Interactive Verification of
Concurrent Systems

Philipp Rimmer

ph_r@gmx.net

University of Karlsruhe
Institute for Logic, Complexity and Deduction Systems
D-76128 Karlsruhe, Germany

° ° ° ° ° ° ° ° °
Interactive Verification of Concurrent Systems — p.1/43

Overview

Introduction to CSP:

Interactive Verification of Concurrent Systems — p.2/43

Overview

Introduction to CSP:
Concept, basic operators

Interactive Verification of Concurrent Systems — p.2/43

Overview

Introduction to CSP:
Concept, basic operators

Introduction to JCSP:

Overview

Introduction to CSP:
Concept, basic operators

Introduction to JCSP:
Basic classes

Overview

Introduction to CSP:
Concept, basic operators

Introduction to JCSP:
Basic classes

Approach for verification of JCSP systems:

Overview

Introduction to CSP:
Concept, basic operators

Introduction to JCSP:
Basic classes

Approach for verification of JCSP systems:
Representation of systems

Overview

Introduction to CSP:
Concept, basic operators

Introduction to JCSP:
Basic classes

Approach for verification of JCSP systems:
Representation of systems
Concept of a calculus

Communicating Sequential Processes

Process Algebra, originally devised by Tony
Hoare (1978)

ystems — p.3/43

Communicating Sequential Processes

Process Algebra, originally devised by Tony
Hoare (1978)

Formalism to design/describe interacting
systems

Communicating Sequential Processes

Process Algebra, originally devised by Tony
Hoare (1978)

Formalism to design/describe interacting
systems

Today widely used to model protocols or
hardware

Communicating Sequential Processes

Process Algebra, originally devised by Tony
Hoare (1978)

Formalism to design/describe interacting
systems

Today widely used to model protocols or
hardware

Analysis (mostly) through model checking
(e.g. the FDR model checker)

Introduction to CSP: Processes

Processes pose central entity of CSP concept

ystems — p.

4/43

Introduction to CSP: Processes

Processes pose central entity of CSP concept

A process is described uniquely by its
potential communication with an environment

Introduction to CSP: Processes

Processes pose central entity of CSP concept

A process is described uniquely by its
potential communication with an environment

Communication is a sequence of atomic
events (e.g. Processes = Languages)

Automata as Processes

States of automata can be regarded as
Processes:

Automata as Processes

States of automata can be regarded as
Processes:

° traces || Q|| = {¢}

Automata as Processes

States of automata can be regarded as
Processes:

° traces || Q|| = {¢}
\ traces || P]| = {a, bca, . . .}

Automata as Processes

States of automata can be regarded as
Processes:

° traces || Q|| = {¢}
traces || P]| = {a, bca, . . .}
. \ . traces | R|| = {ca, cbeca, . . .}

Automata as Processes

States of automata can be regarded as
Processes:

° traces || Q|| = {¢}
traces || P]| = {a, bca, . . .}
. \ . traces | R|| = {ca, cbeca, . . .}

Generalised as /labelled transition
systems (LTS), usually infinite

CSP Terms

Processes are usually described through
CSP terms

Interactive Verification of Concurrent Systems — p.6/43

CSP Terms

Processes are usually described through
CSP terms

Definition of automaton using terms:

Interactive Verification of Concurrent Systems — p.6/43

CSP Terms

Processes are usually described through
CSP terms

Definition of automaton using terms:

° Q = stop
ac

Interactive Verification of Concurrent Systems — p.6/43

CSP Terms

Processes are usually described through
CSP terms

Definition of automaton using terms:
° Q = stop
R=c— P

a C

Interactive Verification of Co

ncurrent Systems — p.6/43

CSP Terms

Processes are usually described through
CSP terms

Definition of automaton using terms:
° Q = stop
R=c— P

T Fasens

°
n ive Verification of Concurrent Systems — p.6/43

Basic CSP Operators: Locked Process

- Term notation:
stop

Basic CSP Operators: Locked Process

Term notation:
stop

LTS appearance:

Basic CSP Operators: Prefixing

- Term notation:

i rification of Concurrent Systems

p

8/43

Basic CSP Operators: Prefixing
Term notation:

