
Interactive Verification of
Concurrent Systems

Philipp Rümmer

ph r@gmx.net

University of Karlsruhe

Institute for Logic, Complexity and Deduction Systems

D-76128 Karlsruhe, Germany

Interactive Verification of Concurrent Systems – p.1/43

Overview

� Introduction to CSP:

Concept, basic operators

Introduction to JCSP:
Basic classes

Approach for verification of JCSP systems:
Representation of systems
Concept of a calculus

Interactive Verification of Concurrent Systems – p.2/43

Overview

� Introduction to CSP:

� Concept, basic operators

Introduction to JCSP:
Basic classes

Approach for verification of JCSP systems:
Representation of systems
Concept of a calculus

Interactive Verification of Concurrent Systems – p.2/43

Overview

� Introduction to CSP:

� Concept, basic operators

� Introduction to JCSP:

Basic classes

Approach for verification of JCSP systems:
Representation of systems
Concept of a calculus

Interactive Verification of Concurrent Systems – p.2/43

Overview

� Introduction to CSP:

� Concept, basic operators

� Introduction to JCSP:

� Basic classes

Approach for verification of JCSP systems:
Representation of systems
Concept of a calculus

Interactive Verification of Concurrent Systems – p.2/43

Overview

� Introduction to CSP:

� Concept, basic operators

� Introduction to JCSP:

� Basic classes

� Approach for verification of JCSP systems:

Representation of systems
Concept of a calculus

Interactive Verification of Concurrent Systems – p.2/43

Overview

� Introduction to CSP:

� Concept, basic operators

� Introduction to JCSP:

� Basic classes

� Approach for verification of JCSP systems:

� Representation of systems

Concept of a calculus

Interactive Verification of Concurrent Systems – p.2/43

Overview

� Introduction to CSP:

� Concept, basic operators

� Introduction to JCSP:

� Basic classes

� Approach for verification of JCSP systems:

� Representation of systems

� Concept of a calculus

Interactive Verification of Concurrent Systems – p.2/43

Communicating Sequential Processes

� Process Algebra, originally devised by Tony
Hoare (1978)

Formalism to design/describe interacting
systems

Today widely used to model protocols or
hardware

Analysis (mostly) through model checking
(e.g. the FDR model checker)

Interactive Verification of Concurrent Systems – p.3/43

Communicating Sequential Processes

� Process Algebra, originally devised by Tony
Hoare (1978)

� Formalism to design/describe interacting
systems

Today widely used to model protocols or
hardware

Analysis (mostly) through model checking
(e.g. the FDR model checker)

Interactive Verification of Concurrent Systems – p.3/43

Communicating Sequential Processes

� Process Algebra, originally devised by Tony
Hoare (1978)

� Formalism to design/describe interacting
systems

� Today widely used to model protocols or
hardware

Analysis (mostly) through model checking
(e.g. the FDR model checker)

Interactive Verification of Concurrent Systems – p.3/43

Communicating Sequential Processes

� Process Algebra, originally devised by Tony
Hoare (1978)

� Formalism to design/describe interacting
systems

� Today widely used to model protocols or
hardware

� Analysis (mostly) through model checking
(e.g. the FDR model checker)

Interactive Verification of Concurrent Systems – p.3/43

Introduction to CSP: Processes

� Processes pose central entity of CSP concept

A process is described uniquely by its
potential communication with an environment

Communication is a sequence of atomic
events (e.g. Processes Languages)

Interactive Verification of Concurrent Systems – p.4/43

Introduction to CSP: Processes

� Processes pose central entity of CSP concept

� A process is described uniquely by its
potential communication with an environment

Communication is a sequence of atomic
events (e.g. Processes Languages)

Interactive Verification of Concurrent Systems – p.4/43

Introduction to CSP: Processes

� Processes pose central entity of CSP concept

� A process is described uniquely by its
potential communication with an environment

� Communication is a sequence of atomic
events (e.g. Processes � Languages)

Interactive Verification of Concurrent Systems – p.4/43

Automata as Processes

� States of automata can be regarded as
processes:

P

Q

a

R

b c

traces Q ε

traces P a, bca, . . .
traces R ca, cbca, . . .

