
Invariant Contracts for Modules in Java

Andreas Roth

3rd KeYWorkshop, Königswinter, June 7th

Invariant Contracts for Modules in Java – p.1

Overview

Why is verification currently not modular in KeY?

What is the goal of modular verification?

Notions: module, module contracts, depends-clause, module-protected

attributes

How can the goal be achieved with KeY? What changes in KeY?

Invariant Contracts for Modules in Java – p.2

Overview

Why is verification currently not modular in KeY?

What is the goal of modular verification?

Notions: module, module contracts, depends-clause, module-protected

attributes

How can the goal be achieved with KeY? What changes in KeY?

Invariant Contracts for Modules in Java – p.2

Overview

Why is verification currently not modular in KeY?

What is the goal of modular verification?

Notions: module, module contracts, depends-clause, module-protected

attributes

How can the goal be achieved with KeY? What changes in KeY?

Invariant Contracts for Modules in Java – p.2

The Problem

Java Classes

Java Classes

Java Classes

(break contract)

Contract (Invariants)

non-modularily
verified

Invariant Contracts for Modules in Java – p.3

The Problem

self.start.year<self.end.year or
(self.start.year=self.end.year and
self.start.month<=self.end.month)

public class Period {
Date start, end;
//. . .

}

public class Date {
int month, year;
//. . .

}

public class Main {
public Period myPeriod(){
Date jan=new Date(1,2004);
Date sep=new Date(9,2004);
Period p=new Period(jan, sep);
jan.setYear(2005);
return p; } }

Invariant Contracts for Modules in Java – p.3

Some Observations and Questions

Recent Approaches: Existing techniques like Ownership Types are

imposed on the problem. Problem solved by restricting allowed programs.

Is the restriction minimal? Is Ownership needed?

Preferred Approach:

1. Make requirements explicit: Modules, Contracts, local and global

(modular) Correctness.

2. Define abstract theoretical criterion which satisfies requirements.

3. Find (efficient) methods to fulfil criterion.

Invariant Contracts for Modules in Java – p.4

Some Observations and Questions

Recent Approaches: Existing techniques like Ownership Types are

imposed on the problem. Problem solved by restricting allowed programs.

Is the restriction minimal? Is Ownership needed?

Preferred Approach:

1. Make requirements explicit: Modules, Contracts, local and global

(modular) Correctness.

2. Define abstract theoretical criterion which satisfies requirements.

3. Find (efficient) methods to fulfil criterion.

Invariant Contracts for Modules in Java – p.4

Some Observations and Questions

Recent Approaches: Existing techniques like Ownership Types are

imposed on the problem. Problem solved by restricting allowed programs.

Is the restriction minimal? Is Ownership needed?

Preferred Approach:

1. Make requirements explicit: Modules, Contracts, local and global

(modular) Correctness.

2. Define abstract theoretical criterion which satisfies requirements.

3. Find (efficient) methods to fulfil criterion.

Invariant Contracts for Modules in Java – p.4

Some Observations and Questions

Recent Approaches: Existing techniques like Ownership Types are

imposed on the problem. Problem solved by restricting allowed programs.

Is the restriction minimal? Is Ownership needed?

Preferred Approach:

1. Make requirements explicit: Modules, Contracts, local and global

(modular) Correctness.

2. Define abstract theoretical criterion which satisfies requirements.

3. Find (efficient) methods to fulfil criterion.

Invariant Contracts for Modules in Java – p.4

Some Observations and Questions

Recent Approaches: Existing techniques like Ownership Types are

imposed on the problem. Problem solved by restricting allowed programs.

Is the restriction minimal? Is Ownership needed?

Preferred Approach:

1. Make requirements explicit: Modules, Contracts, local and global

(modular) Correctness.

2. Define abstract theoretical criterion which satisfies requirements.

3. Find (efficient) methods to fulfil criterion.

Invariant Contracts for Modules in Java – p.4

Explicit Notion of Modules and Their Contracts

Definition (Module): Given classes Cm and Em with Em ⊆ Cm.

(Cm, Em,∅) is a module. If Im are modules, then (Cm, Em, Im) is a module.

All modules m, m′ must satisfy: for all usages of types c′ of m′ in m:

m′ ∈ Im and c′ ∈ Em′ .

