
KeY WS, June 2004 1

First-order Mu-Calculus as a
Framework for Program Verification

Mads Dam
SICS and KTH/IMIT

With contributions by Lars-åke Fredlund, Dilian
Gurov, Christoph Sprenger, Gennady Chugunov

KeY WS, June 2004 2

Background
Experiment on

– source level
– theorem proving
– for distributed applications

Source language: Mainly Erlang

Executed at FDT lab, SICS, 1995-2003+

Approach, experiences, and lessons

KeY WS, June 2004 3

Theorem Proving – Why?

The are many interesting distributed programs to verify
– dynamic process structures
– client-server applications
– migrating processes

against many interesting properties
– temporal properties
– functional properties
– as yet undetermined mixes

There is no decidable framework that will allow this

So we need to resort to theorem proving

KeY WS, June 2004 4

Is Theorem Proving Easier Than Model
Checking?

By using intelligence in proof search, can we bypass the
combinatorial difficulties in model checking?

Yes:
We are not forced to brute force state exploration when an

intelligent choice of invariant will do

No:
The combinatorial explosion of parallellism is for real
Must tackle, e.g., true concurrency style diamond properties

Handling the combinatorial complexity along with
interaction is the fundamental difficulty!

KeY WS, June 2004 5

The Setting

Need a framework with at least:
– First-order logic to talk about elements, process

identifiers, stores, states, etc
– Induction and coinduction to define data structures,

transition relations, and interesting program properties

Our proposal:
First-order logic + induction + coinduction

= first-order mu-calculus

KeY WS, June 2004 6

Mu-Calculus
Kleene -Tarski fixed point theorem:
Every monotone function f on a complete lattice has a

complete lattice of fixed points

µx.f(x): least fixed point of f
νx.f(x): greatest fixed point of f

µ0x.f(x) = ; ν0x.f(x) = “all”
µκ+1x.f(x) = f(µκx.f(x) νκ+1x.f(x) = f(νκ x.f(x))
µλx.f(x) = Uκ<λµκx.f(x) νλ x.f(x) = Iκ<λνκ x.f(x)
Then:
µx.f(x) = Uκµκx.f(x) ν x.f(x) = Iκνκ x.f(x)

KeY WS, June 2004 7

Examples
f = λx.8 y. TransRel(x,y) ! f(y)
• µx.f(x) = AF”terminated”
• νx.f(x) = true

f = λx. good(x) Ç 9y. TransRel(x,y) Æ f(y)
• µx.f(x): EFgood
• νx.f(x): EFgood Ç EGEXtrue

KeY WS, June 2004 8

How to Embed Your Favourite Logic

• Data types:
Nat = µX(n). n=0 Ç 9n1.n=n1+1 ...

• Language:
Prog = µX(p). p=skip Ç 9p1,p2. ...

• States:
State(s) = (9p,t. Prog(p) Æ Store(t) Æ s = (p,t)) Ç ...

• Embeddings of operational semantics:
TransRel =

µX(s1,s2).(9t.Store(t) Æ s1 = (skip,t) Æ s2 = t) Ç ...
• Embedding of logic:

{φ}p{ψ} = 8s. State(s) Æ φ(s) ! (νX(s). (Terminal(s) Æ ψ(s)) Ç (9
sn. TransRel(s,sn) Æ X(sn)))(s)

KeY WS, June 2004 9

Proof System

Key innovation: Mechanism for lazy handling of induction

Main components:

• Gentzen-type proof system for FOMuC

• Explicit ordinal approximations

• Loop discharge mechanism

KeY WS, June 2004 10

Sequent Calculus for FOMuC
Sample goal:

) AFgood(p k q)

(p and q are message-passing processes)

Obs: Modularity for free!

No free lunch: Need a proof system + know how to use
it!

