
From Use Cases

to Post Conditions

Martin Giese and Rogardt Heldal

Chalmers Tekniska Högskola,

Göteborg, Sweden

KeY Workshop, June 7, 2004 – p.1/26

Motivation

. . . for the crowd:

Until now, the KeY method starts at the design phase:

• add OCL pre/post conditions to methods

• instantiate design patterns

• Constraints like argument ranges, objects being non-null

What is missing is the analysis phase:

• Specifications that correspond to customer requirements

• Done before the first class diagram

• Textual descriptions

KeY Workshop, June 7, 2004 – p.2/26

Informal Specification in UML

• UML use cases are a means for informal specification

• Describe the system’s behaviour

• Suitable for communication with customers

• Parts of use case:

• name

• main flow

• alternative flows

• pre and post conditions

• . . .

KeY Workshop, June 7, 2004 – p.3/26

Example: Automated Teller Machine

• In this case study, look only at withdrawal:

• Main flow:

insert card, enter PIN, request cash amount, get money, return card

• Alternative flows: wrong PIN, cash amount exceeds balance, etc.

• In this work: put a more precise informal description in the

post condition of the use case. . .

KeY Workshop, June 7, 2004 – p.4/26

Post Condition of Withdraw

• If the customer entered the PIN on the Card, and

the customer’s balance was greater or equal to

the requested amount, then the customer got

the requested amount and the amount was

deducted from the balance.

• If the customer entered the wrong PIN three

times, the card was retained.

• If the customer requested too much money, the

card was returned to the customer.

KeY Workshop, June 7, 2004 – p.5/26

Main Scenario: Sequence Diagram

➠ Last Operation (giveAmount) must ensure post condition of use case

KeY Workshop, June 7, 2004 – p.6/26

Main Scenario: Sequence Diagram

➠ Last Operation (giveAmount) must ensure post condition of use case

KeY Workshop, June 7, 2004 – p.6/26

Informal to Formal Specification

• Want to give the formal post-condition for the final operation in the

scenario, for example operation giveAmount

• Guarantee that the formal post-condition of the operation satisfy the

informal post-condition of the use case

• Problem:

• There might be several scenarios of the use case

• The final operation can vary for different scenarios

➠ Gather possible scenarios in state chart

KeY Workshop, June 7, 2004 – p.7/26

State Chart for ATM Example

• A: givePin(userPin1)[userPin1 = cardPin1]

• B: givePin(userPin1)[userPin1 <> cardPin1]

• C: [balance >= amount]

• D: [balance < amount]

KeY Workshop, June 7, 2004 – p.8/26

State Chart for ATM Example

• A: givePin(userPin1)[userPin1 = cardPin1]

• B: givePin(userPin1)[userPin1 <> cardPin1]

• C: [balance >= amount]

• D: [balance < amount]

KeY Workshop, June 7, 2004 – p.8/26

State Chart for ATM Example

• A: givePin(userPin1)[userPin1 = cardPin1]

• B: givePin(userPin1)[userPin1 <> cardPin1]

• C: [balance >= amount]

• D: [balance < amount]

KeY Workshop, June 7, 2004 – p.8/26

State Chart for ATM Example

• A: givePin(userPin1)[userPin1 = cardPin1]

• B: givePin(userPin1)[userPin1 <> cardPin1]

• C: [balance >= amount]

• D: [balance < amount]

KeY Workshop, June 7, 2004 – p.8/26

State Chart for ATM Example

• A: givePin(userPin1)[userPin1 = cardPin1]

• B: givePin(userPin1)[userPin1 <> cardPin1]

• C: [balance >= amount]

• D: [balance < amount]

KeY Workshop, June 7, 2004 – p.8/26

Condition to Satisfy: First Attempt

Given a path π :

s0 s1 s2 . . . sk
op1(args1) op2(args2) opk(argsk)

• Last operation for path: final(π) := opk

• Post cond. of last method should ensure post cond. of use case:

Postfinal(π) → PostUC

wrong!

• Problem:

Holds only if we add information about the path taken

KeY Workshop, June 7, 2004 – p.9/26

Condition to Satisfy: First Attempt

Given a path π :

s0 s1 s2 . . . sk
op1(args1) op2(args2) opk(argsk)

• Last operation for path: final(π) := opk

• Post cond. of last method should ensure post cond. of use case:

Postfinal(π) → PostUC wrong!

