
Verification of Safety Properties

in Presence of Transactions

Reiner Hähnle Wojciech Mostowski

Workshop 2004
Königswinter, June 2004

KeY 2004 – p.1

Overview

• Stripped down version of Reiner’s talk at CASSIS’04

• Some repetition

• Demo (a.k.a. CASSIS demo)

• Demoney Case Study

• Design for Verification

• Lessons for KeY

KeY 2004 – p.2

Java Class Requirement Specification

• Class Invariant

Restrict legal attribute values in each stable execution state

• Method Contract

For initial states satisfying precondition,
implementation must guarantee postcondition after execution

Additional challenges in Java Card

• Incomplete termination (card rip-out)

• Intentional non-termination (controllers)

Require finer granularity than stable state semantics

KeY 2004 – p.3

Java Class Requirement Specification

• Class Invariant

Restrict legal attribute values in each stable execution state

• Method Contract

For initial states satisfying precondition,
implementation must guarantee postcondition after execution

Additional challenges in Java Card

• Incomplete termination (card rip-out)

• Intentional non-termination (controllers)

Require finer granularity than stable state semantics

KeY 2004 – p.3

Java Card Safety Properties

Safety

Nothing bad will happen during execution (eg, when card is ripped out)

Property (Example)

Sensitive data must be in consistent state at all times

Strong Invariant

Holds throughout program execution (in all intermediate states):
[[·]] (throughout) modality

Transaction

Statements in scope of transaction executed completely or not at all

KeY 2004 – p.4

Throughout Modality

Semantics

[[p]] F: F holds in all states during the execution of p

• including the initial and the final state

• excluding states while a transaction is in progress

Remarks

• Related to always 2 in temporal logic

• Program p may contain statements that form transactions

• Sequent calculus for [[·]] (with Bernhard, KeY 2002 & FASE 2003)

KeY 2004 – p.5

Throughout Modality

Semantics

[[p]] F: F holds in all states during the execution of p

• including the initial and the final state

• excluding states while a transaction is in progress

Remarks

• Related to always 2 in temporal logic

• Program p may contain statements that form transactions

• Sequent calculus for [[·]] (with Bernhard, KeY 2002 & FASE 2003)

KeY 2004 – p.5

Proof Obligations

Typical Proof Obligation involving throughout

In KeY attach strong invariant to classes

Let TOut be strong invariant of C
Let Inv be (weak) invariant of C, Pre precondition of C::m()

Activating context-sensitive menu of method C::m() in KeY

(KeYExtension | Throughout Correctness | PreservesThroughout)

Starts proof of

(TOut ∧ Inv ∧ Pre) → [[m();]] TOut

KeY 2004 – p.6

Proof Obligations

Typical Proof Obligation involving throughout

In KeY attach strong invariant to classes

Let TOut be strong invariant of C
Let Inv be (weak) invariant of C, Pre precondition of C::m()

Activating context-sensitive menu of method C::m() in KeY

(KeYExtension | Throughout Correctness | PreservesThroughout)

Starts proof of

(TOut ∧ Inv ∧ Pre) → [[m();]] TOut

KeY 2004 – p.6

The good old .key files

Observation

Java Card specifications are usually packed with ugly stuff:

• low-level data types (byte arrays, arrays of byte arrays, etc.)

• going deep into Java Card API (JRE!), e.g. transaction depth

• lots of typing information (dynamic resource allocation)

Conclusion

OCL not so good. Java Card DL is a way to go:

• enough (all) the expressive power

• no altering of the source code – Post Mortem verification

KeY 2004 – p.7

The good old .key files

Observation

Java Card specifications are usually packed with ugly stuff:

• low-level data types (byte arrays, arrays of byte arrays, etc.)

• going deep into Java Card API (JRE!), e.g. transaction depth

• lots of typing information (dynamic resource allocation)

Conclusion

OCL not so good. Java Card DL is a way to go:

• enough (all) the expressive power

• no altering of the source code – Post Mortem verification

KeY 2004 – p.7

Demo

• Can prove strong invariant with proper initialisation sequence

• Cannot prove strong invariant with buggy initialisation sequence

Demo
key/myprojects/cassisdemo/LogRecord.java::setRecord()

KeY 2004 – p.8

Transactions

Transaction mechanism

Allows the programmer to guarantee data consistency

JCSystem.beginTransaction();

Assignments to persistent locations (only) are done preliminarily

JCSystem.commitTransaction();

All preliminary assignments are finalised (in one atomic step)

JCSystem.abortTransaction();

All preliminary updates are forgotten

KeY 2004 – p.9

Transactions: Example

this.a = 0;

int i = 0;

JCSystem.beginTransaction();

this.a = 1;

i = this.a;

JCSystem.abortTransaction();

Final State: this.a
.
= 0

i
.
= 1

Transactions affect semantics of 〈〈〈·〉〉〉, [·]: influence final state

KeY 2004 – p.10

Demo

Demo
key/myprojects/cassisdemo/Purse.java::processSale()

Typical data consistency property:

balance in current log entry and balance in application are in sync

KeY 2004 – p.11

How Realistic is the Example?

