
Program analysis in KeY
Tobias Gedell

gedell@cs.chalmers.se

3rd KeY Workshop - Königswinter June 2004 – p.1/32

Outline
. Who am I?

. Some words on static program analysis

. Reachable definitions analysis

. Why is this interesting for KeY?

. Presentation of mini-project

. Demo of mini-project

3rd KeY Workshop - Königswinter June 2004 – p.2/32

Work in progress!

This is work in progress!

3rd KeY Workshop - Königswinter June 2004 – p.3/32

Who am I?
My position:

. First year PhD student at Chalmers

. Supervised by Reiner Hähnle

My main interests are:

. Program languages

. Program analysis

What I have done in the past:

. Written a compiler for the functional language STG.

. Worked on and implemented a cache sensitive Haskell compiler.

. Worked on and implemented a usage analysis for Haskell in GHC.

3rd KeY Workshop - Königswinter June 2004 – p.4/32

Static program analysis
Program analyses are designed to calculate properties about
programs. For example:

. Which variables are live at a certain program point?

. What values can a variable hold at a certain program point?

. Which functions are going to be called during program execution?

3rd KeY Workshop - Königswinter June 2004 – p.5/32

Static program analysis
Program analyses are designed to calculate properties about
programs. For example:

. Which variables are live at a certain program point?

. What values can a variable hold at a certain program point?

. Which functions are going to be called during program execution?

A key point is that a program analysis must be decidable and
computationally cheap, which is achieved by approximation.

3rd KeY Workshop - Königswinter June 2004 – p.6/32

Static program analysis
Program analyses are designed to calculate properties about
programs. For example:

. Which variables are live at a certain program point?

. What values can a variable hold at a certain program point?

. Which functions are going to be called during program execution?

A key point is that a program analysis must be decidable and
computationally cheap, which is achieved by approximation.

Program analysis

low precision

expensivecheap

high precision

Verification (TP)

3rd KeY Workshop - Königswinter June 2004 – p.7/32

Reaching definitions
An assignment is reachable at a certain program point if there exist a
program trace such that the variable has not been reassign when the
point is reached.

Program: a = 1; b = 1; if(cond) {b = 1; } else {b = 1; }

3rd KeY Workshop - Königswinter June 2004 – p.8/32

Reaching definitions
An assignment is reachable at a certain program point if there exist a
program trace such that the variable has not been reassign when the
point is reached.

Program: a = 1;
︸ ︷︷ ︸

0

b = 1;
︸ ︷︷ ︸

1

if(cond) {

3

︷ ︸︸ ︷

b = 1;} else {

4

︷ ︸︸ ︷

b = 1;}
︸ ︷︷ ︸

2

3rd KeY Workshop - Königswinter June 2004 – p.9/32

Reaching definitions
An assignment is reachable at a certain program point if there exist a
program trace such that the variable has not been reassign when the
point is reached.

Program: a = 1;
︸ ︷︷ ︸

0

b = 1;
︸ ︷︷ ︸

1

if(cond) {

3

︷ ︸︸ ︷

b = 1;} else {

4

︷ ︸︸ ︷

b = 1;}
︸ ︷︷ ︸

2

A solution: {(a, 0), (b, 3), (b, 4)}

3rd KeY Workshop - Königswinter June 2004 – p.10/32

Reaching definitions
An assignment is reachable at a certain program point if there exist a
program trace such that the variable has not been reassign when the
point is reached.

Program: a = 1;
︸ ︷︷ ︸

0

b = 1;
︸ ︷︷ ︸

1

if(cond) {

3

︷ ︸︸ ︷

b = 1;} else {

4

︷ ︸︸ ︷

b = 1;}
︸ ︷︷ ︸

2

A solution: {(a, 0), (b, 3), (b, 4)}

The solution must be a safe approximation! But we want to get the
least solution possible.

3rd KeY Workshop - Königswinter June 2004 – p.11/32

Why is this interesting for KeY?
Program analysis can be used by the KeY system in at least two ways:

. We can integrate analyses to for example reduce branching.

void m1(SomeClass o)
{
...
o.m2();
...

