
Towards a Calculus
For Concurrent Java

Vladimir Klebanov
Universität Koblenz

June 7, 2004

Verifying Concurrent Java ➥ ➠ ➡➠ ✇ ■ ? ✖

The Goal

A correct and complete DL calculus for concurrent
Java.

This calculus would:

■ Handle threads + native synchronization primitives
■ allow to verify arbitrary Java programs (but what

properties?)
■ probably be feasible only for small systems

Verifying Concurrent Java ➥ ➠ ➡➠ ✇ ■ ? ✖

...Is Not Impossible

Previous work:

■ Gries and Owicki 1976:
Axiomatic proof technique for parallel programs

■ KIV Augsburg:
Verifying concurrent systems with symbolic
execution

■ Ábrahám, de Boer, Steffen et al.:
An assertion-based proof system for multithreaded
Java

Verifying Concurrent Java ➥ ➠ ➡➠ ✇ ■ ? ✖

The Issue With Concurrency

Program semantics may be dependent on scheduling.

Race Conditions:

➊ Two or more threads have access to the same
memory location

➋ At least one thread is writing to this location
➌ No mechanism in place to guarantee temporal

ordering

Verifying Concurrent Java ➥ ➠ ➡➠ ✇ ■ ? ✖

The Issue With Concurrency (2)

For t threads of n statements each, there are

(tn)!

(n!)t

possible execution orderings.

2 threads with 5 statements — makes 252 interleavings
➥ proof space reduction is needed

Verifying Concurrent Java ➥ ➠ ➡➠ ✇ ■ ? ✖

A Remedy

Idea: Verify two threads T1 and T2 separately, then
prove correct composition.

Proofs for T1 and T2 can be composed if no statement
of T1 interferes with statement of T2 and vice versa.

Gives |T1| × |T2| additional correctness conditions.

Verifying Concurrent Java ➥ ➠ ➡➠ ✇ ■ ? ✖

Non-Interference

When does statement S1 not interfere with S2?

➊ preservation of pre-state
Let S1 be executed in state char. by φ
Let S2 be executed in state char. by ψ
Non-interference condition:
ψ ∧ φ→ 〈S1〉ψ

➋ assertion insensitivity (post-state)
➌ syntactical disjointness

What if we do have interference?

Verifying Concurrent Java ➥ ➠ ➡➠ ✇ ■ ? ✖

What else?

■ Operational semantics of concurrency primitives
■ From source code to JVM

Verifying Concurrent Java ➥ ➠ ➡➠ ✇ ■ ? ✖

JVM Concurrency Pitfalls

Lots of them:

■ Load and store not atomic for long and double

■ Compiler statement reordering
■ Order of updates to variables as seen by other

threads may not be consistent
■ No guarantee that any synchronized method will

ever be executed

Verifying Concurrent Java ➥ ➠ ➡➠ ✇ ■ ? ✖

Compositional Verification

■ Develop robustness conditions for specifications of
larger software units

■ Compositionality principles, “lifting”
■ Possibly just for certain architectures: Server,

Producer/Consumer, Controller

Verifying Concurrent Java ➥ ➠ ➡➠ ✇ ■ ? ✖

The Properties

■ (Partial) correctness — the usual, refers to terminal
states only

■ µ-Calculus (liveliness and safety properties)
■ Regular/Schematic Sequence Charts

Verifying Concurrent Java ➥ ➠ ➡➠ ✇ ■ ? ✖

Thank You!

Verifying Concurrent Java ➥ ➠ ➡➠ ✇ ■ ? ✖

TOC

■ The Goal ❖

■ ...Is Not Impossible ❖

■ The Issue With Concurrency ❖

■ The Issue With Concurrency (2) ❖

■ A Remedy ❖

■ Non-Interference ❖

■ What else? ❖

■ JVM Concurrency Pitfalls ❖

■ Compositional Verification ❖

■ The Properties ❖

■ Thank You! ❖

Verifying Concurrent Java ➥ ➠ ➡➠ ✇ ■ ? ✖

