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Communicating Sequential Processes

� Process Algebra, originally devised by Tony
Hoare (1978)

Formalism to design/describe interacting
systems

Today widely used to model protocols or
hardware

Analysis (mostly) through model checking
(e.g. the FDR model checker)

Interactive Verification of Concurrent Systems – p.3/43



Communicating Sequential Processes

� Process Algebra, originally devised by Tony
Hoare (1978)

� Formalism to design/describe interacting
systems

Today widely used to model protocols or
hardware

Analysis (mostly) through model checking
(e.g. the FDR model checker)

Interactive Verification of Concurrent Systems – p.3/43



Communicating Sequential Processes

� Process Algebra, originally devised by Tony
Hoare (1978)

� Formalism to design/describe interacting
systems

� Today widely used to model protocols or
hardware

Analysis (mostly) through model checking
(e.g. the FDR model checker)

Interactive Verification of Concurrent Systems – p.3/43



Communicating Sequential Processes

� Process Algebra, originally devised by Tony
Hoare (1978)

� Formalism to design/describe interacting
systems

� Today widely used to model protocols or
hardware

� Analysis (mostly) through model checking
(e.g. the FDR model checker)

Interactive Verification of Concurrent Systems – p.3/43



Introduction to CSP: Processes

� Processes pose central entity of CSP concept

A process is described uniquely by its
potential communication with an environment

Communication is a sequence of atomic
events (e.g. Processes Languages)
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Automata as Processes

� States of automata can be regarded as
processes:

P

Q

a

R

b c

traces Q ε

traces P a, bca, . . .
traces R ca, cbca, . . .

Generalised as labelled transition
systems (LTS), usually infinite
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CSP Terms

� Processes are usually described through
CSP terms

Definition of automaton using terms:

P

Q

a

R

b c

Q stop
R c → P
P a → Q 2 b → R
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Basic CSP Operators: Locked Process

� Term notation:
stop

LTS appearance:
stop
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Basic CSP Operators: Prefixing

� Term notation:
a → P

LTS appearance:
P

a → P

a
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Basic CSP Operators: Choice

� Term notation:
P 2 Q

LTS appearance:
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Basic CSP Operators: Parallelism

� Term notation: (X : the interface set)

P


 �

X

� 


Q

LTS appearance (for X b ):
P

a
b

Q
b

c

P1 P2 Q1 Q2

P1 X Q P2 X Q1 P X Q2

P X Q
a b c
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Basic CSP Operators: Parallelism

� Parallelism � Product of LTSs

Full synchronisation P Al Q Intersection
of languages

Shorter notation for interleaving:

P Q : P Q
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Basic CSP Operators: Messages

� Transmission of values as events

Sending message v :

x → P !x → P

Reading of messages: Generalised Choice

?x : A → P x :

v1 → P v1 2 v2 → P v2 2

(where A v1, v2, . . . )
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x
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v1

� �

2
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v2 → P
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v2
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Example

� A process computing successors:

S � ?n → !

�

n

�

1

�

→ S
�

n  �

LTS view:
S

0

n
S0

1

Sn

n 1
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Example (2)

� Communication between processes:

A � !41 → ?n → A
�

n
�

B A S

A S
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Example (3)
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CSP for Java (JCSP)

� Implementation of CSP process model in
Java by P. D. Austin and P. H. Welch

Very similar to the Occam language
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JCSP Example

� CSP example: A


 � � 


S

A

�

S

Corresponding JCSP object diagram:

client : A server : S

c : Channel

par : Parallel
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Introduction to JCSP

� Processes represented by interface

<<interface>>

CSProcess

+run()

A

+run()

S

+run()

In JCSP processes have identities
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Introduction to JCSP (2)

� CSP operator of parallelism (actually
interleaving) captured by

<<interface>>

CSProcess

+run()

Parallel

+run()

+addProcess(p:CSProcess)

*

Each process is executed in its own thread
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Introduction to JCSP (3)

� Messages are sent through channels

<<interface>>

Channel

+read(): Object

+write(o:Object) . . .

One2OneChannel

+read(): Object

+write(o:Object)

No “unbound” events as in CSP

Interactive Verification of Concurrent Systems – p.29/43



Introduction to JCSP (3)

� Messages are sent through channels

<<interface>>

Channel

+read(): Object

+write(o:Object) . . .

