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Background
Experiment on

– source level
– theorem proving
– for distributed applications

Source language: Mainly Erlang

Executed at FDT lab, SICS, 1995-2003+

Approach, experiences, and lessons
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Theorem Proving – Why?

The are many interesting distributed programs to verify
– dynamic process structures
– client-server applications
– migrating processes

against many interesting properties
– temporal properties
– functional properties
– as yet undetermined mixes

There is no decidable framework that will allow this

So we need to resort to theorem proving
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Is Theorem Proving Easier Than Model 
Checking?

By using intelligence in proof search, can we bypass the 
combinatorial difficulties in  model checking?

Yes:
We are not forced to brute force state exploration when an 

intelligent choice of invariant will do

No:
The combinatorial explosion of parallellism is for real
Must tackle, e.g., true concurrency style diamond properties

Handling the combinatorial complexity along with 
interaction is the fundamental difficulty!
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The Setting

Need a framework with at least:
– First-order logic to talk about elements, process 

identifiers, stores, states, etc
– Induction and coinduction to define data structures, 

transition relations, and interesting program properties

Our proposal:
First-order logic + induction + coinduction

= first-order mu-calculus
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Mu-Calculus
Kleene -Tarski fixed point theorem:
Every monotone function f on a complete lattice has a 

complete lattice of fixed points

µx.f(x): least fixed point of f
νx.f(x): greatest fixed point of f

µ0x.f(x) = ; ν0x.f(x) = “all”
µκ+1x.f(x) = f(µκx.f(x)            νκ+1x.f(x) = f(νκ x.f(x))
µλx.f(x) = Uκ<λµκx.f(x)            νλ x.f(x) = Iκ<λνκ x.f(x)
Then: 
µx.f(x) = Uκµκx.f(x) ν x.f(x) = Iκνκ x.f(x)
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Examples
f = λx.8 y. TransRel(x,y) ! f(y)
• µx.f(x) = AF”terminated”
• νx.f(x) = true

f = λx. good(x) Ç 9y. TransRel(x,y) Æ f(y)
• µx.f(x): EFgood
• νx.f(x): EFgood Ç EGEXtrue
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How to Embed Your Favourite Logic

• Data types: 
Nat = µX(n). n=0 Ç 9n1.n=n1+1 ...

• Language: 
Prog = µX(p). p=skip Ç 9p1,p2. ...

• States: 
State(s) = (9p,t. Prog(p) Æ Store(t) Æ s = (p,t)) Ç ...

• Embeddings of operational semantics:
TransRel = 

µX(s1,s2).(9t.Store(t) Æ s1 = (skip,t) Æ s2 = t) Ç ...
• Embedding of logic:

{φ}p{ψ} = 8s. State(s) Æ φ(s) ! (νX(s). (Terminal(s) Æ ψ(s)) Ç (9
sn. TransRel(s,sn) Æ X(sn)))(s)
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Proof System

Key innovation: Mechanism for lazy handling of induction

Main components:

• Gentzen-type proof system for FOMuC

• Explicit ordinal approximations

• Loop discharge mechanism
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Sequent Calculus for FOMuC
Sample goal:

) AFgood(p k q)

(p and q are message-passing processes)

Obs: Modularity for free!

No free lunch: Need a proof system + know how to use 
it!

) AFgood(p k q)
) subspec(p)

subspec(x) ) AFgood(x k q)
subspec(p) ) AFgood(p k q)
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Results
Theorem-proving basics:

– Ordinal approximations, soundness and completeness of 
discharge (Dam, Gurov, Sprenger)

Language embedding framework:
– General, compositional verification (Simpson-95,Dam-

95,Fredlund-01)
– Instantiations – CCS, Erlang, pi-calculus, JavaCard  (Papers 

by Dam, Fredlund, Gurov, Chugunov a.o.)
– Completeness for context-free + pushdown cases (Simpson-

Schoepp)
Case studies

– Erlang (Arts-Dam), JavaCard (Huisman-Gurov-Barthe)
Tools

– www.sics.se/fdt/vericode (Fredlund)
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Issues

I. Theorem-proving framework
II. Programming language embeddings
III.Logic and proof system embeddings
IV. Case studies
V. Tool support
VI. Related work
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I. Theorem-Proving Framework
Motivation: Tableau-based model checking
Let P = a.P + b.P

Induction principle: Induction on derivation length
Works for finite state processes

P:AG(<a>true /\ <b>true)*

P:<a>true /\ <b>true /\ [a]AG(<a>true /\ <b>true) /\ ...
P:[a]AG(<a>true /\ <b>true)

[ P:AG(<a>true /\ <b>true) ]*

...... ...
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”Counter-example”
Let’s try to do the same for an infinite state process!
Let P = up.(down|P)

Can we rescue the set-up?

