Invariant Contracts for Modules in Java

Andreas Roth

3rd KeYWorkshop, Königswinter, June 7th

Invariant Contracts for Modules in Java - p.1

Why is verification currently not modular in KeY?

- Why is verification currently not modular in KeY?
- What is the goal of modular verification?
 Notions: module, module contracts, depends-clause, module-protected attributes

- Why is verification currently not modular in KeY?
- What is the goal of modular verification?
 Notions: module, module contracts, depends-clause, module-protected attributes
- How can the goal be achieved with KeY? What changes in KeY?

The Problem

The Problem

 Recent Approaches: Existing techniques like Ownership Types are imposed on the problem. Problem solved by restricting allowed programs. Is the restriction minimal? Is Ownership needed?

- Recent Approaches: Existing techniques like Ownership Types are imposed on the problem. Problem solved by restricting allowed programs.
 Is the restriction minimal? Is Ownership needed?
- Preferred Approach:

- Recent Approaches: Existing techniques like Ownership Types are imposed on the problem. Problem solved by restricting allowed programs. Is the restriction minimal? Is Ownership needed?
- Preferred Approach:
 - Make requirements explicit: Modules, Contracts, local and global (modular) Correctness.

Recent Approaches: Existing techniques like Ownership Types are imposed on the problem. Problem solved by restricting allowed programs. Is the restriction minimal? Is Ownership needed?

Preferred Approach:

- Make requirements explicit: Modules, Contracts, local and global (modular) Correctness.
- 2. Define abstract theoretical criterion which satisfies requirements.

Recent Approaches: Existing techniques like Ownership Types are imposed on the problem. Problem solved by restricting allowed programs. Is the restriction minimal? Is Ownership needed?

Preferred Approach:

- Make requirements explicit: Modules, Contracts, local and global (modular) Correctness.
- 2. Define abstract theoretical criterion which satisfies requirements.
- 3. Find (efficient) methods to fulfil criterion.

Definition (Module): Given classes C_m and E_m with $E_m \subseteq C_m$. (C_m, E_m, \emptyset) is a module. If I_m are modules, then (C_m, E_m, I_m) is a module. All modules m, m' must satisfy: for all usages of types c' of m' in m:

 $m' \in I_m$ and $c' \in E_{m'}$.

Definition (Module): Given classes C_m and E_m with $E_m \subseteq C_m$. (C_m, E_m, \emptyset) is a module. If I_m are modules, then (C_m, E_m, I_m) is a module. All modules m, m' must satisfy: for all usages of types c' of m' in m:

 $m' \in I_m$ and $c' \in E_{m'}$.

Module contract of *m* (simplified): Invariant contracts for classes C_m .

Definition (Module): Given classes C_m and E_m with $E_m \subseteq C_m$. (C_m, E_m, \emptyset) is a module. If I_m are modules, then (C_m, E_m, I_m) is a module. All modules m, m' must satisfy: for all usages of types c' of m' in m:

 $m' \in I_m$ and $c' \in E_{m'}$.

Module contract of *m* (simplified): Invariant contracts for classes C_m .

Module contract ct_m fulfilled ...

• in a set of classes T iff for all methods p of T:

p preserves the invariants of ct_m .

Definition (Module): Given classes C_m and E_m with $E_m \subseteq C_m$. (C_m, E_m, \emptyset) is a module. If I_m are modules, then (C_m, E_m, I_m) is a module. All modules m, m' must satisfy: for all usages of types c' of m' in m:

 $m' \in I_m$ and $c' \in E_{m'}$.

Module contract of *m* (simplified): Invariant contracts for classes C_m .

Module contract ct_m fulfilled ...

• in a set of classes T iff for all methods p of T:

p preserves the invariants of ct_m .

• locally iff fulfilled in C_m .

Definition (Module): Given classes C_m and E_m with $E_m \subseteq C_m$. (C_m, E_m, \emptyset) is a module. If I_m are modules, then (C_m, E_m, I_m) is a module. All modules m, m' must satisfy: for all usages of types c' of m' in m:

 $m' \in I_m$ and $c' \in E_{m'}$.

Module contract of *m* (simplified): Invariant contracts for classes C_m .

Module contract ct_m fulfilled ...

- in a set of classes *T* iff for all methods *p* of *T*: Goal: for all *T* p preserves the invariants of ct_m .
- locally iff fulfilled in C_m .

Definition (Module): Given classes C_m and E_m with $E_m \subseteq C_m$. (C_m, E_m, \emptyset) is a module. If I_m are modules, then (C_m, E_m, I_m) is a module. All modules m, m' must satisfy: for all usages of types c' of m' in m:

 $m' \in I_m$ and $c' \in E_{m'}$.