Module contract of m (simplified): Invariant contracts for classes Cm.

Module contract ctm fulfilled . . .

in a set of classes T iff for all methods p of T:

p preserves the invariants of ctm.

Goal: for all T

locally iff fulfilled in Cm. Mastered (KeY)

Invariant Contracts for Modules in Java – p.5

Explicit Notion of Modules and Their Contracts

Definition (Module): Given classes Cm and Em with Em ⊆ Cm.

(Cm, Em,∅) is a module. If Im are modules, then (Cm, Em, Im) is a module.

All modules m, m′ must satisfy: for all usages of types c′ of m′ in m:

m′ ∈ Im and c′ ∈ Em′ .

Module contract of m (simplified): Invariant contracts for classes Cm.

Module contract ctm fulfilled . . .

in a set of classes T iff for all methods p of T:

p preserves the invariants of ctm.

Goal: for all T

locally iff fulfilled in Cm. Mastered (KeY)

Invariant Contracts for Modules in Java – p.5

Explicit Notion of Modules and Their Contracts

Definition (Module): Given classes Cm and Em with Em ⊆ Cm.

(Cm, Em,∅) is a module. If Im are modules, then (Cm, Em, Im) is a module.

All modules m, m′ must satisfy: for all usages of types c′ of m′ in m:

m′ ∈ Im and c′ ∈ Em′ .

Module contract of m (simplified): Invariant contracts for classes Cm.

Module contract ctm fulfilled . . .

in a set of classes T iff for all methods p of T:

p preserves the invariants of ctm.

Goal: for all T

locally iff fulfilled in Cm. Mastered (KeY)

Invariant Contracts for Modules in Java – p.5

Explicit Notion of Modules and Their Contracts

Definition (Module): Given classes Cm and Em with Em ⊆ Cm.

(Cm, Em,∅) is a module. If Im are modules, then (Cm, Em, Im) is a module.

All modules m, m′ must satisfy: for all usages of types c′ of m′ in m:

m′ ∈ Im and c′ ∈ Em′ .

Module contract of m (simplified): Invariant contracts for classes Cm.

Module contract ctm fulfilled . . .

in a set of classes T iff for all methods p of T:

p preserves the invariants of ctm.

Goal: for all T

locally iff fulfilled in Cm.

Mastered (KeY)

Invariant Contracts for Modules in Java – p.5

Explicit Notion of Modules and Their Contracts

Definition (Module): Given classes Cm and Em with Em ⊆ Cm.

(Cm, Em,∅) is a module. If Im are modules, then (Cm, Em, Im) is a module.

All modules m, m′ must satisfy: for all usages of types c′ of m′ in m:

m′ ∈ Im and c′ ∈ Em′ .

Module contract of m (simplified): Invariant contracts for classes Cm.

Module contract ctm fulfilled . . .

in a set of classes T iff for all methods p of T:

p preserves the invariants of ctm.

Goal: for all T

locally iff fulfilled in Cm.

Mastered (KeY)

Invariant Contracts for Modules in Java – p.5

Explicit Notion of Modules and Their Contracts

Definition (Module): Given classes Cm and Em with Em ⊆ Cm.

(Cm, Em,∅) is a module. If Im are modules, then (Cm, Em, Im) is a module.

All modules m, m′ must satisfy: for all usages of types c′ of m′ in m:

m′ ∈ Im and c′ ∈ Em′ .

Module contract of m (simplified): Invariant contracts for classes Cm.

Module contract ctm fulfilled . . .

in a set of classes T iff for all methods p of T:

p preserves the invariants of ctm.

Goal: for all T

locally iff fulfilled in Cm. Mastered (KeY)

Invariant Contracts for Modules in Java – p.5

Depends Clauses

Notion for the analysis of invariant contracts:

Definition (Depends Clause): Set Dφ of attribute chains a1. · · · .an.