P:AG[up]<down>
down|P:AG[up]<down>P:[up]<down>

...
down2|P:AG[up]<down>

... 0|P:AG[up]<down>)
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Use a Cut!
Recall P = up.(down|P)
Let F = AG[up]<down> 

(= νX.[up]<down> Æ [down]X Æ [up]X)

P:F +

down|P:F...
[ P:F ] +

[x:F ⇒ down|x:F] *       x:F ⇒ 0|x:F Another induction...

x:F ⇒ down|x:[up]<down>

x:F ⇒ down|x:F *

x:F ⇒ down|x:[down]F ...
...

x:F,x:[down]F ⇒ down|x:[down]F
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How to Make This Work?

1. Use mu-calculus
2. How to handle fixed points?

– Alternating fixed points problematic
– As for model checking (⇒ P:F) 
– Here also direct interference (coming up)
– Sol’n 1: Terrible mess (Dam’95)
– Sol’n 2: Explicit ordinal approximants (DG’00)

3. How to embed the operational semantics?
– Need rules to reflect local behaviour of process 

connectives
– Sol’n 1: Sort of ad-hoc (Dam’95)
– Sol’n 2: Use transition relation embedding (Simpson’95)
– Sol’n 3: Use 1st-order mu-calculus (Fredlund’01)
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How to Do Induction, 1?
Option 1: Fixed point induction a la LCF:

Difficult to use in practice
Doesn’t fit well with the Gentzen-type framework

F[µx.F/x] ⇒ µx.F
-

µx.F ⇒ G
F[G/x] ⇒ G
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Option 2: Unique naming (Stirling), 
tagging (Winskel)

Excellent for model checking
Doesn’t fit well with the Gentzen-type framework

How to Do Induction, 2?

⇒ P:F[νx.{P}UA.F/x]
⇒ P: νx.A.F

-
⇒ P: νx.{P}UA.F
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Schematically
Let F = µX1.νX2.<a>X2 /\ <b>X1

G = µY1.νY2.<a>Y1 /\ <b>Y2

Discharge not sound!
(Not easy to handle using constants or tagging)

α’<α,β’<β ⇒ <a>X2(α’)/\<b>X1, <a>Y1/\<b>Y2(β’)
⇒ X2(α),Y2(β) *

Fixed Point Interference

⇒ X1,Y1

α’<α ⇒ X2(α’), Y1 β’<β ⇒ X1,Y2(β’)
[α’<α ⇒ X2(α’), Y2(β’’)]* [β’<β ⇒ X2(α’’), Y2(β’)]*
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Option 3: Well-founded induction
Use Kleene-Tarski through:

+ Kleene-Tarski = the canonical proof method for mu-
calculus

- Use of explicit ordinal arithmetic
- ”Eager” solution to interference problem

How to Do Induction, 3?

Γ, ∀k’<k.F[k’/k] ⇒ F, ∆
Γ ⇒ ∀k.F, ∆
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Option 4: Lazy induction (here)

Unfolding +
Global check of interference freedom

+ Lazy handling of interference
- Use of explicit ordinal arithmetic
- Global check can be problematic

How to Do Induction, 4?
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Mu-Calculus With Explicit Ordinal 
Approximations*

Syntax: FOL + (approximated) fixed points
F ::= FOL formula | FX(t)

FX ::= X | µX(y).F | µkX(y).F
Remarks:

– t term
– Individual, predicate, ordinal variables
– Both X and y bound in µX(y).F and µkX(y).F
– Usual syntactic monotonicity condition applies
– No ordinal arithmetic
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Semantics

Model M = (A,e)
– A first-order structure
– e valuation

Let H = λP.λa.||F||e[P/X][a/y]

Then
– || µX(y).F  ||e = µH
– || µkX(y).F ||e = µe(k)H

Proposition:
– µH = supα µαH
– µαH = supβ<αH(µβH)
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Sequents, Validity

