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Outline
. Who am I?

. Some words on static program analysis

. Reachable definitions analysis

. Why is this interesting for KeY?

. Presentation of mini-project

. Demo of mini-project
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Work in progress!

This is work in progress!
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Who am I?
My position:

. First year PhD student at Chalmers

. Supervised by Reiner Hähnle

My main interests are:

. Program languages

. Program analysis

What I have done in the past:

. Written a compiler for the functional language STG.

. Worked on and implemented a cache sensitive Haskell compiler.

. Worked on and implemented a usage analysis for Haskell in GHC.
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Static program analysis
Program analyses are designed to calculate properties about
programs. For example:

. Which variables are live at a certain program point?

. What values can a variable hold at a certain program point?

. Which functions are going to be called during program execution?
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Static program analysis
Program analyses are designed to calculate properties about
programs. For example:

. Which variables are live at a certain program point?

. What values can a variable hold at a certain program point?

. Which functions are going to be called during program execution?

A key point is that a program analysis must be decidable and
computationally cheap, which is achieved by approximation.
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Static program analysis
Program analyses are designed to calculate properties about
programs. For example:

. Which variables are live at a certain program point?

. What values can a variable hold at a certain program point?

. Which functions are going to be called during program execution?

A key point is that a program analysis must be decidable and
computationally cheap, which is achieved by approximation.

Program analysis

low precision

expensivecheap

high precision

Verification (TP)
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Reaching definitions
An assignment is reachable at a certain program point if there exist a
program trace such that the variable has not been reassign when the
point is reached.

Program: a = 1; b = 1; if(cond) {b = 1; } else {b = 1; }
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Reaching definitions
An assignment is reachable at a certain program point if there exist a
program trace such that the variable has not been reassign when the
point is reached.

Program: a = 1;
︸ ︷︷ ︸

0

b = 1;
︸ ︷︷ ︸

1

if(cond) {

3

︷ ︸︸ ︷

b = 1;} else {

4

︷ ︸︸ ︷

b = 1;}
︸ ︷︷ ︸

2
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Reaching definitions
An assignment is reachable at a certain program point if there exist a
program trace such that the variable has not been reassign when the
point is reached.

Program: a = 1;
︸ ︷︷ ︸

0

b = 1;
︸ ︷︷ ︸

1

if(cond) {

3

︷ ︸︸ ︷

b = 1;} else {

4

︷ ︸︸ ︷

b = 1;}
︸ ︷︷ ︸

2

A solution: {(a, 0), (b, 3), (b, 4)}
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Reaching definitions
An assignment is reachable at a certain program point if there exist a
program trace such that the variable has not been reassign when the
point is reached.

Program: a = 1;
︸ ︷︷ ︸

0

b = 1;
︸ ︷︷ ︸

1

if(cond) {

3

︷ ︸︸ ︷

b = 1;} else {

4

︷ ︸︸ ︷

b = 1;}
︸ ︷︷ ︸

2

A solution: {(a, 0), (b, 3), (b, 4)}

The solution must be a safe approximation! But we want to get the
least solution possible.
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Why is this interesting for KeY?
Program analysis can be used by the KeY system in at least two ways:

. We can integrate analyses to for example reduce branching.

void m1(SomeClass o)
{
...
o.m2();
...

}
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Why is this interesting for KeY?
Program analysis can be used by the KeY system in at least two ways:

. We can integrate analyses to for example reduce branching.

void m1(SomeClass o)
{
...
o.m2();
...

}

. We can try to build a framework based on abstract interpretation
which could allow the user to abstract away from certain things
when making the proof. (This idea is still a little vague, more
theoretical work is needed.)
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Mini-project
In order to get going I started with trying to implement the reaching
definitions analysis in KeY.

I choose to implement it for the WHILE language.

program ::= stmt

stmt ::= var
loc
= term;

| ifloc(term) stmt else stmt

| whileloc(term) stmt

| {stmt∗}

term ::= literal

| var

| term op term

| (term)
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Reaching definitions - rules
S ⊆ Var× Loc

functions {
VarSet Union(VarSet, VarSet);
VarSet Singleton(Quoted, ...);
VarSet CutVar(VarSet, Quoted);
VarSet Empty;

}
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Reaching definitions - rules
RULE

...

S0 ` stmt ⇓ S1

predicates {
wrapper(VarSet, VarSet);

}

rules {
rdef_rule {

find (==> diamond{{stmt}}(wrapper(vs0, vs1)))
...

