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Overview

Why is verification currently not modular in KeY?

What is the goal of modular verification?

Notions: module, module contracts, depends-clause, module-protected

attributes

How can the goal be achieved with KeY? What changes in KeY?
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The Problem

Java Classes

Java Classes

Java Classes

(break contract)

Contract (Invariants)

non-modularily
verified
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The Problem

self.start.year<self.end.year or
(self.start.year=self.end.year and
self.start.month<=self.end.month)

public class Period {
Date start, end;
//. . .

}

public class Date {
int month, year;
//. . .

}

public class Main {
public Period myPeriod(){
Date jan=new Date(1,2004);
Date sep=new Date(9,2004);
Period p=new Period(jan, sep);
jan.setYear(2005);
return p; } }
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Some Observations and Questions

Recent Approaches: Existing techniques like Ownership Types are

imposed on the problem. Problem solved by restricting allowed programs.

Is the restriction minimal? Is Ownership needed?

Preferred Approach:

1. Make requirements explicit: Modules, Contracts, local and global

(modular) Correctness.

2. Define abstract theoretical criterion which satisfies requirements.

3. Find (efficient) methods to fulfil criterion.
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Explicit Notion of Modules and Their Contracts

Definition (Module): Given classes Cm and Em with Em ⊆ Cm.

(Cm, Em,∅) is a module. If Im are modules, then (Cm, Em, Im) is a module.

All modules m, m′ must satisfy: for all usages of types c′ of m′ in m:

m′ ∈ Im and c′ ∈ Em′ .

Module contract of m (simplified): Invariant contracts for classes Cm.

Module contract ctm fulfilled . . .

in a set of classes T iff for all methods p of T:

p preserves the invariants of ctm.

Goal: for all T

locally iff fulfilled in Cm. Mastered (KeY)
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Depends Clauses

Notion for the analysis of invariant contracts:

Definition (Depends Clause): Set Dφ of attribute chains a1. · · · .an.

For all

states s1 and s2:

For all d ∈ Dφ, objects e of appropriate type e.ds1 = e.ds2

implies
(

s1 |= φ iff s2 |= φ
)

In the example:

self.start.year<self.end.year or
(self.start.year=self.end.year and
self.start.month<=self.end.month)

depends on

{ start.year, end.year,
start.month, end.month }
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Module-Protection I

State s:
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Module-Protection I

State s:

p

start

end

Invariant Contracts for Modules in Java – p.7



Module-Protection I

State s:

Objects Rs(m) completely controlled
by module m

m

p

start

end
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Module-Protection I

State s:

Objects Rs(m) completely controlled
by module m

m

p

start

end

jan
sep
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Module-Protection I

State s:

Objects Rs(m) completely controlled
by module m

m

p

start

end

jan
sep

Definition:

Attribute a m-protected iff for all states s,
instances e of c ∈ Tm: e.as ∈ Rs(m)
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Module-Protection II

Consider now only private attributes!

Theorem:

Module m, module contract ctm fulfilled locally, D union of depends clauses

of invariants from ctm, T classes of modules that (transitively) import m.

If for all a1. · · · .an ∈ D, n = 1

or for all i = 1, . . . , n − 1:

ai defined in m, m-protected , or

ai defined in m′ 6= m, strictly m′-protected

Then: ctm fulfilled in T.
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Establishing Module-Protection

So far: Theoretical Criterion

Needed: Method to prove module-protection

No ideal solution (yet). But:

Known patterns to solve problems are subsumed.

(Partial) Immutability by final attributes, unique pointers, ownership (by

type systems), confined types

Proof by DL proof obligation possible (?)
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(Possible / Needed) Extensions

Protection of whole attribute chains instead of single attributes.

Treatment of subtypes and protected attributes. Introduction of subtype

contracts.

Treatment of arrays.

Weak contracts.
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Implications for KeY Proof Obligations

Currently in KeY: Non-modular verification.

Now: Modular verification

Preservation of invariant φ � of class

�

φ � ∧ prem →〈〈〈 �� � ��� �	� � 
 �� �

〉〉〉φ �

Problems Changes

Preservation only shown for �� � �

. Consider other

�

objects.

Only ’s invariant Take all other classes into account

Preservation only shown for methods of . Show for methods of all classes

Show module protectedness
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Conclusions

Explicit notion for modules in Java

Definition of local and modular correctness of invariants

Criterion for modular correctness as conditions on attributes

Criterion in the line of current approaches for alias control

KeY proof obligations will change for modular proofs
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