For all

states s1 and s2:

For all d ∈ Dφ, objects e of appropriate type e.ds1 = e.ds2

implies
(

s1 |= φ iff s2 |= φ
)

In the example:

self.start.year<self.end.year or
(self.start.year=self.end.year and
self.start.month<=self.end.month)

depends on

{ start.year, end.year,
start.month, end.month }

Invariant Contracts for Modules in Java – p.6

Depends Clauses

Notion for the analysis of invariant contracts:

Definition (Depends Clause): Set Dφ of attribute chains a1. · · · .an. For all

states s1 and s2:

For all d ∈ Dφ, objects e of appropriate type e.ds1 = e.ds2

implies
(

s1 |= φ iff s2 |= φ
)

In the example:

self.start.year<self.end.year or
(self.start.year=self.end.year and
self.start.month<=self.end.month)

depends on

{ start.year, end.year,
start.month, end.month }

Invariant Contracts for Modules in Java – p.6

Depends Clauses

Notion for the analysis of invariant contracts:

Definition (Depends Clause): Set Dφ of attribute chains a1. · · · .an. For all

states s1 and s2:

For all d ∈ Dφ, objects e of appropriate type e.ds1 = e.ds2

implies
(

s1 |= φ iff s2 |= φ
)

In the example:

self.start.year<self.end.year or
(self.start.year=self.end.year and
self.start.month<=self.end.month)

depends on

{ start.year, end.year,
start.month, end.month }

Invariant Contracts for Modules in Java – p.6

Module-Protection I

State s:

Invariant Contracts for Modules in Java – p.7

Module-Protection I

State s:

p

start

end

Invariant Contracts for Modules in Java – p.7

Module-Protection I

State s:

Objects Rs(m) completely controlled
by module m

m

p

start

end

Invariant Contracts for Modules in Java – p.7

Module-Protection I

State s:

Objects Rs(m) completely controlled
by module m

m

p

start

end

jan
sep

Invariant Contracts for Modules in Java – p.7

Module-Protection I

State s:

Objects Rs(m) completely controlled
by module m

m

p

start

end

jan
sep

Definition:

Attribute a m-protected iff for all states s,
instances e of c ∈ Tm: e.as ∈ Rs(m)

Invariant Contracts for Modules in Java – p.7

Module-Protection II

Consider now only private attributes!

Theorem:

Module m, module contract ctm fulfilled locally, D union of depends clauses

of invariants from ctm, T classes of modules that (transitively) import m.

If for all a1. · · · .an ∈ D, n = 1

or for all i = 1, . . . , n − 1:

ai defined in m, m-protected , or

ai defined in m′ 6= m, strictly m′-protected

Then: ctm fulfilled in T.

Invariant Contracts for Modules in Java – p.8

Module-Protection II

Consider now only private attributes!

Theorem:

Module m, module contract ctm fulfilled locally, D union of depends clauses

of invariants from ctm, T classes of modules that (transitively) import m.

If for all a1. · · · .an ∈ D, n = 1

or for all i = 1, . . . , n − 1:

ai defined in m, m-protected , or

ai defined in m′ 6= m, strictly m′-protected

Then: ctm fulfilled in T.

Invariant Contracts for Modules in Java – p.8

Module-Protection II

Consider now only private attributes!

Theorem:

Module m, module contract ctm fulfilled locally, D union of depends clauses

of invariants from ctm, T classes of modules that (transitively) import m.

If for all a1. · · · .an ∈ D, n = 1 or for all i = 1, . . . , n − 1:

ai defined in m, m-protected

, or

ai defined in m′ 6= m, strictly m′-protected

Then: ctm fulfilled in T.

Invariant Contracts for Modules in Java – p.8

Module-Protection II

Consider now only private attributes!

Theorem:

Module m, module contract ctm fulfilled locally, D union of depends clauses

of invariants from ctm, T classes of modules that (transitively) import m.

If for all a1. · · · .an ∈ D, n = 1 or for all i = 1, . . . , n − 1:

ai defined in m, m-protected , or

ai defined in m′ 6= m, strictly m′-protected

Then: ctm fulfilled in T.

Invariant Contracts for Modules in Java – p.8

Establishing Module-Protection

So far: Theoretical Criterion

Needed: Method to prove module-protection

No ideal solution (yet). But:

Known patterns to solve problems are subsumed.

(Partial) Immutability by final attributes, unique pointers, ownership (by

type systems), confined types

Proof by DL proof obligation possible (?)

Invariant Contracts for Modules in Java – p.9

(Possible / Needed) Extensions

Protection of whole attribute chains instead of single attributes.