Demoney:

Realistic Java Card purse (demo) application (Trusted Logic)

Our case study is similar to Demoney in several respects:

• Stores transaction log records (Demoney Card Specification p. 17)

• Stipulates consistency of persistent data (p. 18)

Major difference:

• In Demoney, one log record is single array of bytes

For example, short balance: two fields within log record array

• Log file is array of log records

Java Card does not allow 2-dimensional arrays, thus:
Object[] logFile = new Object[logFileSize];

KeY 2004 – p.12

How Realistic is the Example?

Demoney:

Realistic Java Card purse (demo) application (Trusted Logic)

Our case study is similar to Demoney in several respects:

• Stores transaction log records (Demoney Card Specification p. 17)

• Stipulates consistency of persistent data (p. 18)

Major difference:

• In Demoney, one log record is single array of bytes

For example, short balance: two fields within log record array

• Log file is array of log records

Java Card does not allow 2-dimensional arrays, thus:
Object[] logFile = new Object[logFileSize];

KeY 2004 – p.12

Design for Verification

Storage optimisation problematic for verification

Record type encoded into homogeneous array, consequences:

• Comparison of values requires wrapping/unwrapping

• (Un)wrapping involves non-trivial Java modulo arithmetics

• Need to add explicit type assumptions for Object

Design for verification

• Represent data in object-oriented fashion, use type system

• Serialise objects only when necessary (for I/O)

• Decouple application from communication model

Loosely coupled design likely to enable decomposable verification
KeY 2004 – p.13

Demoney Verification

Difficult:

• (not our fault) due to the way it’s designed and coded

• (our fault) some of seemingly simple specification parts are quite
difficult to specify (syntax!) and occasionally impossible to prove
with KeY (bugs)

• (our fault) parser limitations, remaining bugs, . . .

But. . .

Proved total correctness of two simple methods from Demoney

KeY 2004 – p.14

Demoney Verification

Difficult:

• (not our fault) due to the way it’s designed and coded

• (our fault) some of seemingly simple specification parts are quite
difficult to specify (syntax!) and occasionally impossible to prove
with KeY (bugs)

• (our fault) parser limitations, remaining bugs, . . .

But. . .

Proved total correctness of two simple methods from Demoney

KeY 2004 – p.14

Problems Summarised

• Use of byte arrays (TLV standard) – different representations
of the same data type, e.g. balance can be a short
in one place and a pair of bytes in another

• no static type information, e.g. Object[] logFile;

• coding conventions, overuse of modulo operator:

currentRecord = (currentRecord + 1) % logFileSize ;

currentRecord++;

if(currentRecord == logFileSize) currentRecord = 0;

KeY 2004 – p.15

Specification Patterns

Data consistency is standard requirement

Now have to write

logFile.log.get(logFile.currentRecord).balance = balance

Instead would like to mark occurrences of balance in class diagram
and say “prove data consistency”

Develop and implement library of specification patterns

Good starting point (for security relevant properties):
R. Marlet & D. Le Metayer. Security Properties and Java Card Specificities
to be Studied in the SecSafe Project, 2001. SECSAFE-TL-006

KeY 2004 – p.16

Specification Patterns

Data consistency is standard requirement

Now have to write

logFile.log.get(logFile.currentRecord).balance = balance

Instead would like to mark occurrences of balance in class diagram
and say “prove data consistency”

Develop and implement library of specification patterns

Good starting point (for security relevant properties):
R. Marlet & D. Le Metayer. Security Properties and Java Card Specificities
to be Studied in the SecSafe Project, 2001. SECSAFE-TL-006

KeY 2004 – p.16

Specification Patterns

Data consistency is standard requirement

Now have to write

logFile.log.get(logFile.currentRecord).balance = balance

Instead would like to mark occurrences of balance in class diagram
and say “prove data consistency”

Develop and implement library of specification patterns

Good starting point (for security relevant properties):
R. Marlet & D. Le Metayer. Security Properties and Java Card Specificities
to be Studied in the SecSafe Project, 2001. SECSAFE-TL-006

KeY 2004 – p.16

Performance

setRecord – 4 LoC

processSale – nested method calls to 5 classes, <30 LoC, transaction

Time (sec) Steps Branches

[[setRecord]] 2.0 234 20

〈setRecord〉 1.5 129 6

[[processSale]] 101.9 6861 329

〈keyNum2tag〉D 3.1 396 18

〈keyNum2keySet〉D,1 5.2 567 33

D Methods from Demoney (full pre/post behavioural specification)
1 Hacks in KeY required (static instanceof evaluation, parser, etc.)

KeY 2004 – p.17

Summary

• Safety properties of non-trivial Java Card programs
verified automatically (!)

• Full Java Card coverage, but still small problems exist
(bugs, the almighty parser, . . .)

• Speed could still be improved

• Loops require non-trivial interaction

But: most loops e.g. in Demoney used for initialisation

• Design with verification in mind makes big difference

Design patterns for to-be-verified code

• Specification patterns help to create formal requirements

• Mostly automatic verification of software like Demoney possible

KeY 2004 – p.18

	
	Overview
	Java Class Requirement Speci{f}ication
	Java Card Safety Properties
	Throughout Modality
	Proof Obligations
	The good old .key f{i}les
	Demo
	Transactions
	Transactions: Example
	Demo
	How Realistic is the Example?
	Design for Veri{f}ication
		extit {Demoney} Verif{i}cation
	Problems Summarised
	Speci{f}ication Patterns
	Performance
	Summary