Sequents:
Γ ⇒O ∆

where O finite partial order on ordinal variables

Validity: Γ ⇒O ∆ valid, if
∧Γ ⇒O ∨∆

true in all models that respect O:
• whenever k <O k’ then e(k) < e(k’)
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Local Proof Rules

4 basic rules + symmetric version for ν if needed

Γ, (µkX(y).F)(t) ⇒O’ ∆
Γ, (µX(y).F)(t) ⇒O ∆

µ-L

Γ ⇒O ∆, F[(µX(y).F)/X,t/y] 
Γ ⇒O ∆, (µX(y).F)(t) 

µ-R

O’ = OU{k}

Γ, F[µk’X(y).F/X,t/y]  ⇒O’ ∆
Γ, (µkX(y).F)(t) ⇒O ∆

µk-L O’ = OU{k’<k}

Γ ⇒O ∆, F[(µk’X(y).F)/X,t/y] 
Γ ⇒O ∆, (µkX(y).F)(t) 

µk-R (k’ <O k)
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Derivation Trees and Pre-Proofs

Derivation tree D = (N,E,L) sequent-labelled
Repeat:

Condition:
• ∃substition σ . Γσ ⊆ Γ ’, ∆σ ⊆ ∆’, Oσ ⊆ O’
• N is called repeat node, M is companion

Pre-proof graph:
• Each leaf is a repeat, add back edges

M: Γ ⇒O ∆

N: Γ’ ⇒O’ ∆’

... ......

Leaf

σ
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Runs –Semantic Discharge

Run of pre-proof: Rooted path of pre-proof, labelled by 
valuations:

Π = (N0,e0) ... (Ni,ei) ...

Labels: ei respects Oi

Tree edges: (Ni,Ni+1) ∈ E implies that ei+1 agrees with ei
on variables common to N i and Ni+1

Repeat: (Ni+1,Ni,σ) repeat implies ei+1 = ei • σ



KeY WS, June 2004 28

Semantic Discharge,  II

Proof: Pre-proof for which all runs are finite
• Proof = pre-proof + well-foundedness
• Reference discharge condition to which others are compared

Theorem: 
If there is a proof of Γ ⇒O ∆ then Γ ⇒O ∆ is valid                                                       
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Syntactic Discharge

Trace: Rooted path of pre-proof, labelled by ordinal 
constraints:

Π = (N0,(k0,k0’)) ... (Ni,(ki,ki’)) ...

Labels: ki’ ≤Oi ki

Tree edges: (Ni,Ni+1)∈E implies k i’ = ki+1

Repeat: (Ni+1,Ni,σ) repeat implies k i’= σ(ki+1)
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Syntactic Discharge, 2

Example:

Corresponding trace fragment:
(N0,(k0,k1))  (N1,(k2,k3))  (N2,(k3,k4))  (N3,(k4,k4))  (N4,(k5,k5))

repeat      companion                         repeat      companion

k0
k1

k2
k3

k2
k3
k4

k2
k3
k4

k5
k6

σ1 σ2
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Syntactic Discharge, 3
Progress:

Trace: Progress at i: k i’ <Oi ki

Progressive – progresses i.o.
Path: Exists progressive trace along suffix

Syntactical discharge condition:
All infinite paths of pre-proof graph are progressive

Theorem:
Syntactic and semantic discharge are equivalent
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Normal Traces

Observation: Any trace can be converted into normal 
trace

Only progress at repeats:

(N0,(k0,k1))  (N1,(k2,k2))  (N2,(k2,k2))  (N3,(k2,k4))  (N4,(k5,k5))
repeat      companion                         repeat      companion

k0
k1

k2
k3

k2
k3
k4

k2
k3
k4

k5
k6

σ1 σ2
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Automata-Theoretic Discharge

Construct two Buchi automata B1 and B2 over repeats:
• B1 recognises traversed sequences of repeats
• B2 recognises repeats potentially connected through a normal 

trace

Automata-theoretic discharge condition:
L(B1) ⊆ L(B2)
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Automata-Theoretic Discharge, 2

Automaton B2:
States {(k1,R,k2)| R = (M,N,σ), σ(k2) ≤ON k1}
Accepting {{(k1,R,k2)| σ(k2) <ON k1}
Transitions (k1,R,k2) -> (k2,R’,k3)