};
}
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Reaching definitions - rules
ASSIGN

S ` x
loc

= v; ⇓ (S\{x, l | l ∈ Loc})
︸ ︷︷ ︸

Remove previous
assignments of x

∪{x, loc}

rdef_assign {
find (==> diamond{{#var = #se;}}

(wrapper(vs, Union( CutVar(vs, #var),
Singleton(#var, ...)))))

close goal
};
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Reaching definitions - rules
IF
S0 ` stmt0 ⇓ S1 S0 ` stmt1 ⇓ S2

S0 ` if (e) stmt0 else stmt1 ⇓ S1 ∪ S2

← Approximation!

rdef_if_else {
find (==> diamond{{if(#se) #stmt0 else #stmt1}}

(wrapper(vs0, Union(vs1, vs2))))
replacewith (==> diamond{{#stmt0}}(wrapper(vs0, vs1)));
replacewith (==> diamond{{#stmt1}}(wrapper(vs0, vs2)))

};
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Getting the variable names
First problem:

. I need to store variable names in formulas, which is not possible
since variable names are flexible terms.

Solved by adding a quoting mechanism. With it you can say:
varcond (#qvar quotes #var), which adds a constraint.

schema variables { Quoted #qvar; }

rdef_assign {

find (==> diamond{{#var = #se;}}

(wrapper(vs, Union( CutVar(vs, #qvar),

Singleton(#qvar, ...)))))

varcond (#qvar quotes #var)

close goal

};
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Flow of information
Second problem:

. Flow of information.

Program verification

logical formula
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Flow of information
Second problem:

. Flow of information.

Program verification

logical formula

calculated property

Program analysis
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Flow of information
Second problem:

. Flow of information.

Program analysisProgram verification

logical formula

environment calculated property
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Flow of information
Second problem:

. Flow of information.

Program analysisProgram verification

logical formula

environment calculated property

Program verification is like type checking while reaching definitions
analysis is more like type inferens.
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Flow of information
Meta variables solves the information flow problem.

problem {
<{ if(cond) { a = 1; } else { b = 1; } }>
wrapper(Empty, Union(..., ...))

}

Now I must give the solution...
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Flow of information
Meta variables solves the information flow problem.

problem {
ex s:VarSet.
<{ if(cond) { a = 1; } else { b = 1; } }>
wrapper(Empty, s)

}

Now the system checks if there exists a solution!
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Flow of information
problem {
ex s:VarSet.
<{ if(cond) { a = 1; } else { b = 1; } }>
wrapper(..., s)

}

{s1 = Singleton(a, 1)}

{s0 = Union(s1, s2)}

{s2 = Singleton(b, 2)}

s0

If I just get hold of the collection of constraints I can find the solution!
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Demo

Time for a demo!
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Demo - example 1

Program:

a = 1;
︸ ︷︷ ︸

0

b = 1;
︸ ︷︷ ︸

1

if(cond) {

3

︷ ︸︸ ︷

b = 1;}
︸ ︷︷ ︸

2

Solution:

{(a, 0), (b, 1), (b, 3)}

3rd KeY Workshop - Königswinter June 2004 – p.28/32



Demo - example 2

Program:

a = 1;
︸ ︷︷ ︸

0

b = 1;
︸ ︷︷ ︸

1

if(cond) {

3

︷ ︸︸ ︷

b = 1;} else {

4

︷ ︸︸ ︷

b = 1;

5

︷ ︸︸ ︷

c = 1;}
︸ ︷︷ ︸

2

Solution:

{(a, 0), (b, 3), (b, 4), (c, 5)}
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Demo - example 3
Program:

a = 1;
| {z }

0

b = 1;
| {z }

1

if(cond) {

3

z }| {

b = 1;} else {

4

z }| {

b = 1;

5

z }| {

c = 1;

6

z }| {

while(cond)

7

z }| {

c = 1;}
| {z }

2

Solution:

Entry_0 = {}

Entry_1 = {(a, 0)}

Entry_2 = {(a, 0), (b, 1)}

Entry_3 = {(a, 0), (b, 1)}

Entry_4 = {(a, 0), (b, 1)}

Entry_5 = {(a, 0), (b, 4)}

Entry_6 = {(a, 0), (b, 4), (c, 5), (c, 7)}

Entry_7 = {(a, 0), (b, 4), (c, 5), (c, 7)}

Exit_0 = {(a, 0)}

Exit_1 = {(a, 0), (b, 1)}

Exit_2 = {(a, 0), (b, 3), (b, 4), (c, 7)}

Exit_3 = {(a, 0), (b, 3)}

...
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Conclusion
Conclusion:

. It is possible to implement syntax directed program analyses in
KeY. (At least for simple languages.)

. It would be nice to do computation in the taclets.

. To me KeY + meta variables + constraints seems very similar to for
example Prolog.
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Future work
I will now look into:

. What analyses are useful to KeY?

. Can we create a framework based on abstract interpretation?

. If we can, how can the framework be used?
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