• Problem:

Holds only if we add information about the path taken

KeY Workshop, June 7, 2004 – p.9/26

Information about a Path

Let Cond(π) gather information about the path taken.

s0 s1a s2 . . .

s1b . . .

op1a(args1a)[cond1a] op2(args2)[cond2]

op1b(args1b)[cond1b]

• For simplicity, take conjunction of guards:

Cond(π) = cond1a ∧ cond2

➠ Restriction:

• Guards in state chart do not refer to attribute values

• Distinct names for event arguments

KeY Workshop, June 7, 2004 – p.10/26

Information about a Path

Let Cond(π) gather information about the path taken.

s0 s1a s2 . . .

s1b . . .

op1a(args1a)[cond1a] op2(args2)[cond2]

op1b(args1b)[cond1b]

• For simplicity, take conjunction of guards:

Cond(π) = cond1a ∧ cond2

➠ Restriction:

• Guards in state chart do not refer to attribute values

• Distinct names for event arguments

KeY Workshop, June 7, 2004 – p.10/26

Information about a Path

Let Cond(π) gather information about the path taken.

s0 s1a s2 . . .

s1b . . .

op1a(args1a)[cond1a] op2(args2)[cond2]

op1b(args1b)[cond1b]

• For simplicity, take conjunction of guards:

Cond(π) = cond1a ∧ cond2

➠ Restriction:

• Guards in state chart do not refer to attribute values

• Distinct names for event arguments

KeY Workshop, June 7, 2004 – p.10/26

Condition to Satisfy

• If we are on this path, the post cond. of the final method

ensures that of the use case:

Cond(π) → (Postfinal(π) → PostUC)

• or equvialently:

(Cond(π) ∧ Postfinal(π)) → PostUC

• Finally, this should be the case for all possible paths π :

∧

π∈Σ

(

(Cond(π) ∧ Postfinal(π)) → PostUC

)

KeY Workshop, June 7, 2004 – p.11/26

Condition to Satisfy

• If we are on this path, the post cond. of the final method

ensures that of the use case:

Cond(π) → (Postfinal(π) → PostUC)

• or equvialently:

(Cond(π) ∧ Postfinal(π)) → PostUC

• Finally, this should be the case for all possible paths π :

∧

π∈Σ

(

(Cond(π) ∧ Postfinal(π)) → PostUC

)

KeY Workshop, June 7, 2004 – p.11/26

Condition to Satisfy

• If we are on this path, the post cond. of the final method

ensures that of the use case:

Cond(π) → (Postfinal(π) → PostUC)

• or equvialently:

(Cond(π) ∧ Postfinal(π)) → PostUC

• Finally, this should be the case for all possible paths π :

∧

π∈Σ

(

(Cond(π) ∧ Postfinal(π)) → PostUC

)

KeY Workshop, June 7, 2004 – p.11/26

OCL Post-Condition for giveAmount

Context ATMController::giveAmount(amount:long) post:

if (amount <= bank.getBalance(card.getID())) then

cashDispenser^giveOutCash(amount)

and bank.getBalance(card.getID())

= bank.getBalance@pre(card.getID()) - amount

and card^returnCard()

else

not cashDispenser^giveOutCash(?)

and bank.getBalance(card.getID())

= bank.getBalance@pre(card.getID())

and card^returnCard()

KeY Workshop, June 7, 2004 – p.12/26

Case Study: Normal Flow

• Consider: The “normal flow” with no wrong PIN entered and a

sufficient balance

• Call this path π1.

• Combined conditions from guards:

Cond(π1) = (userPin1 = cardPin ∧ balance >= amount)

• Final operation on π1:

final(π1) = giveAmount

KeY Workshop, June 7, 2004 – p.13/26

Case Study: Relationship between specifications

Need to show:

(Cond(π1) ∧ Postfinal(π1)
) → PostUC

KeY Workshop, June 7, 2004 – p.14/26

Case Study: Relationship between specifications

Need to show:

userPin1 = cardPin

and balance >= amount

and if (amount <= bank.getBalance(card.getID())) then

cashDispenser^giveOutCash(amount)

and bank.getBalance(card.getID())

= bank.getBalance@pre(card.getID()) - amount

and card^returnCard()

else

not cashDispenser^giveOutCash(?)

and bank.getBalance(card.getID())

= bank.getBalance@pre(card.getID())

and card^returnCard()

implies PostUC.

KeY Workshop, June 7, 2004 – p.15/26

Case Study: Relationship between specifications

Need to show:

userPin1 = cardPin

and balance >= amount

and cashDispenser^giveOutCash(amount)

and bank.getBalance(card.getID())

= bank.getBalance@pre(card.getID()) - amount

and card^returnCard()

implies PostUC.

