Experiments and open issues on
decision procedures
theorem proving
and software analysis

Maria Paola Bonacina
Dipartimento di Informatica

Universita degli Studi di Verona

Outline

* First part: outside-in (work 1n progress)

« From reasoning about SW to recent experiments
with a FOL theorem prover in the theory of arrays

* Second part: inside-out (mostly 1deas for the
future)

« Tailoring theorem proving and embedding it into
software analysis tools

Outline of the first part

* Superposition-based satistiability procedures for
decidable theories

* A specific theory: arrays with extensionality

* A case study: three sets of synthetic benchmarks
(parametric: empirical asymptotic behavior)

* Experiments comparing a superposition-based
theorem prover and a validity checker

Outline of the second part

* From satisfiability procedures to decision
procedures: current approaches

* From decision procedures to reasoning-based
program analyzers

* Big picture: a few open 1ssues 1n software
analysis

e Discussion

Beginning the first part

* Reasoning about SW ... we all know why

* SWinvolves data types, e.g., integer, real, arrays,
lists, sets,

* For some theories satisfiability 1s decidable (e.g.,
arrays)

e Satistiability procedures

Satisfiability procedure

T : presentation of the background theory
(e.g., theory of arrays)
G : conjunction (set) of ground literals

/ sat

unsat

G : set of arbitrary quantifier-free formulae (decision procedure)

Common approach

* Design
* Prove sound and complete

* Implement

a satisfiability procedure for each decidable theory of interest.

Basic ingredients:
* Defined symbols (in T) and free symbols
* Congruence closure to handle equality and free symbols

* Build axioms of T into congruence closure algorithm

Examples

Theory of lists :
congruence closure with axioms built-in
[Nelson, Oppen JACM 1980 |

Theory of arrays :

congruence closure with pre-processing with respect to axioms
and partial equations (1.e., equalities that say that two arrays are
equal except at certain indices)

[Stump, Barrett, Dill, Levitt LICS 2001]

Issues with the common approach

 Combination of theories / procedures
* Completeness proofs

* Implementation

First 1ssue : combination

Most problems involve multiple theories:
combination of theories / procedures

Two congruence-closure based approaches:

[Nelson, Oppen ACM TOPLAS 1979] [Shostak JACM 1984 |
that generated much scholarship:

| Cyrluk, Lincoln, Shankar CADE 1996 |

| Harandi, Tinelli FroCoS 1998 |

| Kapur RTA 2000]

| Ruess, Shankar LICS 2001]

| Barrett, Dill, Stump FroCoS 2002]

| Ganzinger CADE 2002]

Second 1ssue : completeness proots

Each new decision procedure needs its own proof of soundness and
completeness:

Proofs for concrete procedures : complicated, ad hoc
| Shankar, Ruess LICS 2001]
[Stump, Barrett, Dill, Levitt LICS 2001]

Abstract frameworks : clarity, but gap wrt concrete procedures
| Bjorner PhD thesis 1998]

| Tiwar1 PhD thesis 2000]

| Bachmair, Tiwari, Vigneron JAR 2003]

| Ganzinger CADE 2002]

Third 1ssue : implementation

Implement from scratch data structures and algorithms for each
procedure 1n each context

(e.g., verification tool, proof assistant ...) :

* Correctness of implementation ?
* Flexibility ?

% SW reuse ?

Answer from a theorem-proving
perspective

* Combination of theories : give union of the
presentations in input to the prover

* Completeness proofs : use those given for known
inference systems, no need of ad hoc proofs for
each procedure

* Implementation : reuse code of existing provers

Termination ?

C =<1, P>: theorem-proving strategy

I : refutationally complete inference system with superposition/
paramodulation, (equational) factoring, simplification, subsumption ...
P : fair search plan

1s a semi-decision procedure :

T : presentation of the theory (e.g., theory of arrays)
G : set of clauses (set of ground literals 1s a subcase)

Yesift TUG
/ unsatisfiable

?