Generalised as labelled transition
systems (LTS), usually infinite

Interactive Verification of Concurrent Systems – p.5/43

Automata as Processes

� States of automata can be regarded as
processes:

P

Q

a

R

b c

traces

� �
Q

� � � �

ε

�

traces P a, bca, . . .
traces R ca, cbca, . . .

Generalised as labelled transition
systems (LTS), usually infinite

Interactive Verification of Concurrent Systems – p.5/43

Automata as Processes

� States of automata can be regarded as
processes:

P

Q

a

R

b c

traces

� �
Q

� � � �

ε

�

traces
� �

P
� � � �

a, bca, . . .

�

traces R ca, cbca, . . .

Generalised as labelled transition
systems (LTS), usually infinite

Interactive Verification of Concurrent Systems – p.5/43

Automata as Processes

� States of automata can be regarded as
processes:

P

Q

a

R

b c

traces

� �
Q

� � � �

ε

�

traces
� �

P
� � � �

a, bca, . . .

�

traces
� �

R

� � � �

ca, cbca, . . .

�

Generalised as labelled transition
systems (LTS), usually infinite

Interactive Verification of Concurrent Systems – p.5/43

Automata as Processes

� States of automata can be regarded as
processes:

P

Q

a

R

b c

traces

� �
Q

� � � �

ε

�

traces
� �

P
� � � �

a, bca, . . .

�

traces
� �

R

� � � �

ca, cbca, . . .

�

� Generalised as labelled transition
systems (LTS), usually infinite

Interactive Verification of Concurrent Systems – p.5/43

CSP Terms

� Processes are usually described through
CSP terms

Definition of automaton using terms:

P

Q

a

R

b c

Q stop
R c → P
P a → Q 2 b → R

Interactive Verification of Concurrent Systems – p.6/43

CSP Terms

� Processes are usually described through
CSP terms

� Definition of automaton using terms:

P

Q

a

R

b c

Q stop
R c → P
P a → Q 2 b → R

Interactive Verification of Concurrent Systems – p.6/43

CSP Terms

� Processes are usually described through
CSP terms

� Definition of automaton using terms:

P

Q

a

R

b c

Q � stop

R c → P
P a → Q 2 b → R

Interactive Verification of Concurrent Systems – p.6/43

CSP Terms

� Processes are usually described through
CSP terms

� Definition of automaton using terms:

P

Q

a

R

b c

Q � stop
R � c → P

P a → Q 2 b → R

Interactive Verification of Concurrent Systems – p.6/43

CSP Terms

� Processes are usually described through
CSP terms

� Definition of automaton using terms:

P

Q

a

R

b c

Q � stop
R � c → P
P � �

a → Q

�

2

�

b → R

�

Interactive Verification of Concurrent Systems – p.6/43

Basic CSP Operators: Locked Process

� Term notation:
stop

LTS appearance:
stop

Interactive Verification of Concurrent Systems – p.7/43

Basic CSP Operators: Locked Process

� Term notation:
stop

� LTS appearance:
stop

Interactive Verification of Concurrent Systems – p.7/43

Basic CSP Operators: Prefixing

� Term notation:
a → P

LTS appearance:
P

a → P

a

Interactive Verification of Concurrent Systems – p.8/43

Basic CSP Operators: Prefixing

� Term notation:
a → P

� LTS appearance:
P

a → P

a

Interactive Verification of Concurrent Systems – p.8/43

Basic CSP Operators: Choice

� Term notation:
P 2 Q

LTS appearance:

Interactive Verification of Concurrent Systems – p.9/43

Basic CSP Operators: Choice

� Term notation:
P 2 Q

� LTS appearance:
P

a
b

Q

b
c

P1 P2

	 	 	 Q1 Q2

P 2 Q

Interactive Verification of Concurrent Systems – p.10/43

Basic CSP Operators: Choice

� Term notation:
P 2 Q

� LTS appearance:
P

a
b

Q

b
c

P1 P2

	 	 	 Q1 Q2

P 2 Q

Interactive Verification of Concurrent Systems – p.11/43

Basic CSP Operators: Choice

� Term notation:
P 2 Q

� LTS appearance:
P

a
b

Q

b
c

P1 P2

	 	 	 Q1 Q2

P 2 Q
a

b b
c

Interactive Verification of Concurrent Systems – p.12/43

Basic CSP Operators: Parallelism

� Term notation: (X : the interface set)