) AFgood(p k q)
) subspec(p)

subspec(x)) AFgood(x k q)
subspec(p)) AFgood(p k q)

KeY WS, June 2004 11

Results
Theorem-proving basics:

– Ordinal approximations, soundness and completeness of
discharge (Dam, Gurov, Sprenger)

Language embedding framework:
– General, compositional verification (Simpson-95,Dam-

95,Fredlund-01)
– Instantiations – CCS, Erlang, pi-calculus, JavaCard (Papers

by Dam, Fredlund, Gurov, Chugunov a.o.)
– Completeness for context-free + pushdown cases (Simpson-

Schoepp)
Case studies

– Erlang (Arts-Dam), JavaCard (Huisman-Gurov-Barthe)
Tools

– www.sics.se/fdt/vericode (Fredlund)

KeY WS, June 2004 12

Issues

I. Theorem-proving framework
II. Programming language embeddings
III.Logic and proof system embeddings
IV. Case studies
V. Tool support
VI. Related work

KeY WS, June 2004 13

I. Theorem-Proving Framework
Motivation: Tableau-based model checking
Let P = a.P + b.P

Induction principle: Induction on derivation length
Works for finite state processes

P:AG(<a>true /\ true)*

P:<a>true /\ true /\ [a]AG(<a>true /\ true) /\ ...
P:[a]AG(<a>true /\ true)

[P:AG(<a>true /\ true)]*

...... ...

KeY WS, June 2004 14

”Counter-example”
Let’s try to do the same for an infinite state process!
Let P = up.(down|P)

Can we rescue the set-up?

P:AG[up]<down>
down|P:AG[up]<down>P:[up]<down>

...
down2|P:AG[up]<down>

... 0|P:AG[up]<down>)

KeY WS, June 2004 15

Use a Cut!
Recall P = up.(down|P)
Let F = AG[up]<down>

(= νX.[up]<down> Æ [down]X Æ [up]X)

P:F +

down|P:F...
[P:F] +

[x:F ⇒ down|x:F] * x:F ⇒ 0|x:F Another induction...

x:F ⇒ down|x:[up]<down>

x:F ⇒ down|x:F *

x:F ⇒ down|x:[down]F ...
...

x:F,x:[down]F ⇒ down|x:[down]F

KeY WS, June 2004 16

How to Make This Work?

1. Use mu-calculus
2. How to handle fixed points?

– Alternating fixed points problematic
– As for model checking (⇒ P:F)
– Here also direct interference (coming up)
– Sol’n 1: Terrible mess (Dam’95)
– Sol’n 2: Explicit ordinal approximants (DG’00)

3. How to embed the operational semantics?
– Need rules to reflect local behaviour of process

connectives
– Sol’n 1: Sort of ad-hoc (Dam’95)
– Sol’n 2: Use transition relation embedding (Simpson’95)
– Sol’n 3: Use 1st-order mu-calculus (Fredlund’01)

KeY WS, June 2004 17

How to Do Induction, 1?
Option 1: Fixed point induction a la LCF:

Difficult to use in practice
Doesn’t fit well with the Gentzen-type framework

F[µx.F/x] ⇒ µx.F
-

µx.F ⇒ G
F[G/x] ⇒ G

KeY WS, June 2004 18

Option 2: Unique naming (Stirling),
tagging (Winskel)

Excellent for model checking
Doesn’t fit well with the Gentzen-type framework

How to Do Induction, 2?

⇒ P:F[νx.{P}UA.F/x]
⇒ P: νx.A.F

-
⇒ P: νx.{P}UA.F

KeY WS, June 2004 19

Schematically
Let F = µX1.νX2.<a>X2 /\ X1

G = µY1.νY2.<a>Y1 /\ Y2

Discharge not sound!
(Not easy to handle using constants or tagging)

α’<α,β’<β ⇒ <a>X2(α’)/\X1, <a>Y1/\Y2(β’)
⇒ X2(α),Y2(β) *

Fixed Point Interference

⇒ X1,Y1

α’<α ⇒ X2(α’), Y1 β’<β ⇒ X1,Y2(β’)
[α’<α ⇒ X2(α’), Y2(β’’)]* [β’<β ⇒ X2(α’’), Y2(β’)]*

KeY WS, June 2004 20

Option 3: Well-founded induction
Use Kleene-Tarski through:

+ Kleene-Tarski = the canonical proof method for mu-
calculus

- Use of explicit ordinal arithmetic
- ”Eager” solution to interference problem

How to Do Induction, 3?

