circuit operations in which the second operand is conditionally eval-
uated. Here & and | are the (FOL) boolean non-short-circuit conjunction and disjunction.

stats(tmp, a && b) ==>
boolean tmp ;

stats(tmpa, a)
if (tmpa) {

//@ assume tmpa ;

stats(tmpb, b)
tmp = tmpa & tmpb ;

} else {

//@ assume ! tmpa ;

tmp = tmpa ;

67

}

stats(tmp, a || b) ==>
boolean tmp ;

stats(tmpa, a)
if (! tmpa) {

//@ assume ! tmpa ;

stats(tmpb, b)
tmp = tmpa | tmpb ;

} else {

//@ assume tmpa ;

tmp = tmpa ;

}

68

TODOs

• Fix the TITLE for the web pages

• on HTML pages boxed examples do not render correctly

An index will be added later.

69

	Why specify? Why check?
	Background of verification, JML, and OpenJML
	Organization of this document
	Some details
	Disambiguating `annotation'
	Syntactic conflicts with @
	.jml files and .java files

	Quick start to OpenJML
	Installing OpenJML

	Other resources
	I Tutorial introduction to specifying and checking Java programs
	Tutorial

	II The Java Modeling Language (JML)
	JML concepts
	JML modifiers and Java annotations
	Model and Ghost
	Visibility
	JML types
	Evaluation and well-formedness of JML expressions
	Null and non-null references
	Static and Instance
	Location sets
	Arithmetic modes
	org.jmlspecs.lang.JML

	Summary of JML Features
	JML Syntax
	Syntax of JML specifications
	Conditional JML specifications
	Finding specification files and the refine statement
	JML specifications and Java annotations
	Model import statements
	Modifiers
	Method specification clauses
	Class specification clauses
	Visibility of specifications
	Statement specifications
	JML expressions
	JML types
	Non-Null and Nullable
	Observable purity: '134query and '134secret
	Race condition detection
	Arithmetic modes
	Universe types
	Dynamic frames
	Code contracts
	redundantly suffixes
	nowarn lexical construct

	Interaction with Java features
	Other issues
	Interaction with JSR-308
	Interaction with FindBugs

	III The OpenJML tool
	Introduction
	OpenJML
	Command-line tool
	Eclipse plug-in
	Development of OpenJML

	JML
	OpenJDK
	License

	The command-line tool
	Installation and System Requirements
	Running OpenJML
	Exit codes
	Files
	Exit values
	Specification files
	Annotations and the runtime library
	Java properties and the openjml.properties file
	Options: Finding files and classes: class, source, and specs paths
	Options: JML tools
	Options: OpenJML options applicable to all OpenJML tools
	Options: Extended Static Checking
	Options: Runtime Assertion Checking
	Options: Version of Java language or class files
	Options: Other Java compiler options applicable to OpenJML
	Options: Information and debugging
	Options related to Static Checking
	Options related to parsing and typechecking
	Java options related to annotation processing
	Other JML Options

	The Eclipse Plug-in
	Installation and System Requirements
	GUI Features

	OpenJML tools
	Options controlling OpenJML behavior
	Parsing and Type-checking
	Classpaths, sourcepaths, and specification paths in OpenJML
	Command-line options for type-checking

	Static Checking and Verification
	Options specific to static checking

	Runtime Assertion Checking
	Options specific to runtime checking

	Generating Documentation
	Generating Specification File Skeletons
	Generating Test Cases
	Limitations of OpenJML's implementation of JML
	model import statement
	purity checks and system library annotations
	TBD - other unimplemented features

	Using OpenJML and OpenJDK within user programs
	Concepts
	Compilation Contexts
	JavaFileObjects
	Interfaces and concrete classes
	Object Factories
	Abstract Syntax Trees
	Compilation Phases and The tool registry

	OpenJML operations
	Methods equivalent to command-line operations
	Parsing
	Type-checking
	Static checking
	Compiling run-time checks
	Creating JML-enhanced documentation

	Working with ASTs
	Printing parse trees
	Source location information
	Exploring parse trees with Visitors
	Creating parse trees

	Working with JML specifications
	Utilities
	Extending or modifying JML
	Adding new command-line options
	Altering IAPI
	Changing the Scanner
	Enhancing the parser
	Adding new modifiers and annotations
	Adding new AST nodes
	Modifying a compiler phase

	IV Contributing to OpenJML
	V Semantics and translation of Java and JML in OpenJML
	Introduction
	Statement translations
	While loop

	Java expression translations
	Implicit or explicit arithmetic conversions
	Arithmetic expressions
	Bit-shift expressions
	Relational expressions
	Logical expressions