P

 �

X

�

Q

LTS appearance (for X b):
P

a
b

Q
b

c

P1 P2 Q1 Q2

P1 X Q P2 X Q1 P X Q2

P X Q
a b c

Interactive Verification of Concurrent Systems – p.13/43

Basic CSP Operators: Parallelism

� Term notation: (X : the interface set)

P

 �

X

�

Q

� LTS appearance (for X � �
b

�
):

P
a

b

Q
b

c

P1 P2

	 	 	 Q1 Q2

P1 X Q P2 X Q1 P X Q2

P X Q
a b c

Interactive Verification of Concurrent Systems – p.14/43

Basic CSP Operators: Parallelism

� Term notation: (X : the interface set)

P

 �

X

�

Q

� LTS appearance (for X � �
b

�
):

P
a

b

Q
b

c

P1 P2

	 	 	 Q1 Q2

P1

 �

X

�

Q P2

 �

X

�

Q1 P

 �

X

�

Q2

P

 �

X

�

Q

Interactive Verification of Concurrent Systems – p.15/43

Basic CSP Operators: Parallelism

� Term notation: (X : the interface set)

P

 �

X

�

Q

� LTS appearance (for X � �
b

�
):

P
a

b

Q
b

c

P1 P2

	 	 	 Q1 Q2

P1

 �

X

�

Q P2

 �

X

�

Q1 P

 �

X

�

Q2

P

 �

X

�

Q
a c

Interactive Verification of Concurrent Systems – p.16/43

Basic CSP Operators: Parallelism

� Term notation: (X : the interface set)

P

 �

X

�

Q

� LTS appearance (for X � �
b

�
):

P
a

b

Q
b

c

P1 P2

	 	 	 Q1 Q2

P1

 �

X

�

Q P2

 �

X

�

Q1 P

 �

X

�

Q2

P

 �

X

�

Q
a b c

Interactive Verification of Concurrent Systems – p.17/43

Basic CSP Operators: Parallelism

� Parallelism � Product of LTSs

Full synchronisation P Al Q Intersection
of languages

Shorter notation for interleaving:

P Q : P Q

Interactive Verification of Concurrent Systems – p.18/43

Basic CSP Operators: Parallelism

� Parallelism � Product of LTSs

� Full synchronisation P

 �

Al

�

Q � Intersection
of languages

Shorter notation for interleaving:

P Q : P Q

Interactive Verification of Concurrent Systems – p.18/43

Basic CSP Operators: Parallelism

� Parallelism � Product of LTSs

� Full synchronisation P

 �

Al

�

Q � Intersection
of languages

� Shorter notation for interleaving:

P

Q : � P

 � �

Q

Interactive Verification of Concurrent Systems – p.18/43

Basic CSP Operators: Messages

� Transmission of values as events

Sending message v :

x → P !x → P

Reading of messages: Generalised Choice

?x : A → P x :

v1 → P v1 2 v2 → P v2 2

(where A v1, v2, . . .)

Interactive Verification of Concurrent Systems – p.19/43

Basic CSP Operators: Messages

� Transmission of values as events

� Sending message v :

x → P � !x → P

Reading of messages: Generalised Choice

?x : A → P x :

v1 → P v1 2 v2 → P v2 2

(where A v1, v2, . . .)

Interactive Verification of Concurrent Systems – p.19/43

Basic CSP Operators: Messages

� Transmission of values as events

� Sending message v :

x → P � !x → P

� Reading of messages: Generalised Choice

?x : A → P

�

x

�

: �

�

v1 → P

�

v1

� �

2

�

v2 → P

�

v2

� �

2 	 	 	

(where A � �
v1, v2, . . .

�

)

Interactive Verification of Concurrent Systems – p.19/43

Example

� A process computing successors:

S � ?n → !

�

n

�

1

�

→ S
�

n �

LTS view:
S

0

n
S0

1

Sn

n 1

Interactive Verification of Concurrent Systems – p.20/43

Example

� A process computing successors:

S � ?n → !