Γ, ∀k’<k.F[k’/k] ⇒ F, ∆
Γ ⇒ ∀k.F, ∆

KeY WS, June 2004 21

Option 4: Lazy induction (here)

Unfolding +
Global check of interference freedom

+ Lazy handling of interference
- Use of explicit ordinal arithmetic
- Global check can be problematic

How to Do Induction, 4?

KeY WS, June 2004 22

Mu-Calculus With Explicit Ordinal
Approximations*

Syntax: FOL + (approximated) fixed points
F ::= FOL formula | FX(t)

FX ::= X | µX(y).F | µkX(y).F
Remarks:

– t term
– Individual, predicate, ordinal variables
– Both X and y bound in µX(y).F and µkX(y).F
– Usual syntactic monotonicity condition applies
– No ordinal arithmetic

KeY WS, June 2004 23

Semantics

Model M = (A,e)
– A first-order structure
– e valuation

Let H = λP.λa.||F||e[P/X][a/y]

Then
– || µX(y).F ||e = µH
– || µkX(y).F ||e = µe(k)H

Proposition:
– µH = supα µαH
– µαH = supβ<αH(µβH)

KeY WS, June 2004 24

Sequents, Validity

Sequents:
Γ ⇒O ∆

where O finite partial order on ordinal variables

Validity: Γ ⇒O ∆ valid, if
∧Γ ⇒O ∨∆

true in all models that respect O:
• whenever k <O k’ then e(k) < e(k’)

KeY WS, June 2004 25

Local Proof Rules

4 basic rules + symmetric version for ν if needed

Γ, (µkX(y).F)(t) ⇒O’ ∆
Γ, (µX(y).F)(t) ⇒O ∆

µ-L

Γ ⇒O ∆, F[(µX(y).F)/X,t/y]
Γ ⇒O ∆, (µX(y).F)(t)

µ-R

O’ = OU{k}

Γ, F[µk’X(y).F/X,t/y] ⇒O’ ∆
Γ, (µkX(y).F)(t) ⇒O ∆

µk-L O’ = OU{k’<k}

Γ ⇒O ∆, F[(µk’X(y).F)/X,t/y]
Γ ⇒O ∆, (µkX(y).F)(t)

µk-R (k’ <O k)

KeY WS, June 2004 26

Derivation Trees and Pre-Proofs

Derivation tree D = (N,E,L) sequent-labelled
Repeat:

Condition:
• ∃substition σ . Γσ ⊆ Γ ’, ∆σ ⊆ ∆’, Oσ ⊆ O’
• N is called repeat node, M is companion

Pre-proof graph:
• Each leaf is a repeat, add back edges

M: Γ ⇒O ∆

N: Γ’ ⇒O’ ∆’

...

Leaf

σ

KeY WS, June 2004 27

Runs –Semantic Discharge

Run of pre-proof: Rooted path of pre-proof, labelled by
valuations:

Π = (N0,e0) ... (Ni,ei) ...

Labels: ei respects Oi

Tree edges: (Ni,Ni+1) ∈ E implies that ei+1 agrees with ei
on variables common to N i and Ni+1

Repeat: (Ni+1,Ni,σ) repeat implies ei+1 = ei • σ

KeY WS, June 2004 28

Semantic Discharge, II

Proof: Pre-proof for which all runs are finite
• Proof = pre-proof + well-foundedness
• Reference discharge condition to which others are compared

Theorem:
If there is a proof of Γ ⇒O ∆ then Γ ⇒O ∆ is valid

KeY WS, June 2004 29

Syntactic Discharge

Trace: Rooted path of pre-proof, labelled by ordinal
constraints:

Π = (N0,(k0,k0’)) ... (Ni,(ki,ki’)) ...