Module contract of *m* (simplified): Invariant contracts for classes C_m .

Module contract ct_m fulfilled ...

- in a set of classes T iff for all methods p of T: Goal: for all T p preserves the invariants of ct_m .
- locally iff fulfilled in C_m .

Notion for the analysis of invariant contracts:

Definition (Depends Clause): Set D_{ϕ} of attribute chains $a_1 \cdots a_n$.

Notion for the analysis of invariant contracts:

Definition (Depends Clause): Set D_{ϕ} of attribute chains $a_1 \cdots a_n$. For all states s_1 and s_2 :

For all
$$d \in D_{\phi}$$
, objects e of appropriate type $e.d_{s_1} = e.d_{s_2}$

implies

$$(s_1 \models \phi \text{ iff } s_2 \models \phi)$$

Notion for the analysis of invariant contracts:

Definition (Depends Clause): Set D_{ϕ} of attribute chains $a_1 \cdots a_n$. For all states s_1 and s_2 :

For all
$$d \in D_{\phi}$$
, objects e of appropriate type $e.d_{s_1} = e.d_{s_2}$

implies

$$(s_1 \models \phi \text{ iff } s_2 \models \phi)$$

In the example:

self.start.year<self.end.year or
(self.start.year=self.end.year and
self.start.month<=self.end.month)</pre>

depends on

```
{ start.year, end.year,
 start.month, end.month }
```


Theorem:

Module *m*, module contract ct_m fulfilled locally, *D* union of depends clauses of invariants from ct_m , *T* classes of modules that (transitively) import *m*. If for all $a_1 \cdots a_n \in D$, n = 1

Theorem:

Module *m*, module contract ct_m fulfilled locally, *D* union of depends clauses of invariants from ct_m , *T* classes of modules that (transitively) import *m*. If for all $a_1 \cdots a_n \in D$, n = 1

Theorem:

Module *m*, module contract ct_m fulfilled locally, *D* union of depends clauses of invariants from ct_m , *T* classes of modules that (transitively) import *m*. If for all $a_1 \dots a_n \in D$, n = 1 or for all $i = 1, \dots, n - 1$:

• a_i defined in m, m-protected

Theorem:

Module *m*, module contract ct_m fulfilled locally, *D* union of depends clauses of invariants from ct_m , *T* classes of modules that (transitively) import *m*. If for all $a_1 \dots a_n \in D$, n = 1 or for all $i = 1, \dots, n - 1$:

- a_i defined in m, m-protected, or
- a_i defined in $m' \neq m$, strictly m'-protected

Establishing Module-Protection

So far: Theoretical Criterion

Needed: Method to prove module-protection

No ideal solution (yet). But:

Known patterns to solve problems are subsumed.

(Partial) Immutability by final attributes, unique pointers, ownership (by type systems), confined types

Proof by DL proof obligation possible (?)

(Possible / Needed) Extensions

Protection of whole attribute chains instead of single attributes.

Invariant Contracts for Modules in Java - p.10

(Possible / Needed) Extensions

- Protection of whole attribute chains instead of single attributes.
- Treatment of subtypes and protected attributes. Introduction of subtype contracts.

(Possible / Needed) Extensions

- Protection of whole attribute chains instead of single attributes.
- Treatment of subtypes and protected attributes. Introduction of subtype contracts.
- Treatment of arrays.

Currently in KeY: Non-modular verification.

Preservation of invariant $\phi_{\rm C}$ of class C

$$\phi_{\mathsf{C}} \wedge pre_m \rightarrow \langle \texttt{self.C::m(p)} \rangle \phi_{\mathsf{C}}$$

Problems

Changes

Preservation only shown for self.

Consider other C objects.

Currently in KeY: Non-modular verification.

Preservation of invariant $\phi_{\rm C}$ of class C

$$\phi_{\mathsf{C}} \wedge pre_m \rightarrow \langle \texttt{self.C::m(p)} \rangle \phi_{\mathsf{C}}$$

Problems

Changes

Preservation only shown for self.

Consider other C objects.

Currently in KeY: Non-modular verification.

Preservation of invariant $\phi_{\rm C}$ of class C

 $\forall \texttt{self:C} . \phi_{\texttt{C}} \land pre_m \rightarrow \texttt{(self.C::m(p))} \forall \texttt{self:C} . \phi_{\texttt{C}}$

Problems

Changes

Preservation only shown for self.

Consider other C objects.

Currently in KeY: Non-modular verification.