}

3rd KeY Workshop - Königswinter June 2004 – p.12/32

Why is this interesting for KeY?
Program analysis can be used by the KeY system in at least two ways:

. We can integrate analyses to for example reduce branching.

void m1(SomeClass o)
{
...
o.m2();
...

}

. We can try to build a framework based on abstract interpretation
which could allow the user to abstract away from certain things
when making the proof. (This idea is still a little vague, more
theoretical work is needed.)

3rd KeY Workshop - Königswinter June 2004 – p.13/32

Mini-project
In order to get going I started with trying to implement the reaching
definitions analysis in KeY.

I choose to implement it for the WHILE language.

program ::= stmt

stmt ::= var
loc
= term;

| ifloc(term) stmt else stmt

| whileloc(term) stmt

| {stmt∗}

term ::= literal

| var

| term op term

| (term)

3rd KeY Workshop - Königswinter June 2004 – p.14/32

Reaching definitions - rules
S ⊆ Var× Loc

functions {
VarSet Union(VarSet, VarSet);
VarSet Singleton(Quoted, ...);
VarSet CutVar(VarSet, Quoted);
VarSet Empty;

}

3rd KeY Workshop - Königswinter June 2004 – p.15/32

Reaching definitions - rules
RULE

...

S0 ` stmt ⇓ S1

predicates {
wrapper(VarSet, VarSet);

}

rules {
rdef_rule {

find (==> diamond{{stmt}}(wrapper(vs0, vs1)))
...

};
}

3rd KeY Workshop - Königswinter June 2004 – p.16/32

Reaching definitions - rules
ASSIGN

S ` x
loc

= v; ⇓ (S\{x, l | l ∈ Loc})
︸ ︷︷ ︸

Remove previous
assignments of x

∪{x, loc}

rdef_assign {
find (==> diamond{{#var = #se;}}

(wrapper(vs, Union(CutVar(vs, #var),
Singleton(#var, ...)))))

close goal
};

3rd KeY Workshop - Königswinter June 2004 – p.17/32

Reaching definitions - rules
IF
S0 ` stmt0 ⇓ S1 S0 ` stmt1 ⇓ S2

S0 ` if (e) stmt0 else stmt1 ⇓ S1 ∪ S2

← Approximation!

rdef_if_else {
find (==> diamond{{if(#se) #stmt0 else #stmt1}}

(wrapper(vs0, Union(vs1, vs2))))
replacewith (==> diamond{{#stmt0}}(wrapper(vs0, vs1)));
replacewith (==> diamond{{#stmt1}}(wrapper(vs0, vs2)))

};

3rd KeY Workshop - Königswinter June 2004 – p.18/32

Getting the variable names
First problem:

. I need to store variable names in formulas, which is not possible
since variable names are flexible terms.

Solved by adding a quoting mechanism. With it you can say:
varcond (#qvar quotes #var), which adds a constraint.

schema variables { Quoted #qvar; }

rdef_assign {

find (==> diamond{{#var = #se;}}

(wrapper(vs, Union(CutVar(vs, #qvar),

Singleton(#qvar, ...)))))

varcond (#qvar quotes #var)

close goal

};

3rd KeY Workshop - Königswinter June 2004 – p.19/32

Flow of information
Second problem:

. Flow of information.

Program verification

logical formula

3rd KeY Workshop - Königswinter June 2004 – p.20/32

Flow of information
Second problem:

. Flow of information.

Program verification

logical formula

calculated property

Program analysis

3rd KeY Workshop - Königswinter June 2004 – p.21/32

Flow of information
Second problem:

. Flow of information.

Program analysisProgram verification

logical formula

environment calculated property

3rd KeY Workshop - Königswinter June 2004 – p.22/32

Flow of information
Second problem:

. Flow of information.

Program analysisProgram verification

logical formula

environment calculated property

Program verification is like type checking while reaching definitions
analysis is more like type inferens.

3rd KeY Workshop - Königswinter June 2004 – p.23/32

Flow of information
Meta variables solves the information flow problem.

problem {
<{ if(cond) { a = 1; } else { b = 1; } }>
wrapper(Empty, Union(..., ...))