Labels: ki’ ≤Oi ki

Tree edges: (Ni,Ni+1)∈E implies k i’ = ki+1

Repeat: (Ni+1,Ni,σ) repeat implies k i’= σ(ki+1)

KeY WS, June 2004 30

Syntactic Discharge, 2

Example:

Corresponding trace fragment:
(N0,(k0,k1)) (N1,(k2,k3)) (N2,(k3,k4)) (N3,(k4,k4)) (N4,(k5,k5))

repeat companion repeat companion

k0
k1

k2
k3

k2
k3
k4

k2
k3
k4

k5
k6

σ1 σ2

KeY WS, June 2004 31

Syntactic Discharge, 3
Progress:

Trace: Progress at i: k i’ <Oi ki

Progressive – progresses i.o.
Path: Exists progressive trace along suffix

Syntactical discharge condition:
All infinite paths of pre-proof graph are progressive

Theorem:
Syntactic and semantic discharge are equivalent

KeY WS, June 2004 32

Normal Traces

Observation: Any trace can be converted into normal
trace

Only progress at repeats:

(N0,(k0,k1)) (N1,(k2,k2)) (N2,(k2,k2)) (N3,(k2,k4)) (N4,(k5,k5))
repeat companion repeat companion

k0
k1

k2
k3

k2
k3
k4

k2
k3
k4

k5
k6

σ1 σ2

KeY WS, June 2004 33

Automata-Theoretic Discharge

Construct two Buchi automata B1 and B2 over repeats:
• B1 recognises traversed sequences of repeats
• B2 recognises repeats potentially connected through a normal

trace

Automata-theoretic discharge condition:
L(B1) ⊆ L(B2)

KeY WS, June 2004 34

Automata-Theoretic Discharge, 2

Automaton B2:
States {(k1,R,k2)| R = (M,N,σ), σ(k2) ≤ON k1}
Accepting {{(k1,R,k2)| σ(k2) <ON k1}
Transitions (k1,R,k2) -> (k2,R’,k3)

Example:

k0
k1

k2
k3

k2
k3
k4

k2
k3
k4

k5
k6

σ1 σ2

KeY WS, June 2004 35

Discharge, Results

Theorem:
The semantic, syntactic, and automata-theoretic

discharge conditions are equivalent

The automata-theoretic DC can be checked in time
2O(n3log n) where n is number of nodes

Subsumes earlier Rabin-like conditions by Schöpp-
Simpson and DFG+DG
• Obtained by restricting B2 to (k,R,k)
• Complexity drops to 2O(n2log n)

• Are these conditions complete?

KeY WS, June 2004 36

Related Work

Sprenger-Dam, ESOP’03:

Equivalence of well-founded (local) and lazy (global)
induction

By explicit proof conversion

KeY WS, June 2004 37

II. Programming Language
Embeddings

Example: CCS

P ::= 0 | a.P | P + P | P|P

TransRel = µX(p,a,q).(p=a.q) \/
(∃p1,p2.p=p1+p2 /\ TransRel(p1,a,q)) \/
(∃p1,p2.p=p1+p2 /\ TransRel(p2,a,q)) \/
(∃p1,p2,q1,q2.p=p1|p2 /\ q=q1|p2 /\
TransRel(p1,q1)) \/ (...symmetric case))

Stick to merge || for
simplicity

KeY WS, June 2004 38

Embedding HML

Define
p:<a>F = (<a>F)(p) = ∃q.TransRel(p,a,q) /\ F(q)
p:[a]F = ([a]F)(p) = ∀q. TransRel(p,a,q) ⇒ F(q)