Preservation of invariant $\phi_{\rm C}$ of class C

 $\forall \texttt{self:C} . \phi_{\texttt{C}} \land pre_m \rightarrow \texttt{(self.C::m(p))} \forall \texttt{self:C} . \phi_{\texttt{C}}$

Problems	Changes
Preservation only shown for self.	Consider other C objects.
Only C's invariant	Take all other classes into account

Currently in KeY: Non-modular verification.

Preservation of all invariants $\phi_{c'}$ of all classes c'

$$\left(\bigwedge \forall \texttt{self:} c' . \phi_{c'} \right) \land pre_m \to \texttt{(self.C::m(p))} \left(\bigwedge \forall \texttt{self:} c' . \phi_{c'} \right)$$
all classes c' all classes c'

Problems	Changes
Preservation only shown for self.	Consider other C objects.
Only C's invariant	Take all other classes into account

Currently in KeY: Non-modular verification.

Preservation of all invariants $\phi_{c'}$ of all classes c'

$$\Big(\bigwedge_{\text{all classes } c'} \forall \texttt{self:} c' . \phi_{c'} \Big) \land pre_m \to \texttt{(self.C::m(p))} \Big(\bigwedge_{\text{all classes } c'} \forall \texttt{self:} c' . \phi_{c'} \Big)$$

Problems	Changes
Preservation only shown for self.	Consider other C objects.
Only C's invariant	Take all other classes into account

Currently in KeY: Non-modular verification.

For all methods: Preservation of all invariants $\phi_{c'}$ of all classes c'

$$\Big(\bigwedge_{\text{all classes } c'} \forall \texttt{self:} c' . \phi_{c'} \Big) \land pre_m \to \texttt{(self.C::m(p))} \Big(\bigwedge_{\text{all classes } c'} \forall \texttt{self:} c' . \phi_{c'} \Big)$$

Problems	Changes
Preservation only shown for self.	Consider other C objects.
Only C's invariant	Take all other classes into account

Currently in KeY: Non-modular verification. Now: Modular verification

For all methods: Preservation of all invariants $\phi_{c'}$ of all classes c'

$$\Big(\bigwedge_{\text{all classes } c'} \forall \texttt{self:} c' . \phi_{c'} \Big) \land pre_m \to \texttt{(self.C::m(p))} \Big(\bigwedge_{\text{all classes } c'} \forall \texttt{self:} c' . \phi_{c'} \Big)$$

Problems	Changes
Preservation only shown for self.	Consider other C objects.
Only C's invariant	Take all other classes into account

Currently in KeY: Non-modular verification. Now: Modular verification

For all methods: Preservation of all invariants $\phi_{c'}$ of all classes c' of module

$$\left(\bigwedge_{\substack{\mathsf{dself}:c' \ .\phi_{c'}}} \forall \mathsf{self}:c' \ .\phi_{c'} \right) \land pre_m \to \langle \mathsf{self}.\mathsf{C}::\mathsf{m}(\mathsf{p}) \rangle \left(\bigwedge_{\substack{\mathsf{dself}:c' \ .\phi_{c'}}} \forall \mathsf{self}:c' \ .\phi_{c'} \right)$$
 all classes c' of module

Problems Changes

Preservation only shown for self. Consider other C objects.

Only C's invariant

Take all other classes into account

Currently in KeY: Non-modular verification. Now: Modular verification

For all methods: Preservation of all invariants $\phi_{c'}$ of all classes c' of module

$$\left(\bigwedge_{\substack{\mathsf{dself}:c' \ .\phi_{c'}}} \forall \mathsf{self}:c' \ .\phi_{c'} \right) \land pre_m \to \langle \mathsf{self}.\mathsf{C}::\mathsf{m}(\mathsf{p}) \rangle \left(\bigwedge_{\substack{\mathsf{dself}:c' \ .\phi_{c'}}} \forall \mathsf{self}:c' \ .\phi_{c'} \right)$$
 all classes c' of module

Problems Changes

Preservation only shown for self. Consider other C objects.

Only C's invariant

Take all other classes into account

Preservation only shown for methods of C. Show for methods of all classes

Show module protectedness

Conclusions

Explicit notion for modules in Java

- Explicit notion for modules in Java
- Definition of local and modular correctness of invariants

- Explicit notion for modules in Java
- Definition of local and modular correctness of invariants
- Criterion for modular correctness as conditions on attributes

- Explicit notion for modules in Java
- Definition of local and modular correctness of invariants
- Criterion for modular correctness as conditions on attributes
- Criterion in the line of current approaches for alias control

- Explicit notion for modules in Java
- Definition of local and modular correctness of invariants
- Criterion for modular correctness as conditions on attributes
- Criterion in the line of current approaches for alias control
- KeY proof obligations will change for modular proofs