LTS appearance:

i rification of Concurrent Systems

p

8/43

Basic CSP Operators: Choice

- Term notation:
P L Q

n ive Verification

of Concurrent Systems

p

9/43

Basic CSP Operators: Choice

Term notation:
P Ll Q

LTS appearance:

Basic CSP Operators: Choice

Term notation:
P Ll Q

LTS appearance:

G
VL

POQ

Basic CSP Operators: Choice

Term notation:
P Ll Q

LTS appearance:

G
VL

Basic CSP Operators: Parallelism

Term notation: (X: the interface set)

PILx]Q

Basic CSP Operators: Parallelism

Term notation: (X: the interface set)
PiLx] @

LTS appearance (for X =

{b}):
/z z\

Basic CSP Operators: Parallelism

Term notation: (X: the interface set)
PiLx] @

LTS appearance (for X =

{b}):
/z z\

Plx]a

Basic CSP Operators: Parallelism

Term notation: (X: the interface set)
PiLx] @

LTS appearance (for X = {b}):
/z z\
PulX x] @)

[P [Xx] C?]

Basic CSP Operators: Parallelism

Term notation: (X: the interface set)
PiLx] @

LTS appearance (for X = {b}):
I N
P x o] [P2| 01] [P Il @)
[P I[X | C?]

Basic CSP Operators: Parallelism

- Parallelism = Product of LTSs

Basic CSP Operators: Parallelism

Parallelism =— Product of LTSs

Full synchronisation P || A/|| @ = Intersection
of languages

Basic CSP Operators: Parallelism

Parallelism =— Product of LTSs

Full synchronisation P || A/|| @ = Intersection
of languages

Shorter notation for interleaving:

Plle = Plg]a

Basic CSP Operators: Messages

Transmission of values as events

Basic CSP Operators: Messages

Transmission of values as events
Sending message v:

x—P = Ix—P

Basic CSP Operators: Messages

Transmission of values as events
Sending message v:

x—P = Ix—P
Reading of messages: Generalised Choice

"X A— P(x) =
(vi = P(11)) O (vo — P(v)) O -

(Where A = {Vl, Vo, . . })

Example

A process computing sucCCessors:

S="n—!(n+1)—S (ne N)

° °
nteractive Verification of Concurrent Systems — p.20/43

Example

A process computing sucCCessors:
S="n—!(n+1)—S (ne N)
LTS view:

° °
nteractive Verification of Concurrent Systems — p.20/43

Example (2)

Communication between processes:

A =141 —7n — A(n)

° °
nteractive Verification of Concurrent Systems — p.21/43

Example (2)

Communication between processes:

A =141 —7n — A(n)
B=A|N]| S

i erification of Concurrent

Systems 21/4

Example (2)

Communication between processes:

A =141 —7n — A(n)
B=A|N]| S

i erification of Concurrent

Systems 21/4

Example (3)

A S SZ?H%!(H+1)—>S

A=141 —7n — A(n)
141 ’n

Example (3)

A S SZ?H%!(H+1)—>S
A=141 —7n — A(n)
/5 > 41
’n — A(n) 142 — S
’n 142

°
ive Verification of Concurrent Systems — p.23/43

Example (3)

A S SZ?H%!(H+1)—>S
A=141 —-7'n — A(n)
AT oo > 41
’n — A(n) 142 — S
AD <o)
A(42) S
v v

CSP for Java (JCSP)

Implementation of CSP process model in
Java by P. D. Austin and P. H. Welch

CSP for Java (JCSP)

Implementation of CSP process model in
Java by P. D. Austin and P. H. Welch

Very similar to the Occam language

JCSP Example

CSP example: A|N|| S

A

N

S

i erification of Concurrent

° °
Systems — p.26/43

JCSP Example

CSP example: A|[N | S

A

N

S

Corresponding JCSP object diagram:

par : Parallel

server : S

° °
urrent Systems — p.26/43

Introduction to JCSP

Processes represented by interface

<<interface>>

CSProcess

+run ()

e

+run ()

Interactive Verification of Concurrent Systems — p.27/43

Introduction to JCSP

Processes represented by interface

<<interface>>

CSProcess

+run ()

e

+run ()

In JCSP processes have identities

Interactive Verification of Concurrent Systems — p.27/43

Introduction to JCSP (2)