TUG

Termination results

T : theory of arrays, lists, sets and combinations thereof
G : conjunction of ground literals

C =<1, P>: theorem-proving strategy

Pre-processor

(flattening) .

G—»

/ sat

unsat

T
[Armando, Ranise, Rusinowitch CSL 2001]

Generalization : C can be a set of arbitrary quantifier-free formulae
[Ranise UNIF 2002]

Another way to put it

T /sat

G unsat

Pure equational : T* canonical rewrite system
Horn equational : T* saturated ground preserving
| Kounalis, Rusinowitch JSC 1991]

FOL special theories : e.g., T =T* for arrays

[Armando, Ranise, Rusinowitch IC 2003]

Theory of arrays : the signature

store : ARRAYXINDEX X ELEMENT —— > ARRAY

select : ARRAYXINDEX — > ELEMENT

The presentation (T,)

(1) Y A,I,E. select(store(A,I,E),I)=E
(2) YA,I,J,E.I1#J=select(store(A,I,E),J)=select(A,J)

(3) Extensionality :
YA, B.(VI.select(A,I)=select(B,I))=A=B

Pre-processing extensionality

select (A, sk (A, B))#select (B, sk(A,B))VA=B

t#t'’

\

select (t,sk(t,t'))#select (t',sk(t,t'))

Proof of termination

Inference system : ordering-based

Expansion rules include superposition/paramodulation, reflection,
equational factoring

Contraction rules include simplification and subsumption

Ordering : built out of precedence

store > select >a>e>1
for all constants a of sort ARRAY, e of sort ELEMENT and 1 of sort INDEX

Pre-processing: wrt extensionality + flattening

Proof : case analysis showing only finitely many clauses can be generated

Another presentation (T,)

Keep (1) and (2) and replace extensionality (3) by :
(4) Y A,I.store(A,I,select(A,I))=A
(5) Y A,I,E, F.store(store(A,I,E)I,F)=store(A,I,F)

6) VYA I.J E.I#]=
store (store(A,I,E),J, F)=store(store(A,J,F),I,E)

T, entails (4) (5) (6)

Usage of presentations

T, 1s saturated and application of C to T1 and G is guaranteed

to terminate : C acts as a decision procedure

T, 1s not saturated (saturation does not halt) :

C applied to T, and G acts as semi-decision procedure

How about efficiency ?

A satisfiability procedure with T built into a congruence closure algorithm
1s expected to be always much faster than a superposition-based theorem
prover with T in input!

Totally obvious ? Or worth investigating ?
* Synthetic benchmarks (allow one to assess scalability)
* Comparison : E prover and CVC validity checker (arrays built-in)

Three synthetic benchmarks

Storecomm(n) : Storing elements at distinct indices in an array
1s “‘commutative”

Swap(n) : Swapping the element at index 1 with the one at index j
gives the same result as swapping the element at index j with the
one at index 1 (generalized to n swap operations)

Storeinv(n) : If arrays A and B are equal after swapping elements
of A with corresponding elements of B, A and B must have been
equal to begin with.

Storecomm(n) : 1ntuition

The instance forn=2:
1, F#1,=

store (store (a,i,,e,),i,,e,)=store(store(a,i,,e,),i,,e,)

The relative order of store operations i1s immaterial.

Storecomm(n,p,q) : definition

n >0

P, q : permutations of { 1, ...n }

D : set of 2-combinations over { 1, ... n }
Storecomm(n,p,q) 1s the formula

N i#i, = (T,(p)=T,(q))
(I, m)eD

T.(p) = aif k=0
T.(p) = store(T,_(p),i, e, if 1<k<n

Storecomm(n) : definition

Let q be the identity permutation

Storecomm(n,p) = Storecomm(n, p, ¢)

Storecomm(n) = { Storecomm(n,p) :
p 1s a permutation of {1, ... n} }

Storecommy(n) 1s a set of n! problems.