�

n

�

1

�

→ S
�

n �

� LTS view:
S

0

n
S0

1 	 	 	 Sn

n

�

1

	 	 	

Interactive Verification of Concurrent Systems – p.20/43

Example (2)

� Communication between processes:

A � !41 → ?n → A
�

n
�

B A S

A S

Interactive Verification of Concurrent Systems – p.21/43

Example (2)

� Communication between processes:

A � !41 → ?n → A
�

n
�

B � A

 � �

S

A S

Interactive Verification of Concurrent Systems – p.21/43

Example (2)

� Communication between processes:

A � !41 → ?n → A
�

n
�

B � A

 � �

S

�

A

�

S

Interactive Verification of Concurrent Systems – p.21/43

Example (3)

A

!41

S

?n

S � ?n → !
�

n

�

1

�

→ S

A � !41 → ?n → A

�

n

�

Interactive Verification of Concurrent Systems – p.22/43

Example (3)

A

41

S

41

?n → A

�

n

�

?n

!42 → S

!42

S � ?n → !
�

n

�

1

�

→ S

A � !41 → ?n → A

�

n

�

Interactive Verification of Concurrent Systems – p.23/43

Example (3)

A

41

S

41

?n → A

�

n

�

42

!42 → S

42

A

�

42

�

S

S � ?n → !
�

n

�

1

�

→ S

A � !41 → ?n → A

�

n

�

Interactive Verification of Concurrent Systems – p.24/43

CSP for Java (JCSP)

� Implementation of CSP process model in
Java by P. D. Austin and P. H. Welch

Very similar to the Occam language

Interactive Verification of Concurrent Systems – p.25/43

CSP for Java (JCSP)

� Implementation of CSP process model in
Java by P. D. Austin and P. H. Welch

� Very similar to the Occam language

Interactive Verification of Concurrent Systems – p.25/43

JCSP Example

� CSP example: A

 � �

S

A

�

S

Corresponding JCSP object diagram:

client : A server : S

c : Channel

par : Parallel

Interactive Verification of Concurrent Systems – p.26/43

JCSP Example

� CSP example: A

 � �

S

A

�

S

� Corresponding JCSP object diagram:

client : A server : S

c : Channel

par : Parallel

Interactive Verification of Concurrent Systems – p.26/43

Introduction to JCSP

� Processes represented by interface

<<interface>>

CSProcess

+run()

A

+run()

S

+run()

In JCSP processes have identities

Interactive Verification of Concurrent Systems – p.27/43

Introduction to JCSP

� Processes represented by interface

<<interface>>

CSProcess

+run()

A

+run()

S

+run()

� In JCSP processes have identities

Interactive Verification of Concurrent Systems – p.27/43

Introduction to JCSP (2)

� CSP operator of parallelism (actually
interleaving) captured by

<<interface>>

CSProcess

+run()

Parallel

+run()

+addProcess(p:CSProcess)

*

Each process is executed in its own thread

Interactive Verification of Concurrent Systems – p.28/43

Introduction to JCSP (2)

� CSP operator of parallelism (actually
interleaving) captured by

<<interface>>

CSProcess

+run()

Parallel

+run()

+addProcess(p:CSProcess)

*

� Each process is executed in its own thread

Interactive Verification of Concurrent Systems – p.28/43

Introduction to JCSP (3)

� Messages are sent through channels

<<interface>>

Channel

+read(): Object

+write(o:Object) . . .

One2OneChannel

+read(): Object

+write(o:Object)

No “unbound” events as in CSP

Interactive Verification of Concurrent Systems – p.29/43

Introduction to JCSP (3)

� Messages are sent through channels

<<interface>>

Channel

+read(): Object

+write(o:Object) . . .

One2OneChannel

+read(): Object

+write(o:Object)

� No “unbound” events as in CSP

Interactive Verification of Concurrent Systems – p.29/43

Implementation of S in JCSP
import j csp . lang . ∗ ;

public class S implements CSProcess {

pr ivate f i n a l Channel c ;

public S (Channel c) { th is . c = c ; }

public void run () {

while (true) {

f i n a l I n t ege r i = (I n t ege r) c . read () ;

c . w r i t e (new I n t ege r (i . i n tVa lue () + 1)) ;

