
Proof Re-Use in
Java Software Verification

Vladimir Klebanov
Universität Koblenz

June 8, 2004

Proof Re-Use ➥ ➠ ➡➠ ✇ ■ ? ✖

Goal: Proof Re-Use for Java Software
Verification

Why Re-Use Proofs?

Typical use case: verification fails.
➥ the program (the specification?) has to be
amended; user starts verification from scratch...

A re-use facility would recycle unaffected proof parts,
saving efforts, user interaction.

Proof Re-Use ➥ ➠ ➡➠ ✇ ■ ? ✖

The Re-Use Task

Bird’s eye view:

Frontend: Source Backend: Proof
old source old proof
new source ?

Proof Re-Use ➥ ➠ ➡➠ ✇ ■ ? ✖

Some Re-Use Scenarios

What can happen?

■ statement insertion
■ statement deletion
■ change in expression
■ . . .

Imagine

You want to “add a case”...

Proof Re-Use ➥ ➠ ➡➠ ✇ ■ ? ✖

Related Efforts

Different approaches to re-use

■ Abstraction: proof planning, analogy reasoners
■ Construction: KIV
■ Incremental fixed: Isabelle
■ Incremental similarity-based: us

What we don’t want to do

■ Learn from proofs in general

Proof Re-Use ➥ ➠ ➡➠ ✇ ■ ? ✖

The Re-Use Framework

Keep a list of candidates =̂ marked nodes in template

➊ Match candidates against open goals ➥ possible
re-use units

➋ Select re-use unit with best score, apply it
➌ Advance markers in the template proof

Questions:

Where do the candidates originally come from?
What if nothing works?
Where does the new proof “stuff” come from?

Proof Re-Use ➥ ➠ ➡➠ ✇ ■ ? ✖

In Action

Template Target

Proof Re-Use ➥ ➠ ➡➠ ✇ ■ ? ✖

In Action

Template Target

Proof Re-Use ➥ ➠ ➡➠ ✇ ■ ? ✖

In Action

Template Target

Proof Re-Use ➥ ➠ ➡➠ ✇ ■ ? ✖

Formula Similarity Function

Beyond copy & paste: Identify similar situations by
comparing rule application foci.

Three cases:

■ Symbolic execution rules: Eugene Myers diff
algorithm on the programs in focus

■ First-order rules
■ Focus-less rules

We install a cut-off threshold.

Proof Re-Use ➥ ➠ ➡➠ ✇ ■ ? ✖

Program Abstractions

From programs

α :

(
i n t x ; i n t r e s u l t ;
r e s u l t = x / x ;

β :

(
i n t x ; i n t r e s u l t ;
i f (x ==0) r e s u l t =1 ; else r e s u l t =x / x ;

To sequences of statement signatures

A :

LocalVarDecl, LocalVarDecl,
Assignment(int)

B :

LocalVarDecl, LocalVarDecl,
If, Assignment(int), Assignment(int)

Proof Re-Use ➥ ➠ ➡➠ ✇ ■ ? ✖

Program Similarity Function

Let E(A, B) = e1 e2 · · · en be the minimal edit script for
the abstractions A, B.

The similarity score of α, β:

δ(α, β) = δ(A, B) = −
X

ei∈E(A,B)

P (ei)

where the penalty P (e) for an edit command e is

P (e) =

8>>><>>>:
tX

k=1

0.75

x + k
if e = x I b1 b2 · · · bt

1

x + 1
if e = x D

Proof Re-Use ➥ ➠ ➡➠ ✇ ■ ? ✖

First-Order Formula Similarity

➊ abstraction step
➋ compare foci
➌ difference detection on whole formulas
➍ compare focus position in formula

Proof Re-Use ➥ ➠ ➡➠ ✇ ■ ? ✖

Augmenting With Connectivity

Introduce parent relationship for formulae. Prefer proof
steps that respect it.

Feedback loop: amplifies good decisions...
unfortunately bad decisions too.

Prevents related proof steps being torn apart.

Proof Re-Use ➥ ➠ ➡➠ ✇ ■ ? ✖

On the Frontend

Obtain source code diffs
from CVS.

Mark statement after
each difference hunk.

int x;
int result;

+ if(x==0) {
+ result=1;
+ } else {

result=x/x;
+ }

Proof Re-Use ➥ ➠ ➡➠ ✇ ■ ? ✖

Why This Works

➊ Proof structure follows program structure
➋ Similar situations warrant similar actions
➌ Calculus to a high degree “locally deterministic”

➁ Symbolic execution rules only applicable to the
active statement

➂ No split rule ➥ active statements do not multiply

Proof Re-Use ➥ ➠ ➡➠ ✇ ■ ? ✖

At Last

DEMO

Proof Re-Use ➥ ➠ ➡➠ ✇ ■ ? ✖

TOC

■ Goal: Proof Re-Use for Java
Software Verification ❖

■ The Re-Use Task ❖

■ Some Re-Use Scenarios ❖

■ Related Efforts ❖

■ The Re-Use Framework ❖

■ In Action ❖

■ In Action ❖

■ In Action ❖

■ Formula Similarity Function ❖

■ Program Abstractions ❖

■ Program Similarity Function ❖

■ First-Order Formula Similarity ❖

■ Augmenting With
Connectivity ❖

■ On the Frontend ❖

■ Why This Works ❖

■ At Last ❖

Proof Re-Use ➥ ➠ ➡➠ ✇ ■ ? ✖