Two very recent results

Using the case analysis of the prootf of termination we proved
that for Storecomm(n)
* Equational Factoring and

* Paramodulation into negative unit clauses

can be disabled without losing refutational completeness.

Swap(n) : 1intuition
The 1nstance forn=12:
swap (swap (a,i,i,),i,,i,) = swap(swap(a,i,,i,),i,,i,)

where
swap(a,i, j)

stands for

store (store (a, i, select (a, j)), j, select (a,i))

Swap(n, ¢, C,, p, q) : definition

€1 Cy: subsets of {1, ... n}
p, q : functions p,q: {1,..n} —= {1, ..n}

Swap(n, ¢, ¢,, p, q) 1s the equation

where
T.(c.,p.q)
Tk(c’p’Q)

T.(c.p,q)

T, (c,,p.q) =T,/ c,,p.q)

a if k=0
swap (T, _\(c,p,q),i, i) If 1<k<n A ké&c

swap(T,_,(c,p,q),i ;i) I 1<k<n A ké&c

Swap(n) : definition

Swap(n) = { Swap(n, ¢, ¢,, p, q) :
C{, C,subsets of {1, ...n}
p, q functions from {1, ... n} to {1, ...n} }

Thus Swap(n) is a set of 2°"n°" problems.

Storemnv(n) : 1ntuition

Case where a single index 1s involved :

store (a,i,select (b,i)) = store(b,i,select(a,i)) = a=b

Storemnv(n) : definition

n=>0

Storeinv(n) = [multiswap (a,b,n) = a=b

where
multiswap (a,b, k) = (a=b) if k=0

multiswap (a,b, k) =
store(a',i,,select(b',i,)) = store(b',i,,select(a’',i,)) if k=1

with (a'=b') = multiswap(a,b,k—1)

Experiments

Two tools : CVC validity checker and E theorem prover
E : auto mode and user-selected strategy

Comparison of asymptotic behavior of E and CVC as n grows

The CVC validity checker

[Aaron Stump, David L. Dill et al. at Stanford University]
[Aaron Stump at the Washington University in St. Louis]

Combines procedures a la Nelson-Oppen
(e.g., lists, arrays, records, real arithmetic ...)

Incorporates SA'T solver for case analysis (first GRASP then Chatft)

Theory of arrays : congruence closure based algorithm with pre-processing
with respect to axioms and partial equations (i.e., equalities that say that

two arrays are equal except at certain indices)
[Stump, Barrett, Dill, Levitt LICS 2001]

Why CVC ?

We compare with CVC because it 1s the only system we are aware of
that implements a complete decision procedure for the theory of arrays
with extensionality:

neither ICS [Harald Ruess, personal communication, April 2003]
nor Simplify [Detlefs, Nelson, Saxe, TR HP Labs, 2003]
are complete for this theory.

The E theorem prover
[Stephan Schulz, TU-Miinchen, RISC Linz, IRST Trento |

Inference system I : ordering-based

Expansion rules include superposition/paramodulation, reflection,
equational factoring

Contraction rules include simplification and subsumption

Search plans P : given-clause loop

* Only already-selected list kept inter-reduced
* Clause selection functions

* Term orderings : KBO, LPO

#* Literal selection functions

Performance on Storecomm(n)

E-auto : automatic mode

E-manual : user-selected strategy with

Clause selection : (PreferGround, RefinedWeight)

Term ordering : KBO (all benchmarks, also in auto mode)
Precedence : store > select > constants

E takes presentation T, in input

n ranges from 10 to 60
Performance (in sec) is the median over 5 random samples
for each value of n

3.5

| | | 1 1 |
eprover81(manual) on variant(storecomm,t1,strict) ——
eprover81(auto) on variant(storecomm,t1,strict) ---x---
cvc(chaff) on variant(storecomm,t1,strict) ---%---
cvc(auto) on variant(storecomm,t1,strict) -5

Tuning the prover I

The next slide shows the effect of disabling equational factoring.