Treatment of subtypes and protected attributes. Introduction of subtype

contracts.

Treatment of arrays.

Weak contracts.

Invariant Contracts for Modules in Java – p.10

(Possible / Needed) Extensions

Protection of whole attribute chains instead of single attributes.

Treatment of subtypes and protected attributes. Introduction of subtype

contracts.

Treatment of arrays.

Weak contracts.

Invariant Contracts for Modules in Java – p.10

(Possible / Needed) Extensions

Protection of whole attribute chains instead of single attributes.

Treatment of subtypes and protected attributes. Introduction of subtype

contracts.

Treatment of arrays.

Weak contracts.

Invariant Contracts for Modules in Java – p.10

Implications for KeY Proof Obligations

Currently in KeY: Non-modular verification.

Now: Modular verification

Preservation of invariant φ � of class

�

φ � ∧ prem →〈〈〈 �� � ��� �	� �
 �� �

〉〉〉φ �

Problems Changes

Preservation only shown for �� � �

. Consider other

�

objects.

Only ’s invariant Take all other classes into account

Preservation only shown for methods of . Show for methods of all classes

Show module protectedness

Invariant Contracts for Modules in Java – p.11

Implications for KeY Proof Obligations

Currently in KeY: Non-modular verification.

Now: Modular verification

Preservation of invariant φ � of class

�

φ � ∧ prem →〈〈〈 �� � ��� �	� �
 �� �

〉〉〉φ �

Problems Changes

Preservation only shown for �� � �

. Consider other

�

objects.

Only ’s invariant Take all other classes into account

Preservation only shown for methods of . Show for methods of all classes

Show module protectedness

Invariant Contracts for Modules in Java – p.11

Implications for KeY Proof Obligations

Currently in KeY: Non-modular verification.

Now: Modular verification

Preservation of invariant φ � of class

�

∀ �� � �: �

.φ � ∧ prem →〈〈〈 �� � ��� �	� �
 �� �

〉〉〉∀ �� � �: �

.φ �

Problems Changes

Preservation only shown for �� � �

. Consider other

�

objects.

Only ’s invariant Take all other classes into account

Preservation only shown for methods of . Show for methods of all classes

Show module protectedness

Invariant Contracts for Modules in Java – p.11

Implications for KeY Proof Obligations

Currently in KeY: Non-modular verification.

Now: Modular verification

Preservation of invariant φ � of class

�

∀ �� � �: �

.φ � ∧ prem →〈〈〈 �� � ��� �	� �
 �� �

〉〉〉∀ �� � �: �

.φ �

Problems Changes

Preservation only shown for �� � �

. Consider other

�

objects.

Only

�

’s invariant Take all other classes into account

Preservation only shown for methods of . Show for methods of all classes

Show module protectedness

Invariant Contracts for Modules in Java – p.11

Implications for KeY Proof Obligations

Currently in KeY: Non-modular verification.

Now: Modular verification

Preservation of all invariants φc′ of all classes c′

(

^

all classes c′

of module

∀ �� � �: c′ .φc′
)

∧ prem →〈〈〈 �� � ��� �	� �
 �� �

〉〉〉
(

^

all classes c′

of module

∀ �� � �: c′ .φc′
)

Problems Changes

Preservation only shown for �� � �

. Consider other

�

objects.

Only

�

’s invariant Take all other classes into account

Preservation only shown for methods of . Show for methods of all classes

Show module protectedness

Invariant Contracts for Modules in Java – p.11

Implications for KeY Proof Obligations

Currently in KeY: Non-modular verification.

Now: Modular verification

Preservation of all invariants φc′ of all classes c′

(

^

all classes c′

of module

∀ �� � �: c′ .φc′
)

∧ prem →〈〈〈 �� � ��� �	� �
 �� �

〉〉〉
(

^

all classes c′

of module

∀ �� � �: c′ .φc′
)

Problems Changes

Preservation only shown for �� � �

. Consider other

�

objects.

Only

�

’s invariant Take all other classes into account

Preservation only shown for methods of

�

. Show for methods of all classes

Show module protectedness

Invariant Contracts for Modules in Java – p.11

Implications for KeY Proof Obligations

Currently in KeY: Non-modular verification.