CSP operator of parallelism (actually
interleaving) captured by

<<interface>>

CSProcess

Parallel

+run ()

+run () +addProcess (p:CSProcess)

Interactive Verification of Concurrent Systems — p.28/43

Introduction to JCSP (2)

CSP operator of parallelism (actually
interleaving) captured by

<<interface>>

CSProcess

Parallel

+run ()

+run () +addProcess (p:CSProcess)

Each process is executed in its own thread

Interactive Verification of Concurrent Systems — p.28/43

Introduction to JCSP (3)

Messages are sent through channels

One20neChannel

<<interface>>

Channel +read () : Object

+write (o:0bject)

+read () : Object

+write (o:0bject)

Interactive Verification of Concurrent Systems — p.29/43

Introduction to JCSP (3)

Messages are sent through channels

One20neChannel

<<interface>>

Channel +read () : Object

+write (o:0bject)

+read () : Object

+write (o:0bject)

No “unbound” events as in CSP

Interactive Verification of Concurrent Systems — p.29/43

Implementation of S in JCSP

import jcsp.lang.x;

public class S implements CSProcess {
private final Channel c;
public S (Channel ¢c) { this.c = c; }

public void run () {
while (true) {
final Integer i = (Integer)c.read();
c.write (new Integer(i.intValue() + 1));

Interactive Verification of Concurrent Systems — p.30/43

Building Systems from Components

Interface of a component is a tuple of
channels + a protocol

Building Systems from Components

Interface of a component is a tuple of
channels + a protocol

Systems are assembled from simpler
components

Building Systems from Components

Interface of a component is a tuple of
channels + a protocol

Systems are assembled from simpler
components

Contrary to normal instances of classes,
components are active

° °
n ive Verification of Concurrent Systems — p.31/43

Building Systems from Components

1 — JAN 0— A ——

A Proof System for JCSP

- Basic concept:

A Proof System for JCSP

Basic concept:
Represent JCSP systems as CSP terms

A Proof System for JCSP

Basic concept:
Represent JCSP systems as CSP terms
Symbolically execute CSP terms — LTS

A Proof System for JCSP

Basic concept:
Represent JCSP systems as CSP terms
Symbolically execute CSP terms — LTS

Specify/Prove LTS properties using a
temporal/modal logic

A Proof System for JCSP

Basic concept:
Represent JCSP systems as CSP terms
Symbolically execute CSP terms — LTS

Specify/Prove LTS properties using a
temporal/modal logic

JavaCard(DL) CSP model of JCSP
CSP calculus

Modal logic/calculus

A Proof System for JCSP (2)

A sequential Java program « is regarded as a
CSP process T(«)

A Proof System for JCSP (2)

A sequential Java program « is regarded as a
CSP process T(«)

Communication of T(«) is caused (only) by
JCSP primitives

A Proof System for JCSP (2)

A sequential Java program « is regarded as a
CSP process T(«)

Communication of T(«) is caused (only) by
JCSP primitives

— no shared memory

A Proof System for JCSP (2)

A sequential Java program « is regarded as a
CSP process T(«)

Communication of T(«) is caused (only) by
JCSP primitives

— no shared memory

JCSP primitives are modelled using CSP
operators

Modelling JCSP Parallelism

Class Parallel is represented by interleaving:

Parallel par = new Parallel ();
par.addProcess(s1);
par.addProcess(s2);

par.run();

Modelling JCSP Parallelism

Class Parallel is represented by interleaving:

Parallel par = new Parallel ();
par.addProcess(s1);
par.addProcess(s2);

par.run();

Corresponding process term:

T(.. parrun(); ...) =
T(..st.run();...) || 7(.. s2.run(); ...) ||| - -

Modelling JCSP Channels

Each JCSP channel object is represented by
a routing process

Modelling JCSP Channels

Each JCSP channel object is represented by
a routing process

Channel constructors add routers:

T(.. new One20neChannel(); ...) =
O20Router || O20Events || T(.. ...)

Modelling JCSP Channels

Each JCSP channel object is represented by
a routing process

Channel constructors add routers:

T(.. new One20neChannel(); ...) =
O20Router || O20Events || T(.. ...)