2.5] T T T T T ! T T *
eprover81(nofactman) on variant(storecomm,t1,strict) ——
eprover81(nofactauto) on variant(storecomm,t1,strict) ---»---

cve(chaff) on variant(storecomm,t1,strict) ---%---

cvc(auto) on variant(storecomm,ti,strict) & S

Tuning the prover 11

The next slide shows the effect of disabling also paramodulation
into negative unit clauses and contraction of the given clause
upon 1ts selection (never used).

| 1 | 1 | | | |
eprover81(final) on variant(storecomm,t1,strict) ——
cvc(auto) on variant(storecomm,t1,strict) ---»--- 1

Performance on Swap(n)

E-auto 1s sufficient

The reported performance (in sec) is the median over 5 random
samples for each value of n

Next two slides :
x Performance with presentation T,

x Performance with presentation T,

450

| eprover81(nofalctauto) on varian’:(swap,ﬁ ,strict) ——
eprover81(auto) on variant(swap,t1,strict) ---x---
400 - cvc(auto) on variant(swap,t1,strict) ---%---
350
300
250
200
150
100 |
50 |
0 % 3 ¥
2 3 4

25

20

15 |

10

| | |
eprover81(nofactauto) on variant(swap,t2,strict)y —+—
eprover81(auto) on variant(swap,t2,strict) ---x---
cvc(auto) on variant(swap,t2,strict) ---*---

Performance on Storeinv(n)

E-auto 1s sufficient.

Performance (in sec) 1s absolute, because Storeinv(n)
contains only one problem: no sampling.

Next two slides :
* Performance with presentation T,

* Performance with presentation T,

| 1 |
eprover81(nofactauto) on variant(storeinv,#‘l ,strict) ——

|
eprover81(auto) on variant(storeinv,t1,strict) ---
cvc(auto) on variant(storeinv,ti,strict)

200
180 |
160 |
140 |
120 |
100 |
80
60 |
40 -
20 -
% x
3

70

| elprover81(nc'>factauto) or'1 variant(stc;reinv,t2,stri::t) —
eprover81(auto) on variant(storeinv,i2,strict) ---x---
cvc(auto) on variant(storeinv,t2,strict) ---*---
60 - -
50 -
40 - -
30 -
20 - ! -
*
10 ' -
........ "
0 * - * % Hmarenmezzns . Sl = 1 -
1 2 3 4 5 6 7 8 10

Discussion of the experiments

* Against expectations, the general-purpose
theorem prover 1s competitive with the specialized
decision procedure.

* Nevertheless, we do not advocate using the
theorem prover (too unwieldy) but carving better
decision procedures out of the inference rules,
search plans (and code!) of theorem provers (e.g.,
disabling equational factoring).

Continuing this work

* Try satisfiable inputs
* Try non-synthetic problems

* Automate the decision of disabling equational
factoring

e Understand why Storeinv(n) 1s so easy for T,

* Beyond arrays : other theories, combinations of
theories

Related work

Proof of correctness of a basic Unix-style file system implementation

Proof checker (Athena) which integrates two paramodulation-based
provers similar to E :

Vampire [Voronkov, Riazanov, U. Manchester| and

SPASS [Weidenbach et al., MPI Saarbriicken]

used for non-inductive reasoning about lists, arrays, etc., on the basis
of their first-order axiomatizations

Full correctness proof (simulation relation between specification and
implementation) needs (some) general-purpose deduction.

[Konstantine Arkoudas, Karen Zee, Viktor Kuncak and Martin Rinard
MIT CSAIL TR 946, 2004]

From satisfiability procedures to
decision procedures

Turn arbitrary quantifier-free formula F into DNF and use satisfiability
procedure : not effective.