Now: Modular verification

For all methods: Preservation of all invariants φc′ of all classes c′

(

^

all classes c′

of module

∀ �� � �: c′ .φc′
)

∧ prem →〈〈〈 �� � ��� �	� �
 �� �

〉〉〉
(

^

all classes c′

of module

∀ �� � �: c′ .φc′
)

Problems Changes

Preservation only shown for �� � �

. Consider other

�

objects.

Only

�

’s invariant Take all other classes into account

Preservation only shown for methods of

�

. Show for methods of all classes

Show module protectedness

Invariant Contracts for Modules in Java – p.11

Implications for KeY Proof Obligations

Currently in KeY: Non-modular verification. Now: Modular verification

For all methods: Preservation of all invariants φc′ of all classes c′

(

^

all classes c′

of module

∀ �� � �: c′ .φc′
)

∧ prem →〈〈〈 �� � ��� �	� �
 �� �

〉〉〉
(

^

all classes c′

of module

∀ �� � �: c′ .φc′
)

Problems Changes

Preservation only shown for �� � �

. Consider other

�

objects.

Only

�

’s invariant Take all other classes into account

Preservation only shown for methods of

�

. Show for methods of all classes

Show module protectedness

Invariant Contracts for Modules in Java – p.11

Implications for KeY Proof Obligations

Currently in KeY: Non-modular verification. Now: Modular verification

For all methods: Preservation of all invariants φc′ of all classes c′ of module

(

^

all classes c′
of module

∀ �� � �: c′ .φc′
)

∧ prem →〈〈〈 �� � ��� �	� �
 �� �

〉〉〉
(

^

all classes c′
of module

∀ �� � �: c′ .φc′
)

Problems Changes

Preservation only shown for �� � �

. Consider other

�

objects.

Only

�

’s invariant Take all other classes into account

Preservation only shown for methods of

�

. Show for methods of all classes

Show module protectedness

Invariant Contracts for Modules in Java – p.11

Implications for KeY Proof Obligations

Currently in KeY: Non-modular verification. Now: Modular verification

For all methods: Preservation of all invariants φc′ of all classes c′of module

(

^

all classes c′
of module

∀ �� � �: c′ .φc′
)

∧ prem →〈〈〈 �� � ��� �	� �
 �� �

〉〉〉
(

^

all classes c′
of module

∀ �� � �: c′ .φc′
)

Problems Changes

Preservation only shown for �� � �

. Consider other

�

objects.

Only

�

’s invariant Take all other classes into account

Preservation only shown for methods of

�

. Show for methods of all classes

Show module protectedness

Invariant Contracts for Modules in Java – p.11

Conclusions

Explicit notion for modules in Java

Definition of local and modular correctness of invariants

Criterion for modular correctness as conditions on attributes

Criterion in the line of current approaches for alias control

KeY proof obligations will change for modular proofs

Invariant Contracts for Modules in Java – p.12

Conclusions

Explicit notion for modules in Java

Definition of local and modular correctness of invariants

Criterion for modular correctness as conditions on attributes

Criterion in the line of current approaches for alias control

KeY proof obligations will change for modular proofs

Invariant Contracts for Modules in Java – p.12

Conclusions

Explicit notion for modules in Java

Definition of local and modular correctness of invariants

Criterion for modular correctness as conditions on attributes

Criterion in the line of current approaches for alias control

KeY proof obligations will change for modular proofs

Invariant Contracts for Modules in Java – p.12

Conclusions

Explicit notion for modules in Java

Definition of local and modular correctness of invariants

Criterion for modular correctness as conditions on attributes

Criterion in the line of current approaches for alias control

KeY proof obligations will change for modular proofs

Invariant Contracts for Modules in Java – p.12

Conclusions

Explicit notion for modules in Java

Definition of local and modular correctness of invariants

Criterion for modular correctness as conditions on attributes

Criterion in the line of current approaches for alias control

KeY proof obligations will change for modular proofs

Invariant Contracts for Modules in Java – p.12

	
	Overview
	The Problem
	Some Observations and Questions
	Explicit Notion of Modules and Their Contracts
	Depends Clauses
	Module-Protection I
	Module-Protection II
	Establishing Module-Protection
	(Possible / Needed)
Extensions
	Implications for KeY Proof Obligations
	Conclusions