Execution of Channel.read(), Channel.write()
raises events

Example

System after execution of

Channel ¢ = new One20neChannel () ;
Parallel par hew Parallel ();
par.addProcess (new P1 (c));
par.addProcess (new P2 (c));
par.run () ;

Example

System after execution of

Channel ¢ = new One20neChannel () ;
Parallel par = new Parallel ();
par.addProcess (new P1 (c));
par.addProcess (new P2 (c));
par.run () ;

is described by

O20Router [O20Events || (T(p1.run();) ||| T(p2.run();))

Message Transmission through c

O20Router || OZOEvents]|
(T(.. c.write(0); ...) ||| T(.. a=c.read(); ...))

Message Transmission through c

O20Router || OZOEvents]|
(T(.. c.write(0); ...) ||| T(.. a=c.read(); ...))

Message Transmission through c

O20Router || OZOEvents]|
(T(.. c.write(0); ...) ||| T(.. a=c.read(); ...))

A

~ lo— (020Router |-]| (T(....) || T(.....)))

Symbolic Analysis of JCSP Systems

Possible logics for expressing properties of
processes:

Symbolic Analysis of JCSP Systems

Possible logics for expressing properties of
Processes:

u-Calculus

Symbolic Analysis of JCSP Systems

Possible logics for expressing properties of
Processes:

u-Calculus
LTL, CTL, etc.

Symbolic Analysis of JCSP Systems

Possible logics for expressing properties of
Processes:

u-Calculus
LTL, CTL, etc.

Possible CSP calculi:

Symbolic Analysis of JCSP Systems

Possible logics for expressing properties of
Processes:

u-Calculus
LTL, CTL, etc.

Possible CSP calculi:
Based on operational semantics of CSP

Symbolic Analysis of JCSP Systems

Possible logics for expressing properties of
Processes:

u-Calculus
LTL, CTL, etc.

Possible CSP calculi:
Based on operational semantics of CSP
Rewriting system based on algebraic laws

Symbolic Analysis of JCSP Systems

Possible logics for expressing properties of
Processes:

u-Calculus
LTL, CTL, etc.

Possible CSP calculi:
Based on operational semantics of CSP
Rewriting system based on algebraic laws

Rewriting system based on partial order
extension of CSP

Summary: Modelling JCSP

Representation of simple channels finished

Summary: Modelling JCSP

Representation of simple channels finished

Incomplete: More complex communication
(e.g. buffered channels, barriers, sending of
complex data structures)

Summary: CSP calculi

Most encouraging results with partial order
approach

Summary: CSP calculi

Most encouraging results with partial order
approach

Further investigation needed for:

Summary: CSP calculi

Most encouraging results with partial order
approach

Further investigation needed for:
Interface to modal logic

Summary: CSP calculi

Most encouraging results with partial order
approach
Further investigation needed for:

Interface to modal logic

Interaction with user

Summary: CSP calculi

Most encouraging results with partial order
approach
Further investigation needed for:

Interface to modal logic

Interaction with user

Treatment of proving technigues
(postponed): Induction, compositional
proving

	Overview
	Communicating Sequential Processes
	Introduction to CSP: Processes
	Automata as Processes
	CSP Terms
	Basic CSP Operators: Locked Process
	Basic CSP Operators: Prefixing
	Basic CSP Operators: Choice
	Basic CSP Operators: Choice
	Basic CSP Operators: Choice
	Basic CSP Operators: Choice
	Basic CSP Operators: Parallelism
	Basic CSP Operators: Parallelism
	Basic CSP Operators: Parallelism
	Basic CSP Operators: Parallelism
	Basic CSP Operators: Parallelism
	Basic CSP Operators: Parallelism
	Basic CSP Operators: Messages
	Example
	Example (2)
	Example (3)
	Example (3)
	Example (3)
	CSP for Java (JCSP)
	JCSP Example
	Introduction to JCSP
	Introduction to JCSP (2)
	Introduction to JCSP (3)
	Implementation of S in JCSP
	Building Systems from Components
	Building Systems from Components
	A Proof System for JCSP
	A Proof System for JCSP (2)
	Modelling JCSP Parallelism
	Modelling JCSP Parallelism
	Modelling JCSP Channels
	Example
	Example
	Message Transmission through c
	Symbolic Analysis of JCSP Systems
	Summary: Modelling JCSP
	Summary: CSP calculi