}

}

}
Interactive Verification of Concurrent Systems – p.30/43

Building Systems from Components

� Interface of a component is a tuple of
channels + a protocol

Systems are assembled from simpler
components

Contrary to normal instances of classes,
components are active

Interactive Verification of Concurrent Systems – p.31/43

Building Systems from Components

� Interface of a component is a tuple of
channels + a protocol

� Systems are assembled from simpler
components

Contrary to normal instances of classes,
components are active

Interactive Verification of Concurrent Systems – p.31/43

Building Systems from Components

� Interface of a component is a tuple of
channels + a protocol

� Systems are assembled from simpler
components

� Contrary to normal instances of classes,
components are active

Interactive Verification of Concurrent Systems – p.31/43

Building Systems from Components

1 → ∆ 0 → ∆

�

Interactive Verification of Concurrent Systems – p.32/43

A Proof System for JCSP

� Basic concept:

Represent JCSP systems as CSP terms
Symbolically execute CSP terms LTS
Specify/Prove LTS properties using a
temporal/modal logic

JavaCard(DL) CSP model of JCSP

CSP calculus

Modal logic/calculus

Interactive Verification of Concurrent Systems – p.33/43

A Proof System for JCSP

�� Basic concept:

� Represent JCSP systems as CSP terms

Symbolically execute CSP terms LTS
Specify/Prove LTS properties using a
temporal/modal logic

JavaCard(DL) CSP model of JCSP

CSP calculus

Modal logic/calculus

Interactive Verification of Concurrent Systems – p.33/43

A Proof System for JCSP

�� Basic concept:

� Represent JCSP systems as CSP terms

� Symbolically execute CSP terms � LTS

Specify/Prove LTS properties using a
temporal/modal logic

JavaCard(DL) CSP model of JCSP

CSP calculus

Modal logic/calculus

Interactive Verification of Concurrent Systems – p.33/43

A Proof System for JCSP

�� Basic concept:

� Represent JCSP systems as CSP terms

� Symbolically execute CSP terms � LTS

� Specify/Prove LTS properties using a
temporal/modal logic

JavaCard(DL) CSP model of JCSP

CSP calculus

Modal logic/calculus

Interactive Verification of Concurrent Systems – p.33/43

A Proof System for JCSP

�� Basic concept:

� Represent JCSP systems as CSP terms

� Symbolically execute CSP terms � LTS

� Specify/Prove LTS properties using a
temporal/modal logic

JavaCard(DL) CSP model of JCSP

CSP calculus

Modal logic/calculus

Interactive Verification of Concurrent Systems – p.33/43

A Proof System for JCSP (2)

�� A sequential Java program α is regarded as a
CSP process T

�

α

�

Communication of T α is caused (only) by
JCSP primitives

no shared memory

JCSP primitives are modelled using CSP
operators

Interactive Verification of Concurrent Systems – p.34/43

A Proof System for JCSP (2)

� A sequential Java program α is regarded as a
CSP process T

�

α

�

� Communication of T

�

α

�

is caused (only) by
JCSP primitives

no shared memory

JCSP primitives are modelled using CSP
operators

Interactive Verification of Concurrent Systems – p.34/43

A Proof System for JCSP (2)

� A sequential Java program α is regarded as a
CSP process T

�

α

�

� Communication of T

�

α

�

is caused (only) by
JCSP primitives

� � no shared memory

JCSP primitives are modelled using CSP
operators

Interactive Verification of Concurrent Systems – p.34/43

A Proof System for JCSP (2)

� A sequential Java program α is regarded as a
CSP process T

�

α

�

� Communication of T

�

α

�

is caused (only) by
JCSP primitives

� � no shared memory

� JCSP primitives are modelled using CSP
operators

Interactive Verification of Concurrent Systems – p.34/43

Modelling JCSP Parallelism

� Class Parallel is represented by interleaving:

P a r a l l e l par = new P a r a l l e l () ;
par . addProcess (s1) ;
par . addProcess (s2) ; . . .
par . run () ;

Corresponding process term:

T .. par.run(); ...

T .. s1.run(); ... T .. s2.run(); ...

Interactive Verification of Concurrent Systems – p.35/43

Modelling JCSP Parallelism

� Class Parallel is represented by interleaving:

P a r a l l e l par = new P a r a l l e l () ;
par . addProcess (s1) ;
par . addProcess (s2) ; . . .
par . run () ;

� Corresponding process term:

T

�

.. par.run(); ...
� �

T
�

.. s1.run(); ...

�

T

�

.. s2.run(); ...

�

	 	 	

Interactive Verification of Concurrent Systems – p.36/43

Modelling JCSP Channels

� Each JCSP channel object is represented by
a routing process

Channel constructors add routers:

T .. new One2OneChannel(); ...