Use superposition-based inference system (termination proof extends
from ground literals to ground clauses for arrays etc.) : not tested.

Integrate satisfiability procedure(s) with SAT solver to exploit its
unmatched strength on the boolean structure of the formula.

Integration with SAT solver

Abstraction + iteration, e.g.:

Armando et al. ECP 1999 : TSAT] (temporal reasoning)
'Audemard et al. CADE 2002 : Math SAT]| (mathematics)
Barrettetal. CAV 2002 : CVC] (no quantifiers)

de Moura et al. CADE 2002 : ICS]| (no quantifiers)

Deharbe, Ranise SEFM 2003 : haRVey | (with quantifiers) (*)

Pre-processor

abs(F)

SAT solver

assertions
-

s

conflict
-
clauses

sat unsat

Plug-in a superposition-based procedure for the theory (*)

From decision procedures to program
analysis

What is program analysis ?

Approaches to software quality:
= Process-based (historically dominant)
= Evidence-based (current trend, especially for safety)

Evidence-based methodologies:
- (historically dominant)
= Program analysis

Program analysis : all techniques (mostly semi-automated) to determine
whether a program satisfies given properties (e.g., absence of certain bugs).

Program analysis

Although program analyzers do exists (e.g., the products by AbsInt
or PolySpace), program analysis 1s very difficult in general.

Typical issues:

* Program class (e.g., no complex structures, no threads)

* Language class (e.g., no OOP)

* Too many false positives (say there's a bug and there 1s not)

Technologies for program analysis

* Annotations with pre- and post-conditions
e Modelling languages (e.g., UML, JIML, Alloy)

e Static analysis: controltlow analysis, datatlow
analysis, shape analysis

* Integration of CASE tools with interactive
theorem provers (e.g., Coq, Isabelle, PVS) or
automated but heuristic provers (e.g., Simplify)

Complementarities

For example, take again file systems:

Alloy (specification language with its model finder) has been used to check
structural properties of file systems for debugging, but 1s not meant to
show full functional correctness as in the more theorem-proving oriented

approach of Athena with Spass or Vampire.

Common 1ssue: more automation

Contrast with hardware analysis by model checking.

Fundamental difference :
* Modelling hardware circuits : finite state systems
* Modelling software systems : requires infinite domains

Software model checking : model checking + theorem proving
as 1n the abstract-check-refine paradigm

Abstract-check-refine paradigm

Build abstraction B of program P (e.g., boolean program, linear program)
Check B (model checking) :
if success (1.e., no bug), exit (P also bug free)
if failure, see if error trace in Bis alsoin P :
if yes, bug found in P
else Refine B (theorem proving) and repeat.

Ball, Rggamani SPIN 2000 Bepop]

Ball, Rajamani SPIN 2001 SLAM] (linear programs)

‘Henzinger et al. POPL 2002 BLAST] (non-recursive C programs)
'Armando et al. TR DIST UniGE 2004 eureka]| (linear programs with
external ground decision procedure for linear arithmetic + ICS)

Open 1ssues

Theorem proving used in current approaches to SW model checking is
* either generic (no specialized decision procedures)
* or iIncomplete (false positives), even unsound (false negatives)

* or not fully automated.

Other issues:
* Expressivity (check what you intend)
* Flexibility (sufficient theory support)

* Feed-back (e.g., counter-models for non-valid properties)

Discussion

Fully automated program analyzers capable of handling programs with
= Rich data structures
= General loops

= Tight interplay between data and control
call for

= Integration of existing technologies/systems (CASE, ATP, SAT, AMB ...)

= Combination of expertises (modelling, reasoning ...)

Joint work with

Alessandro Armando
(DIST, Universita” degh Studi di Genova)

Stefano Ferrari
(my student at the Universita” degli Studi di Verona)

Silvio Ranise
(INRIA Lorraine, Nancy)

Supported in part by MIUR PRIN project no. 2003-097383