}

Now I must give the solution...

3rd KeY Workshop - Königswinter June 2004 – p.24/32

Flow of information
Meta variables solves the information flow problem.

problem {
ex s:VarSet.
<{ if(cond) { a = 1; } else { b = 1; } }>
wrapper(Empty, s)

}

Now the system checks if there exists a solution!

3rd KeY Workshop - Königswinter June 2004 – p.25/32

Flow of information
problem {
ex s:VarSet.
<{ if(cond) { a = 1; } else { b = 1; } }>
wrapper(..., s)

}

{s1 = Singleton(a, 1)}

{s0 = Union(s1, s2)}

{s2 = Singleton(b, 2)}

s0

If I just get hold of the collection of constraints I can find the solution!

3rd KeY Workshop - Königswinter June 2004 – p.26/32

Demo

Time for a demo!

3rd KeY Workshop - Königswinter June 2004 – p.27/32

Demo - example 1

Program:

a = 1;
︸ ︷︷ ︸

0

b = 1;
︸ ︷︷ ︸

1

if(cond) {

3

︷ ︸︸ ︷

b = 1;}
︸ ︷︷ ︸

2

Solution:

{(a, 0), (b, 1), (b, 3)}

3rd KeY Workshop - Königswinter June 2004 – p.28/32

Demo - example 2

Program:

a = 1;
︸ ︷︷ ︸

0

b = 1;
︸ ︷︷ ︸

1

if(cond) {

3

︷ ︸︸ ︷

b = 1;} else {

4

︷ ︸︸ ︷

b = 1;

5

︷ ︸︸ ︷

c = 1;}
︸ ︷︷ ︸

2

Solution:

{(a, 0), (b, 3), (b, 4), (c, 5)}

3rd KeY Workshop - Königswinter June 2004 – p.29/32

Demo - example 3
Program:

a = 1;
| {z }

0

b = 1;
| {z }

1

if(cond) {

3

z }| {

b = 1;} else {

4

z }| {

b = 1;

5

z }| {

c = 1;

6

z }| {

while(cond)

7

z }| {

c = 1;}
| {z }

2

Solution:

Entry_0 = {}

Entry_1 = {(a, 0)}

Entry_2 = {(a, 0), (b, 1)}

Entry_3 = {(a, 0), (b, 1)}

Entry_4 = {(a, 0), (b, 1)}

Entry_5 = {(a, 0), (b, 4)}

Entry_6 = {(a, 0), (b, 4), (c, 5), (c, 7)}

Entry_7 = {(a, 0), (b, 4), (c, 5), (c, 7)}

Exit_0 = {(a, 0)}

Exit_1 = {(a, 0), (b, 1)}

Exit_2 = {(a, 0), (b, 3), (b, 4), (c, 7)}

Exit_3 = {(a, 0), (b, 3)}

...

3rd KeY Workshop - Königswinter June 2004 – p.30/32

Conclusion
Conclusion:

. It is possible to implement syntax directed program analyses in
KeY. (At least for simple languages.)

. It would be nice to do computation in the taclets.

. To me KeY + meta variables + constraints seems very similar to for
example Prolog.

3rd KeY Workshop - Königswinter June 2004 – p.31/32

Future work
I will now look into:

. What analyses are useful to KeY?

. Can we create a framework based on abstract interpretation?

. If we can, how can the framework be used?

3rd KeY Workshop - Königswinter June 2004 – p.32/32

	Outline
	Work in progress!
	Who am I?
	Static program analysis
	Static program analysis
	Static program analysis
	Reaching definitions
	Reaching definitions
	Reaching definitions
	Reaching definitions
	Why is this interesting for KeY?
	Why is this interesting for KeY?
	Mini-project
	Reaching definitions - rules
	Reaching definitions - rules
	Reaching definitions - rules
	Reaching definitions - rules
	Getting the variable names
	Flow of information
	Flow of information
	Flow of information
	Flow of information
	Flow of information
	Flow of information
	Flow of information
	Demo
	Demo - example 1
	Demo - example 2
	Demo - example 3
	Conclusion
	Future work