KeY Workshop, June 7, 2004 – p.16/26

Informal Proof 1

userPin1 = cardPin

and balance >= amount

and cashDispenser^giveOutCash(amount)

and bank.getBalance(card.getID())

= bank.getBalance@pre(card.getID()) - amount

and card^returnCard()

⇓

If the customer entered the PIN on the Card, and the customer’s balance

was greater or equal to the requested amount, then the customer got the

requested amount and the amount was deducted from the balance.

KeY Workshop, June 7, 2004 – p.17/26

Informal Proof 2

userPin1 = cardPin

and balance >= amount

and cashDispenser^giveOutCash(amount)

and bank.getBalance(card.getID())

= bank.getBalance@pre(card.getID()) - amount

and card^returnCard()

⇓

If the customer entered the wrong PIN three times, the card was retained.

KeY Workshop, June 7, 2004 – p.18/26

Informal Proof 3

userPin1 = cardPin

and balance >= amount

and cashDispenser^giveOutCash(amount)

and bank.getBalance(card.getID())

= bank.getBalance@pre(card.getID()) - amount

and card^returnCard()

⇓

If the customer requested too much money, the card was returned to the

customer.

KeY Workshop, June 7, 2004 – p.19/26

Reflection

We have considered whether

• every behavior allowed by the formal specification

is also allowed according to the informal one

We have not yet considered whether

• every behavior the informal specification allows

is still allowed by the formal one, stated as:

∧

π∈Σ

(

(Cond(π) ∧ PostUC) → Postfinal(π)

)

KeY Workshop, June 7, 2004 – p.20/26

Too Strong Statement

• In general it is not the case that:

∧

π∈Σ

(

(Cond(π) ∧ PostUC) → Postfinal(π)

)

• Information is added when the informal specification is formalized

• Changing PostUC might make it unnecessarily verbose

• Might be important to keep track of the extra information,

so we state instead:

∧

π∈Σ

(

(Cond(π) ∧ PostUC ∧ Extra(π)) → Postfinal(π)

)

KeY Workshop, June 7, 2004 – p.21/26

Case Study: Extra Information

Extra information in the post condition of giveAmount:

if (amount <= bank.getBalance(card.getID())) then

cashDispenser^giveOutCash(amount)

and bank.getBalance(card.getID())

= bank.getBalance@pre(card.getID()) - amount

and card^returnCard()

else

not cashDispenser^giveOutCash(?)

and bank.getBalance(card.getID())

= bank.getBalance@pre(card.getID())

and card^returnCard()

➠ In this case, about half of the specification!

KeY Workshop, June 7, 2004 – p.22/26

Future Work

• Handle state charts with (infinitely) many paths efficiently

➠ handle groups of similar paths together

• Remove restrictions on state chart guards

• Tool support within the system

• Automatically translate OCL constraints back to natural language

➠ Round-trip engineering

• More clearly separate the steps

Informal ⇔ Formal

Analysis ⇔ Design

KeY Workshop, June 7, 2004 – p.23/26

Grouping Similar Paths

The post condition PostUC is often composed of a number of clauses:

PostUC = (C1 → P1) ∧ (C2 → P2) ∧ (C3 → P3)

Sufficient to show

∧

π∈Σ

(

(Cond(π) ∧ Postfinal(π) ∧ Ci) → Pi

)

for i = 1, 2, 3.

➠ many paths are immediately excluded by Ci

KeY Workshop, June 7, 2004 – p.24/26

Case Study: Simplification

Consider:

• C3 = “If the customer requested too much money”

Here we can conclude that

• only fulfilled on the three paths that go through the state

‘insufficientBalance’ in the state chart

• final(π) = giveAmount, on all these paths

• condition balance < amount is on all three paths

In this case it is sufficient to show:

• (balance < amount ∧ PostgiveAmount ∧ C3) → P3

KeY Workshop, June 7, 2004 – p.25/26

End of Talk

Questions?

KeY Workshop, June 7, 2004 – p.26/26

	Motivation
	Informal Specification in UML
	Example: Automated Teller Machine
	Post Condition of Withdraw
	Main Scenario: Sequence Diagram
	Informal to Formal Specification
	State Chart for ATM Example
	Condition to Satisfy: First Attempt
	Information about a Path
	Condition to Satisfy
	OCL Post-Condition for giveAmount
	Case Study: Normal Flow
	Case Study: Relationship between specifications
	Case Study: Relationship between specifications
	Case Study: Relationship between specifications
	Informal Proof 1
	Informal Proof 2
	Informal Proof 3
	Reflection
	Too Strong Statement
	Case Study: Extra Information
	Future Work
	Grouping Similar Paths
	Case Study: Simplification
	End of Talk