Can derive:

Γ ⇒O TransRel(p,a,q),F(q),∆
Γ ⇒O p:<a>F,∆

Γ, TransRel(p,a,x), F(x) ⇒O ∆
Γ, p:<a>F ⇒O ∆

X fresh

KeY WS, June 2004 39

Simpson’s Embedding

Can derive also:

Γ ⇒O TransRel(p1,a,q1),∆
Γ ⇒O TransRel(p1|p2,a,q1|p2),∆

Γ[y|p2/x],TransRel(p1,a,y) ⇒O ∆[y|p2/x]
Γ,TransRel(p1|p2,a,x) ⇒O ∆

Γ[p1|y/x],TransRel(p2,a,y) ⇒O ∆[p1|y/x]

KeY WS, June 2004 40

Compositional Proof Rules
Can derive also compositional rules in style of Dam,

Stirling, Winskel:

Γ ⇒O p1:<a>F’,∆

Γ ⇒O p1|p2: <a>F,∆
Γ,x:F’ ⇒O x|p2:F,∆

Γ ⇒O p1:[a]F1,∆

Γ ⇒O p1|p2: [a]F,∆

Γ,x:F1 ⇒O x|p2:F,∆
Γ ⇒O p2:[a]F2,∆

Γ,y:F2 ⇒O p1|y:F,∆

KeY WS, June 2004 41

III Logic and Proof System
Embeddings

• Temporal logic, finite state model checking
• Context-free and pushdown processes (Schöpp-

Simpson)
• Hoare logic, compositional Owicki-Gries
• Pi-calculus
• ...

KeY WS, June 2004 42

IV Case Studies

Main exercise so far:
• EVT (now VeriCode, VCPT) – Erlang Verification Tool
• 1996-2001+
• Developed everything: Framework, Erlang semantics,

algorithms, proof system, tactics, case studies,
documentation,...

• Main focus on dynamic process networks
• Arts-Dam: Part of distributed database lookup manager
• Fredlund-Dam: Billing agent
• Noll-Arts: Generic server

KeY WS, June 2004 43

Erlang

• Functionally flavoured programming language for
concurrent and distributed applications, developed
at Ericsson Computer Science Lab

• Actor-like, first-order, call-by-value
• Asynchronous buffered message passing
• Dynamic process creation
• Error detection and recovery – within a process -

between processes
• Other features, modules, distribution, interfacing to

non-Erlang code, hot module replacement - not yet
considered

• In production use (AXD, Engine)

KeY WS, June 2004 44

Example 1 – Simple 2-Process System
sys ->
Pid = self(),
spawn(analyzer,[Pid,K,L]),
receive
{ok,B} -> ... ;
error -> ... ;
after 12 -> ...

end.

analyzer(From,N,M) ->
case analyse(N,M) of
ok -> From!{ok,leq(N,M)} ;
_ -> From!error

end.

KeY WS, June 2004 45

Example 2 – RPC
server ->
receive
{Client,{apply,F,Args}} ->

spawn(reply,[Client,F,Args]), server

reply(Client,F,Args) ->
Client!(apply(F,Args))

Obs: Dynamic process creation!

server @ P1 -> ...
server @ P1 || P2!(apply(f,args)) @ P3 -> ...
server @ P1 || P2!(apply(f,args)) @ P3

|| P4!(apply ...) @ P5 -> ...

KeY WS, June 2004 46

Erlang Operational Semantics
Sequential process state: <E, P,Q>
• E: Erlang term under elaboration
• P: Process identifier (pid)
• Q: P's mailbox/input queue

Process configurations: C ::= {E,P,Q} | C || C

Transition rule flavour:
<E_1,P,Q> =alpha=> <E_1’,P’,Q’>

<(E_1,E_2),P,Q> =alpha=> <(E_1',E_2),P',Q'>

<E,P,Q> =spawn(f,A,P'')=> <E',P',Q'>
{E,P,Q} =tau=> {P'',P',Q'} || {f A,P'',empty}

KeY WS, June 2004 47

Specification Logic
Types (terms, pids, queues, states, configurations)

FOMuC with a number of (now) defined predicates:
• value(pid) = t
• unevaluated(t)
• queue(t1) = t2
• local(t)
• ... others ...

