
OCL parsing / type checking

in the context of GF and KeY

Kristofer Johannisson

1

I. Introduction

2

Typechecking?

context OwnerPIN inv:

maxPINSize > 0 and maxTries > 0 and

triesRemaining >= 0 and triesRemaining <= maxTries

context OwnerPIN::reset()

post: not excThrown(java::lang::Exception) and

not self.isValidated and

if self.isValidated@pre then

self.triesRemaining = self.maxTries

else

self.triesRemaining = self.triesRemaining@pre

endif

3

Motivation

there is need for an OCL parser/typechecker:

• a component of the GF-based rendering of OCL in natural lan-

guage

• a component in KeY

– OCL → DL translation

– partial evaluation of OCL

4

II. Typechecking OCL

5

Overview (1)

We go from strings to abstract syntax trees to annotated abstract

syntax trees:

OCL text annotated
OCL abstract
syntax tree

OCL
abstract

syntax tree
Parser Typechecker

6

Overview (2)

Typechecking is done with respect to an UML model:

OCL text

annotated
OCL abstract
syntax tree

OCL
abstract

syntax tree

UML model

Parser

Typechecker

7

General

Side-effect free expressions and let-definitions are used to form class

invariants, pre-/postconditions

context Person::income(c:Currency) : Integer post:

let

hasTitle(t:String) : Boolean = self.jobs->exists(title = t)

in

(hasTitle(’professor’) implies result > c.fromEuro(3000)) and

(hasTitle(’phd student’) implies result < c.fromEuro(3000))

8

Implicit goal: Translation into GF

GF abstract syntax trees give a semantic view of OCL specifications.

E.g. they contain type annotations, and subtyping is handled with

explicit coercion functions. Hence the OCL typechecker should:

• annotate every expression with its type

• insert explicit coercions whenever subtyping is used

• introduce other semantic distinctions

9

Annotation of OCL terms

Σ,Γ ` t . t′

• Σ (theory) contains classes and properties (attributes, opera-

tions, queries, associations) provided by OCL library and user

UML model

• Γ (context) contains bindings for variables (e.g. self) and let-

definitions

• t is an OCL term, t′ is an annotated OCL term

10

Foundations

• OMG specification of OCL

• Tony Clark 1999 Typechecking UML Static Models

• Cengarle, Knapp 2003 OCL 1.4/5 vs. 2.0 Expressions — Formal

semantics and expressiveness

Systematic description of our work is forthcoming

11

Example: if-then-else

Σ,Γ ` c . c′ : C1
Σ ` C1 <: Boolean

Σ,Γ ` t . t′ : C2
Σ,Γ ` e . e′ : C3

Σ ` C = lub {C1, C2}
Σ,Γ ` if c then t else e . if [c′]C1<:Boolean then [t′]C2<:C else [e′]C3<:C : C

where [t]A<:B is an explicit coercion of term t from class A to A:s

superclass B.

12

Example: Implicit self

Σ,Γ ` self.query(t1, . . . tn) . self.query′(t′1, . . . t′n) : C

Σ,Γ ` query(t1, . . . tn) . self.query′(t′1, . . . t′n) : C

13

“Property calls” (1)

PropCall. Expr ::= Expr (’.’ | ’->’) Ident (’(’ Decl? [Expr] ’)’)?

Examples:

self.query(x1,...xn)

coll->size()

coll->forAll(x,y | x = y)

14

“Property calls” (2)

• Function application

– self.attr, self.query(x1,...xn), self.assoc, coll->size()

• Variable binding constructions

– coll->forAll(x,y | x = y), coll->collect(x | x.attr)

– primitive recursion over collections

∗ coll->iterate(x; acc : Integer = 0 | x+acc)

15

“Property calls” (3)

• Implicit variable binding

– coll->forAll(x | x.age > 18) can be written as
coll->forAll(age > 18)

• Implicit collect

– coll->collect(x | x.age) can be written as coll.age

• Associations of multiplicity 0..1 can be considered as sets or not

– self.husband->notEmpty() implies self.husband <> self

16

Other features

• JavaCard support, e.g. null and exceptions

• meta-level operations, e.g. allInstances and oclAsType

• flattening of collections

17

OCL 2.0

• records (“tuples”)

• nested collections

• no let-definitions with arguments outside def: constraints

• changes to OclType

• messages

• . . .

18

Status: current limitations

• flattening

• qualified associations, association classes

• enumerations

• OCL2.0

19

Status: implemented features

• implicit self, implicit bound variables, implicit collect

• navigation to singleton associations

• let definitions (currently only without arguments)

• meta-operations allInstances and oclAsType on class literals

• null, excThrown

• packages

20

Implementation

• BNF converter (BNFC) [Ranta et al.]

– front-end to standard lexer and parser generators

• Haskell

– GF is implemented in Haskell

21

The BNF converter

Given a Labelled BNF grammar the tool produces:

• an abstract syntax in Haskell / C++ / C / Java

• a case skeleton for the abstract syntax

• an Alex, JLex or Flex lexer generator file

• a Happy, CUP or Bison parser generator file

• a pretty-printer in Haskell / C++ / C / Java

• a readable specification of the language (LaTeX file)

22

OCL text annotated
OCL abstract
syntax tree

OCL
abstract

syntax tree

UML model

OCL BNF
grammar

Parser Typechecker

BNF-converter

23

III. Integration with GF

24

From trees to trees

We have based a parser and a typechecker on a BNF grammar for

OCL. In GF we use a different grammar, with another structure (it

is not only a difference of formalisms).

We need a translation from the type of trees described by the BNF

grammar of OCL to the type of trees described by the GF grammar.

25

annotated OCL
abstract

syntax tree

OCL abstract
syntax tree

UML
model

GF grammar
module(s) GF representation

of OCL abstract
syntax tree

GF OCL
grammars

GF Natural
language

text

OCL text
26

Status

• work in progress

• GF OCL grammars do not have all implicit forms

– short term: normalize

– long term: extend grammars

• long term changes to structure of GF grammars

27

IV. Integration with KeY

28

Two separate issues

• Java-Haskell integration

– sending text over a Unix pipe

• There is not one canonical abstract syntax for OCL. Modularity:

– define what kind(s) of abstract syntax trees are required

– implement interface to whatever parser is used

29

An OCL-parser in Java for free

• one grammar, generate parsers in Haskell/Java using BNFC

• assumption: one grammar (one abstract syntax) fits several pur-

poses

• the typechecker would have to be reimplemented in Java.

30

OCL.cf

OCL-parser.hs OCL-parser.java

specification.oclAbstract
syntax tree
(Haskell)

Abstract
syntax tree

(Java)

BNFC BNFC

31

annotated
OCL abstract
syntax tree

OCL
abstract

syntax tree

UML
model

KeY

Intermediate
text format

OCL
text

32

Status

• extraction of model information: works but requires some modi-

fications by hand to the resulting file

• sending abstract syntax trees to KeY:

– discussions with Martin and Daniel, simple experiments to-

gether with Daniel

33

Use “taclet OCL syntax” as OCL interchange
format?

Background:

• partial evaluation of OCL will be based on the taclet mechanism

• then the taclet parser must handle OCL

• avoid problems of combining taclet/OCL-parser by inventing some simple for-
mat of “abstract OCL syntax” to be used in taclet descriptions

Avoiding the definition of too many interfaces: the Haskell parser / typechecker
can then output to this format

34

V. Conclusion

• OCL typechecker

• status of integration in GF and KeY

• Future work: case study on rendering OCL specifications of Java-

Card API [Larsson, Mostowski] in English.

35