One2OneChannel

+read(): Object

+write(o:Object)

� No “unbound” events as in CSP

Interactive Verification of Concurrent Systems – p.29/43



Implementation of S in JCSP
import j csp . lang . ∗ ;

public class S implements CSProcess {

pr ivate f i n a l Channel c ;

public S ( Channel c ) { th is . c = c ; }

public void run ( ) {

while ( true ) {

f i n a l I n t ege r i = ( I n t ege r ) c . read ( ) ;

c . w r i t e (new I n t ege r ( i . i n tVa lue ( ) + 1 ) ) ;

}

}

}
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Building Systems from Components

� Interface of a component is a tuple of
channels + a protocol

Systems are assembled from simpler
components

Contrary to normal instances of classes,
components are active

Interactive Verification of Concurrent Systems – p.31/43



Building Systems from Components

� Interface of a component is a tuple of
channels + a protocol

� Systems are assembled from simpler
components

Contrary to normal instances of classes,
components are active

Interactive Verification of Concurrent Systems – p.31/43



Building Systems from Components

� Interface of a component is a tuple of
channels + a protocol

� Systems are assembled from simpler
components

� Contrary to normal instances of classes,
components are active

Interactive Verification of Concurrent Systems – p.31/43



Building Systems from Components

1 → ∆ 0 → ∆

�
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A Proof System for JCSP

� Basic concept:

Represent JCSP systems as CSP terms
Symbolically execute CSP terms LTS
Specify/Prove LTS properties using a
temporal/modal logic

JavaCard(DL) CSP model of JCSP

CSP calculus

Modal logic/calculus
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A Proof System for JCSP (2)

�� A sequential Java program α is regarded as a
CSP process T

�

α

�

Communication of T α is caused (only) by
JCSP primitives

no shared memory

JCSP primitives are modelled using CSP
operators
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Modelling JCSP Parallelism

� Class Parallel is represented by interleaving:

P a r a l l e l par = new P a r a l l e l ( ) ;
par . addProcess ( s1 ) ;
par . addProcess ( s2 ) ; . . .
par . run ( ) ;

Corresponding process term:

T .. par.run(); ...

T .. s1.run(); ... T .. s2.run(); ...
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� Class Parallel is represented by interleaving:

P a r a l l e l par = new P a r a l l e l ( ) ;
par . addProcess ( s1 ) ;
par . addProcess ( s2 ) ; . . .
par . run ( ) ;

� Corresponding process term:

T

�

.. par.run(); ...
� �

T
�

.. s1.run(); ...

� 
 
 


T

�

.. s2.run(); ...

� 
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Modelling JCSP Channels

� Each JCSP channel object is represented by
a routing process

Channel constructors add routers:

T .. new One2OneChannel(); ...

O2ORouter O2OEvents T .. ...

Execution of Channel.read(), Channel.write()
raises events
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Modelling JCSP Channels

� Each JCSP channel object is represented by
a routing process

� Channel constructors add routers:

T

�

.. new One2OneChannel(); ...

� �

O2ORouter

 �

O2OEvents

� 


T

�

.. ...

�

� Execution of Channel.read(), Channel.write()
raises events
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Example

System after execution of

Channel c = new One2OneChannel ( ) ;
P a r a l l e l par = new P a r a l l e l ( ) ;
par . addProcess (new P1 ( c ) ) ;
par . addProcess (new P2 ( c ) ) ;
par . run ( ) ;

is described by

O2ORouter O2OEvents T p1.run(); T p2.run();

Interactive Verification of Concurrent Systems – p.38/43



Example
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Channel c = new One2OneChannel ( ) ;
P a r a l l e l par = new P a r a l l e l ( ) ;
par . addProcess (new P1 ( c ) ) ;
par . addProcess (new P2 ( c ) ) ;
par . run ( ) ;

is described by

O2ORouter


 �

O2OEvents

� 
 �

T

�

p1.run();

� 
 
 


T

�

p2.run();

� �
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Message Transmission through c

O2ORouter


 �

O2OEvents

� 


�

T

�

.. c.write(o); ...

� 
 
 


T

�

.. a=c.read(); ...

� �

 !o → T .. ... ?a → T .. ...

Further execution is performed by CSP calculus:

 

 !o → O2ORouter T .. ... T .. ...
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Symbolic Analysis of JCSP Systems

� Possible logics for expressing properties of
processes:

µ-Calculus
LTL, CTL, etc.

Possible CSP calculi:
Based on operational semantics of CSP
Rewriting system based on algebraic laws
Rewriting system based on partial order
extension of CSP
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Summary: Modelling JCSP

� Representation of simple channels finished

Incomplete: More complex communication
(e.g. buffered channels, barriers, sending of
complex data structures)
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Summary: CSP calculi

� Most encouraging results with partial order
approach

Further investigation needed for:
Interface to modal logic
Interaction with user
Treatment of proving techniques
(postponed): Induction, compositional
proving
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