KeY WS, June 2004 48

Specification Logic - Example
nat(T) <= T=0 \/ exists X.T=X+1 /\ nat(X) ;
ground(T) = nat(T) \/ tuple(T) \/ ... ;
groundterm(Pid) = exists X.value(Pid)=X /\ ground(X) ;

terminating(Pid) <=
groundterm(Pid) \/
((<>true \/ exists X,Y.<X!Y>true) /\
[]terminating(Pid) /\
forall X,Y.[X!Y]terminating(Pid) /\
forall X,Y.[X?Y]sort_of_terminating(Pid)) ;

sort_of_terminating(Pid) =>
terminating(Pid) /\
forall X,Y.[X?Y]sort_of_terminating(Pid) ;

KeY WS, June 2004 49

Specification of server
Property of

{server,p1,eps}:

Suppose {p2,{apply,f,v}}
is received by p1

Suppose p1=/=p2

If {f v,p,q}:quiet /\
terminating(p) for all p
and q

Then eventually(exists
v'.<p2!v'>true)

In other words:

serverspec(P1) =
forall P2,F,V.
[P1?{P2,{apply,F,V}}]
P1=/=P2 implies
(forall P,Q.
{F V,P,Q}: quiet /\
terminating(P))

implies
eventually(exists
V'.<P2!V'>true)

KeY WS, June 2004 50

Proof of server
Outline:

|- {server,P1,eps}:serverspec(P1)
⇑

P2=/=P1,forall P,Q.{F V,P,Q}:quiet/\terminating(P)
|- {P2!(F V),P,empty}||{server,P1,empty} :

eventually(exists V'.<P2!V'>true
⇑

P2=/=P1,forall P,Q.{X,P,Q}:quiet/\terminating(P)
|- {P2!X,P,empty}||{server,P1,empty} :

eventually(...)
⇑ (by 2 process cuts)

KeY WS, June 2004 51

Proof cont’d
forall P,Q.{X,P,Q}:quiet/\terminating(P)

|- {P2!X,P,empty} : eventually ... /\
``only output to P2''

and
P2=/=P1 |- {server,P1,empty} :

``no output and only input to P1''

and
P2=/=P1,

C1:eventually ... /\ ``only output to P2'',
C2:``no output and only input to P1''

|- C1||C2 :eventually ...

KeY WS, June 2004 52

Experiences with EVT
Proof of concept – it actually works
The eternal truth of software verification:

It’s all about finding the right invariant
The eternal truths of (theorem-proving) tool building

It’s a lot of work
It’s not for beginners
With more resources we could have built a really useful tool ;-)

The eternal half-truth of mu-calculus
It is tricky
(But expressing complex properties of infinite trees is far
more so)

KeY WS, June 2004 53

V The VeriCode Tool

Features:
• Traditional interactive theorem prover EXCEPT
• Prover manipulates graphs, not tree frontiers
• Discharge + subsumption
• Tactics and tacticals as usual
• Tactic applications grow the graph
• Tactics + scripting language: SML
• Theory facility:

Input your favorite operational semantics, and presto...
• Logical variables
• URL: http://www.sics.se/fdt/projects/vericode/vcpt.html

KeY WS, June 2004 54

VI Related Work

Simpson’95: Compositionality via cut-elimination
• For HML and GSOS

Spatial logic (Caires,Cardelli, Gordon):
• Spatial connectives for structural congruence
• Modal ops for reduction/transition
• Fixed points/monadic second order quantification for

recursive properties
Earlier work on compositional verification (Stirling,

Winskel, Andersen)