O2ORouter O2OEvents T

Execution of Channel.read(), Channel.write()
raises events

Interactive Verification of Concurrent Systems – p.37/43

Modelling JCSP Channels

� Each JCSP channel object is represented by
a routing process

� Channel constructors add routers:

T

�

.. new One2OneChannel(); ...

� �

O2ORouter

 �

O2OEvents

�

T

�

.. ...

�

Execution of Channel.read(), Channel.write()
raises events

Interactive Verification of Concurrent Systems – p.37/43

Modelling JCSP Channels

� Each JCSP channel object is represented by
a routing process

� Channel constructors add routers:

T

�

.. new One2OneChannel(); ...

� �

O2ORouter

 �

O2OEvents

�

T

�

.. ...

�

� Execution of Channel.read(), Channel.write()
raises events

Interactive Verification of Concurrent Systems – p.37/43

Example

System after execution of

Channel c = new One2OneChannel () ;
P a r a l l e l par = new P a r a l l e l () ;
par . addProcess (new P1 (c)) ;
par . addProcess (new P2 (c)) ;
par . run () ;

is described by

O2ORouter O2OEvents T p1.run(); T p2.run();

Interactive Verification of Concurrent Systems – p.38/43

Example

System after execution of

Channel c = new One2OneChannel () ;
P a r a l l e l par = new P a r a l l e l () ;
par . addProcess (new P1 (c)) ;
par . addProcess (new P2 (c)) ;
par . run () ;

is described by

O2ORouter

 �

O2OEvents

�
 �

T

�

p1.run();

�

T

�

p2.run();

� �

Interactive Verification of Concurrent Systems – p.39/43

Message Transmission through c

O2ORouter

 �

O2OEvents

�

�

T

�

.. c.write(o); ...

�

T

�

.. a=c.read(); ...

� �

 !o → T ?a → T

Further execution is performed by CSP calculus:

 !o → O2ORouter T T

Interactive Verification of Concurrent Systems – p.40/43

Message Transmission through c

O2ORouter

 �

O2OEvents

�

�

T

�

.. c.write(o); ...

�

T

�

.. a=c.read(); ...

� �

	 	 	

 �

	 	 	
�
 �

!o → T

�

.. ...
�

?a → T

�

.. ...

� �

Further execution is performed by CSP calculus:

 !o → O2ORouter T T

Interactive Verification of Concurrent Systems – p.40/43

Message Transmission through c

O2ORouter

 �

O2OEvents

�

�

T

�

.. c.write(o); ...

�

T

�

.. a=c.read(); ...

� �

	 	 	

 �

	 	 	
�
 �

!o → T

�

.. ...
�

?a → T

�

.. ...

� �

Further execution is performed by CSP calculus:

	 	 	

 !o →

�

O2ORouter

 �
	 	 	

�
 �

T

�

.. ...

�

T

�

.. ...

� � �

Interactive Verification of Concurrent Systems – p.40/43

Symbolic Analysis of JCSP Systems

� Possible logics for expressing properties of
processes:

µ-Calculus
LTL, CTL, etc.

Possible CSP calculi:
Based on operational semantics of CSP
Rewriting system based on algebraic laws
Rewriting system based on partial order
extension of CSP

Interactive Verification of Concurrent Systems – p.41/43

Symbolic Analysis of JCSP Systems

� Possible logics for expressing properties of
processes:

�

µ-Calculus

LTL, CTL, etc.

Possible CSP calculi:
Based on operational semantics of CSP
Rewriting system based on algebraic laws
Rewriting system based on partial order
extension of CSP

Interactive Verification of Concurrent Systems – p.41/43

Symbolic Analysis of JCSP Systems

� Possible logics for expressing properties of
processes:

�

µ-Calculus

� LTL, CTL, etc.

Possible CSP calculi:
Based on operational semantics of CSP
Rewriting system based on algebraic laws
Rewriting system based on partial order
extension of CSP

Interactive Verification of Concurrent Systems – p.41/43

Symbolic Analysis of JCSP Systems

� Possible logics for expressing properties of
processes:

�

µ-Calculus

� LTL, CTL, etc.