Example:

k0
k1

k2
k3

k2
k3
k4

k2
k3
k4

k5
k6

σ1 σ2
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Discharge, Results

Theorem:
The semantic, syntactic, and automata-theoretic 

discharge conditions are equivalent

The automata-theoretic DC can be checked in time 
2O(n3log n) where n is number of nodes

Subsumes earlier Rabin-like conditions by Schöpp-
Simpson and DFG+DG
• Obtained by restricting B2 to (k,R,k)
• Complexity drops to 2O(n2log n)

• Are these conditions complete?
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Related Work

Sprenger-Dam, ESOP’03:

Equivalence of well-founded (local) and lazy (global) 
induction

By explicit proof conversion
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II. Programming Language 
Embeddings

Example: CCS

P ::= 0 | a.P | P + P | P|P

TransRel = µX(p,a,q).(p=a.q) \/ 
(∃p1,p2.p=p1+p2 /\ TransRel(p1,a,q)) \/
(∃p1,p2.p=p1+p2 /\ TransRel(p2,a,q)) \/
(∃p1,p2,q1,q2.p=p1|p2 /\ q=q1|p2 /\
TransRel(p1,q1)) \/  (...symmetric case)) 

Stick to merge || for 
simplicity
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Embedding HML

Define
p:<a>F = (<a>F)(p) = ∃q.TransRel(p,a,q) /\ F(q)
p:[a]F = ([a]F)(p) = ∀q. TransRel(p,a,q) ⇒ F(q)

Can derive:

Γ ⇒O TransRel(p,a,q),F(q),∆
Γ ⇒O p:<a>F,∆

Γ, TransRel(p,a,x), F(x) ⇒O ∆
Γ, p:<a>F ⇒O ∆

X fresh
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Simpson’s Embedding

Can derive also:

Γ ⇒O TransRel(p1,a,q1),∆
Γ ⇒O TransRel(p1|p2,a,q1|p2),∆

Γ[y|p2/x],TransRel(p1,a,y) ⇒O ∆[y|p2/x]
Γ,TransRel(p1|p2,a,x) ⇒O ∆

Γ[p1|y/x],TransRel(p2,a,y) ⇒O ∆[p1|y/x]
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Compositional Proof Rules
Can derive also compositional rules in style of Dam, 

Stirling, Winskel:

Γ ⇒O p1:<a>F’,∆

Γ ⇒O p1|p2: <a>F,∆
Γ,x:F’ ⇒O x|p2:F,∆

Γ ⇒O p1:[a]F1,∆

Γ ⇒O p1|p2: [a]F,∆

Γ,x:F1 ⇒O x|p2:F,∆
Γ ⇒O p2:[a]F2,∆

Γ,y:F2 ⇒O p1|y:F,∆
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III Logic and Proof System 
Embeddings

• Temporal logic, finite state model checking
• Context-free and pushdown processes (Schöpp-

Simpson)
• Hoare logic, compositional Owicki-Gries
• Pi-calculus
• ...
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IV Case Studies

Main exercise so far: 
• EVT (now VeriCode, VCPT) – Erlang Verification Tool
• 1996-2001+
• Developed everything: Framework, Erlang semantics, 

algorithms, proof system, tactics, case studies, 
documentation,...

• Main focus on dynamic process networks
• Arts-Dam: Part of distributed database lookup manager
• Fredlund-Dam: Billing agent
• Noll-Arts: Generic server
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Erlang

• Functionally flavoured programming language for 
concurrent and distributed applications, developed 
at Ericsson Computer Science Lab

• Actor-like, first-order, call-by-value
• Asynchronous buffered message passing
• Dynamic process creation
• Error detection and recovery – within a process -

between processes
• Other features, modules, distribution, interfacing to 

non-Erlang code, hot module replacement - not yet 
considered

• In production use (AXD, Engine)
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Example 1 – Simple 2-Process System
sys ->
Pid = self(),
spawn(analyzer,[Pid,K,L]),
receive
{ok,B} -> ... ;
error -> ... ;
after 12 -> ...

end.

analyzer(From,N,M) ->
case analyse(N,M) of
ok -> From!{ok,leq(N,M)} ;
_ -> From!error

end.
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Example 2 – RPC
server -> 
receive
{Client,{apply,F,Args}} ->

spawn(reply,[Client,F,Args]), server

reply(Client,F,Args) ->
Client!(apply(F,Args))

Obs: Dynamic process creation!

