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Overview

Introduction to CSP:
Concept, basic operators

Introduction to JCSP:
Basic classes

Approach for verification of JCSP systems:
Representation of systems
Concept of a calculus



Communicating Sequential Processes

Process Algebra, originally devised by Tony
Hoare (1978)

ystems — p.3/43



Communicating Sequential Processes

Process Algebra, originally devised by Tony
Hoare (1978)

Formalism to design/describe interacting
systems



Communicating Sequential Processes

Process Algebra, originally devised by Tony
Hoare (1978)

Formalism to design/describe interacting
systems

Today widely used to model protocols or
hardware



Communicating Sequential Processes

Process Algebra, originally devised by Tony
Hoare (1978)

Formalism to design/describe interacting
systems

Today widely used to model protocols or
hardware

Analysis (mostly) through model checking
(e.g. the FDR model checker)
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Introduction to CSP: Processes

Processes pose central entity of CSP concept

A process is described uniquely by its
potential communication with an environment

Communication is a sequence of atomic
events (e.g. Processes = Languages)
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Automata as Processes

States of automata can be regarded as
Processes:

° traces || Q|| = {¢}
traces || P]| = {a, bca, . . .}
. \ . traces | R|| = {ca, cbeca, . . .}

Generalised as /labelled transition
systems (LTS), usually infinite
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CSP Terms

Processes are usually described through
CSP terms

Definition of automaton using terms:
° Q = stop
R=c— P

T Fasens

°
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Basic CSP Operators: Parallelism

Term notation: (X: the interface set)
PiLx] @

LTS appearance (for X = {b}):
I N
P x o] [P2| 01] [P Il @)
[P I[X | C?]




Basic CSP Operators: Parallelism

- Parallelism = Product of LTSs



Basic CSP Operators: Parallelism

Parallelism =— Product of LTSs

Full synchronisation P || A/|| @ = Intersection
of languages



Basic CSP Operators: Parallelism

Parallelism =— Product of LTSs

Full synchronisation P || A/|| @ = Intersection
of languages

Shorter notation for interleaving:

Plle = Plg]a
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Basic CSP Operators: Messages

Transmission of values as events
Sending message v:

x—P = Ix—P
Reading of messages: Generalised Choice

"X A— P(x) =
(vi = P(11)) O (vo — P(v)) O -

(Where A = {Vl, Vo, . . })
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S="n—!(n+1)—S (ne N)
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Example

A process computing sucCCessors:
S="n—!(n+1)—S (ne N)
LTS view:
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Example (3)

A S SZ?H%!(H+1)—>S
A=141 —7n — A(n)
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Example (3)

A S SZ?H%!(H+1)—>S
A=141 —-7'n — A(n)
AT oo > 41
’n — A(n) 142 — S
AD <o )
A(42) S
v v
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CSP for Java (JCSP)

Implementation of CSP process model in
Java by P. D. Austin and P. H. Welch

Very similar to the Occam language
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JCSP Example

CSP example: A|[N | S

A

N

S

Corresponding JCSP object diagram:

par : Parallel

server : S
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Introduction to JCSP

Processes represented by interface

<<interface>>

CSProcess

+run ()

e

+run ()

In JCSP processes have identities
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Introduction to JCSP (2)

CSP operator of parallelism (actually
interleaving) captured by

<<interface>>

CSProcess

Parallel

+run ()

+run () +addProcess (p:CSProcess)

Each process is executed in its own thread

Interactive Verification of Concurrent Systems — p.28/43
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Introduction to JCSP (3)

Messages are sent through channels

One20neChannel

<<interface>>

Channel +read () : Object

+write (o:0bject)

+read () : Object

+write (o:0bject)

No “unbound” events as in CSP

Interactive Verification of Concurrent Systems — p.29/43



Implementation of S in JCSP

import jcsp.lang.x;

public class S implements CSProcess {
private final Channel c;
public S (Channel ¢c) { this.c = c; }

public void run () {
while ( true ) {
final Integer i = (Integer)c.read();
c.write (new Integer(i.intValue() + 1));
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Building Systems from Components

Interface of a component is a tuple of
channels + a protocol

Systems are assembled from simpler
components

Contrary to normal instances of classes,
components are active

° °
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Building Systems from Components

1 — JAN 0— A ——
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A Proof System for JCSP

Basic concept:
Represent JCSP systems as CSP terms
Symbolically execute CSP terms — LTS

Specify/Prove LTS properties using a
temporal/modal logic

JavaCard(DL) CSP model of JCSP
CSP calculus

Modal logic/calculus
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A Proof System for JCSP (2)

A sequential Java program « is regarded as a
CSP process T(«)

Communication of T(«) is caused (only) by
JCSP primitives

— no shared memory

JCSP primitives are modelled using CSP
operators



Modelling JCSP Parallelism

Class Parallel is represented by interleaving:

Parallel par = new Parallel ();
par.addProcess(s1);
par.addProcess(s2);

par.run();




Modelling JCSP Parallelism

Class Parallel is represented by interleaving:

Parallel par = new Parallel ();
par.addProcess(s1);
par.addProcess(s2);

par.run();

Corresponding process term:

T(.. parrun(); ...) =
T(..st.run();...) || 7(.. s2.run(); ...) ||| - -
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Modelling JCSP Channels

Each JCSP channel object is represented by
a routing process

Channel constructors add routers:

T(.. new One20neChannel(); ...) =
O20Router || O20Events || T(.. ...)

Execution of Channel.read(), Channel.write()
raises events
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Example

System after execution of

Channel ¢ = new One20neChannel () ;
Parallel par = new Parallel ();
par.addProcess (new P1 (c));
par.addProcess (new P2 (c));
par.run () ;

is described by

O20Router [ O20Events || ( T(p1.run();) ||| T(p2.run();))
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Message Transmission through c

O20Router || OZOEvents]|
(T(.. c.write(0); ...) ||| T(.. a=c.read(); ...))

A

~ lo— (020Router |- ]| (T(....) || T(.....)))
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Symbolic Analysis of JCSP Systems

Possible logics for expressing properties of
Processes:

u-Calculus
LTL, CTL, etc.

Possible CSP calculi:
Based on operational semantics of CSP
Rewriting system based on algebraic laws

Rewriting system based on partial order
extension of CSP
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Summary: Modelling JCSP

Representation of simple channels finished

Incomplete: More complex communication
(e.g. buffered channels, barriers, sending of
complex data structures)
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Summary: CSP calculi

Most encouraging results with partial order
approach
Further investigation needed for:

Interface to modal logic

Interaction with user

Treatment of proving technigues
(postponed): Induction, compositional
proving
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