� Possible CSP calculi:

Based on operational semantics of CSP
Rewriting system based on algebraic laws
Rewriting system based on partial order
extension of CSP

Interactive Verification of Concurrent Systems – p.41/43

Symbolic Analysis of JCSP Systems

� Possible logics for expressing properties of
processes:

�

µ-Calculus

� LTL, CTL, etc.

� Possible CSP calculi:

� Based on operational semantics of CSP

Rewriting system based on algebraic laws
Rewriting system based on partial order
extension of CSP

Interactive Verification of Concurrent Systems – p.41/43

Symbolic Analysis of JCSP Systems

� Possible logics for expressing properties of
processes:

�

µ-Calculus

� LTL, CTL, etc.

� Possible CSP calculi:

� Based on operational semantics of CSP

� Rewriting system based on algebraic laws

Rewriting system based on partial order
extension of CSP

Interactive Verification of Concurrent Systems – p.41/43

Symbolic Analysis of JCSP Systems

� Possible logics for expressing properties of
processes:

�

µ-Calculus

� LTL, CTL, etc.

� Possible CSP calculi:

� Based on operational semantics of CSP

� Rewriting system based on algebraic laws

� Rewriting system based on partial order
extension of CSP

Interactive Verification of Concurrent Systems – p.41/43

Summary: Modelling JCSP

� Representation of simple channels finished

Incomplete: More complex communication
(e.g. buffered channels, barriers, sending of
complex data structures)

Interactive Verification of Concurrent Systems – p.42/43

Summary: Modelling JCSP

� Representation of simple channels finished

� Incomplete: More complex communication
(e.g. buffered channels, barriers, sending of
complex data structures)

Interactive Verification of Concurrent Systems – p.42/43

Summary: CSP calculi

� Most encouraging results with partial order
approach

Further investigation needed for:
Interface to modal logic
Interaction with user
Treatment of proving techniques
(postponed): Induction, compositional
proving

Interactive Verification of Concurrent Systems – p.43/43

Summary: CSP calculi

� Most encouraging results with partial order
approach

� Further investigation needed for:

Interface to modal logic
Interaction with user
Treatment of proving techniques
(postponed): Induction, compositional
proving

Interactive Verification of Concurrent Systems – p.43/43

Summary: CSP calculi

� Most encouraging results with partial order
approach

� Further investigation needed for:

� Interface to modal logic

Interaction with user
Treatment of proving techniques
(postponed): Induction, compositional
proving

Interactive Verification of Concurrent Systems – p.43/43

Summary: CSP calculi

� Most encouraging results with partial order
approach

� Further investigation needed for:

� Interface to modal logic

� Interaction with user

Treatment of proving techniques
(postponed): Induction, compositional
proving

Interactive Verification of Concurrent Systems – p.43/43

Summary: CSP calculi

� Most encouraging results with partial order
approach

� Further investigation needed for:

� Interface to modal logic

� Interaction with user

� Treatment of proving techniques
(postponed): Induction, compositional
proving

Interactive Verification of Concurrent Systems – p.43/43

	Overview
	Communicating Sequential Processes
	Introduction to CSP: Processes
	Automata as Processes
	CSP Terms
	Basic CSP Operators: Locked Process
	Basic CSP Operators: Prefixing
	Basic CSP Operators: Choice
	Basic CSP Operators: Choice
	Basic CSP Operators: Choice
	Basic CSP Operators: Choice
	Basic CSP Operators: Parallelism
	Basic CSP Operators: Parallelism
	Basic CSP Operators: Parallelism
	Basic CSP Operators: Parallelism
	Basic CSP Operators: Parallelism
	Basic CSP Operators: Parallelism
	Basic CSP Operators: Messages
	Example
	Example (2)
	Example (3)
	Example (3)
	Example (3)
	CSP for Java (JCSP)
	JCSP Example
	Introduction to JCSP
	Introduction to JCSP (2)
	Introduction to JCSP (3)
	Implementation of S in JCSP
	Building Systems from Components
	Building Systems from Components
	A Proof System for JCSP
	A Proof System for JCSP (2)
	Modelling JCSP Parallelism
	Modelling JCSP Parallelism
	Modelling JCSP Channels
	Example
	Example
	Message Transmission through c
	Symbolic Analysis of JCSP Systems
	Summary: Modelling JCSP
	Summary: CSP calculi