server @ P1 -> ...
server @ P1 || P2!(apply(f,args)) @ P3 -> ...
server @ P1 || P2!(apply(f,args)) @ P3

|| P4!(apply ...) @ P5 -> ...
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Erlang Operational Semantics
Sequential process state: <E, P,Q>
• E: Erlang term under elaboration
• P: Process identifier (pid)
• Q: P's mailbox/input queue

Process configurations: C ::= {E,P,Q} | C || C

Transition rule flavour:
<E_1,P,Q> =alpha=> <E_1’,P’,Q’>

<(E_1,E_2),P,Q> =alpha=> <(E_1',E_2),P',Q'>

<E,P,Q> =spawn(f,A,P'')=> <E',P',Q'>
{E,P,Q} =tau=> {P'',P',Q'} || {f A,P'',empty}



KeY WS, June 2004 47

Specification Logic
Types (terms, pids, queues, states, configurations)

FOMuC with a number of (now) defined predicates:
• value(pid) = t
• unevaluated(t)
• queue(t1) = t2
• local(t)
• ... others ...
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Specification Logic - Example
nat(T) <= T=0 \/ exists X.T=X+1 /\ nat(X) ;
ground(T) = nat(T) \/ tuple(T) \/ ... ;
groundterm(Pid) = exists X.value(Pid)=X /\ ground(X) ;

terminating(Pid) <=
groundterm(Pid) \/
((<>true \/ exists X,Y.<X!Y>true) /\
[]terminating(Pid) /\
forall X,Y.[X!Y]terminating(Pid) /\
forall X,Y.[X?Y]sort_of_terminating(Pid)) ;

sort_of_terminating(Pid) =>
terminating(Pid) /\
forall X,Y.[X?Y]sort_of_terminating(Pid) ;
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Specification of server
Property of 

{server,p1,eps}:

Suppose {p2,{apply,f,v}}
is received by p1

Suppose p1=/=p2

If {f v,p,q}:quiet /\
terminating(p) for all p
and q

Then eventually(exists 
v'.<p2!v'>true)

In other words:

serverspec(P1) =
forall P2,F,V.
[P1?{P2,{apply,F,V}}]
P1=/=P2 implies
(forall P,Q.
{F V,P,Q}: quiet /\
terminating(P))

implies
eventually(exists 
V'.<P2!V'>true)
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Proof of server
Outline:

|- {server,P1,eps}:serverspec(P1)
⇑

P2=/=P1,forall P,Q.{F V,P,Q}:quiet/\terminating(P)
|- {P2!(F V),P,empty}||{server,P1,empty} :

eventually(exists V'.<P2!V'>true
⇑

P2=/=P1,forall P,Q.{X,P,Q}:quiet/\terminating(P)
|- {P2!X,P,empty}||{server,P1,empty} :

eventually(...)
⇑ (by 2 process cuts)
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Proof cont’d
forall P,Q.{X,P,Q}:quiet/\terminating(P)

|- {P2!X,P,empty} : eventually ... /\
``only output to P2''

and
P2=/=P1 |- {server,P1,empty} : 

``no output and only input to P1''

and
P2=/=P1,

C1:eventually ... /\ ``only output to P2'',
C2:``no output and only input to P1''

|- C1||C2 :eventually ...
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Experiences with EVT
Proof of concept – it actually works
The eternal truth of software verification: 

It’s all about finding the right invariant
The eternal truths of (theorem-proving) tool building

It’s a lot of work
It’s not for beginners
With more resources we could have built a really useful tool ;-)

The eternal half-truth of mu-calculus
It is tricky
(But expressing complex properties of infinite trees is far 
more so)
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V The VeriCode Tool

Features:
• Traditional interactive theorem prover EXCEPT
• Prover manipulates graphs, not tree frontiers
• Discharge + subsumption
• Tactics and tacticals as usual
• Tactic applications grow the graph
• Tactics + scripting language: SML
• Theory facility:

Input your favorite operational semantics, and presto...
• Logical variables
• URL: http://www.sics.se/fdt/projects/vericode/vcpt.html
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VI Related Work

Simpson’95: Compositionality via cut-elimination
• For HML and GSOS

Spatial logic (Caires,Cardelli, Gordon):
• Spatial connectives for structural congruence
• Modal ops for reduction/transition
• Fixed points/monadic second order quantification for 

recursive properties
Earlier work on compositional verification (Stirling, 

Winskel, Andersen)


