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I. Introduction
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Typechecking?

context OwnerPIN inv:

maxPINSize > 0 and maxTries > 0 and

triesRemaining >= 0 and triesRemaining <= maxTries

context OwnerPIN::reset()

post: not excThrown(java::lang::Exception) and

not self.isValidated and

if self.isValidated@pre then

self.triesRemaining = self.maxTries

else

self.triesRemaining = self.triesRemaining@pre

endif
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Motivation

there is need for an OCL parser/typechecker:

• a component of the GF-based rendering of OCL in natural lan-

guage

• a component in KeY

– OCL → DL translation

– partial evaluation of OCL
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II. Typechecking OCL
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Overview (1)

We go from strings to abstract syntax trees to annotated abstract

syntax trees:

OCL text annotated 
OCL abstract 
syntax tree

OCL 
abstract 

syntax tree
Parser Typechecker
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Overview (2)

Typechecking is done with respect to an UML model:

OCL text

annotated 
OCL abstract 
syntax tree
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General

Side-effect free expressions and let-definitions are used to form class

invariants, pre-/postconditions

context Person::income(c:Currency) : Integer post:

let

hasTitle(t:String) : Boolean = self.jobs->exists(title = t)

in

(hasTitle(’professor’) implies result > c.fromEuro(3000)) and

(hasTitle(’phd student’) implies result < c.fromEuro(3000))
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Implicit goal: Translation into GF

GF abstract syntax trees give a semantic view of OCL specifications.

E.g. they contain type annotations, and subtyping is handled with

explicit coercion functions. Hence the OCL typechecker should:

• annotate every expression with its type

• insert explicit coercions whenever subtyping is used

• introduce other semantic distinctions
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Annotation of OCL terms

Σ,Γ ` t . t′

• Σ (theory) contains classes and properties (attributes, opera-

tions, queries, associations) provided by OCL library and user

UML model

• Γ (context) contains bindings for variables (e.g. self) and let-

definitions

• t is an OCL term, t′ is an annotated OCL term
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Foundations

• OMG specification of OCL

• Tony Clark 1999 Typechecking UML Static Models

• Cengarle, Knapp 2003 OCL 1.4/5 vs. 2.0 Expressions — Formal

semantics and expressiveness

Systematic description of our work is forthcoming
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Example: if-then-else

Σ,Γ ` c . c′ : C1
Σ ` C1 <: Boolean

Σ,Γ ` t . t′ : C2
Σ,Γ ` e . e′ : C3

Σ ` C = lub {C1, C2}
Σ,Γ ` if c then t else e . if [c′]C1<:Boolean then [t′]C2<:C else [e′]C3<:C : C

where [t]A<:B is an explicit coercion of term t from class A to A:s

superclass B.

12



Example: Implicit self

Σ,Γ ` self.query(t1, . . . tn) . self.query′(t′1, . . . t′n) : C

Σ,Γ ` query(t1, . . . tn) . self.query′(t′1, . . . t′n) : C
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“Property calls” (1)

PropCall. Expr ::= Expr (’.’ | ’->’) Ident (’(’ Decl? [Expr] ’)’)?

Examples:

self.query(x1,...xn)

coll->size()

coll->forAll(x,y | x = y)
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“Property calls” (2)

• Function application

– self.attr, self.query(x1,...xn), self.assoc, coll->size()

• Variable binding constructions

– coll->forAll(x,y | x = y), coll->collect(x | x.attr)

– primitive recursion over collections

∗ coll->iterate(x; acc : Integer = 0 | x+acc)
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“Property calls” (3)

• Implicit variable binding

– coll->forAll(x | x.age > 18) can be written as
coll->forAll(age > 18)

• Implicit collect

– coll->collect(x | x.age) can be written as coll.age

• Associations of multiplicity 0..1 can be considered as sets or not

– self.husband->notEmpty() implies self.husband <> self
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Other features

• JavaCard support, e.g. null and exceptions

• meta-level operations, e.g. allInstances and oclAsType

• flattening of collections

17



OCL 2.0

• records (“tuples”)

• nested collections

• no let-definitions with arguments outside def: constraints

• changes to OclType

• messages

• . . .
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Status: current limitations

• flattening

• qualified associations, association classes

• enumerations

• OCL2.0
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Status: implemented features

• implicit self, implicit bound variables, implicit collect

• navigation to singleton associations

• let definitions (currently only without arguments)

• meta-operations allInstances and oclAsType on class literals

• null, excThrown

• packages
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Implementation

• BNF converter (BNFC) [Ranta et al.]

– front-end to standard lexer and parser generators

• Haskell

– GF is implemented in Haskell
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The BNF converter

Given a Labelled BNF grammar the tool produces:

• an abstract syntax in Haskell / C++ / C / Java

• a case skeleton for the abstract syntax

• an Alex, JLex or Flex lexer generator file

• a Happy, CUP or Bison parser generator file

• a pretty-printer in Haskell / C++ / C / Java

• a readable specification of the language (LaTeX file)
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III. Integration with GF
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From trees to trees

We have based a parser and a typechecker on a BNF grammar for

OCL. In GF we use a different grammar, with another structure (it

is not only a difference of formalisms).

We need a translation from the type of trees described by the BNF

grammar of OCL to the type of trees described by the GF grammar.
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Status

• work in progress

• GF OCL grammars do not have all implicit forms

– short term: normalize

– long term: extend grammars

• long term changes to structure of GF grammars
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IV. Integration with KeY
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Two separate issues

• Java-Haskell integration

– sending text over a Unix pipe

• There is not one canonical abstract syntax for OCL. Modularity:

– define what kind(s) of abstract syntax trees are required

– implement interface to whatever parser is used
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An OCL-parser in Java for free

• one grammar, generate parsers in Haskell/Java using BNFC

• assumption: one grammar (one abstract syntax) fits several pur-

poses

• the typechecker would have to be reimplemented in Java.
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OCL.cf

OCL-parser.hs OCL-parser.java

specification.oclAbstract 
syntax tree 
(Haskell)

Abstract 
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(Java)

BNFC BNFC
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Status

• extraction of model information: works but requires some modi-

fications by hand to the resulting file

• sending abstract syntax trees to KeY:

– discussions with Martin and Daniel, simple experiments to-

gether with Daniel
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Use “taclet OCL syntax” as OCL interchange
format?

Background:

• partial evaluation of OCL will be based on the taclet mechanism

• then the taclet parser must handle OCL

• avoid problems of combining taclet/OCL-parser by inventing some simple for-
mat of “abstract OCL syntax” to be used in taclet descriptions

Avoiding the definition of too many interfaces: the Haskell parser / typechecker
can then output to this format
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V. Conclusion

• OCL typechecker

• status of integration in GF and KeY

• Future work: case study on rendering OCL specifications of Java-

Card API [Larsson, Mostowski] in English.
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