## Generation of Proof Obligations to Ensure the Soundness of Taclets

Philipp Rümmer

ph\_r@gmx.net

University of Karlsruhe Institute for Logic, Complexity and Deduction Systems D-76128 Karlsruhe, Germany

Generation of Proof Obligations to Ensure the Soundness of Taclets - p.1/20



#### Introduction to taclets

## Overview

- Introduction to taclets
- Concept to ensure the soundness of taclets

## Overview

- Introduction to taclets
- Concept to ensure the soundness of taclets
- Examples

## **Introduction to Taclets**

Method to define rules of sequent calculi

## **Introduction to Taclets**

- Method to define rules of sequent calculi
- Introduced by Elmar Habermalz in: Ein dynamisches automatisierbares interaktives Kalkül für schematische theoriespezifische Regeln (PhD thesis)

## **Introduction to Taclets**

- Method to define rules of sequent calculi
- Introduced by Elmar Habermalz in: Ein dynamisches automatisierbares interaktives Kalkül für schematische theoriespezifische Regeln (PhD thesis)
- In KeY: Majority of rules defined through taclets

## **Introduction to Taclets (2)**

Taclet in concrete syntax:

 if (ifseq) find (f)
 replacewith (rw<sub>1</sub>) add (add<sub>1</sub>);
 replacewith (rw<sub>k</sub>) add (add<sub>k</sub>)

## **Introduction to Taclets (2)**

• Taclet in concrete syntax: if (ifseq) find (f)replacewith  $(rw_1)$  add  $(add_1)$ ; replacewith  $(rw_k)$  add  $(add_k)$ For instance: Modus ponens if  $(\phi \vdash )$  find  $(\vdash \phi \rightarrow \psi)$ replacewith  $(\vdash \psi)$ 

For first-order logic:

- For first-order logic:
  - Terms

- For first-order logic:
  - Terms
  - Formulas

- For first-order logic:
  - Terms
  - Formulas
  - Object variables

- For first-order logic:
  - Terms
  - Formulas
  - Object variables
- For JavaCardDL in addition:

- For first-order logic:
  - Terms
  - Formulas
  - Object variables
- For JavaCardDL in addition:
  - Program variables

- For first-order logic:
  - Terms
  - Formulas
  - Object variables
- For JavaCardDL in addition:
  - Program variables
  - Java statements

- For first-order logic:
  - Terms
  - Formulas
  - Object variables
- For JavaCardDL in addition:
  - Program variables
  - Java statements
  - Java expressions

## Soundness of Calculi

## - Sequent $\Gamma \vdash \Delta$ is called valid iff $\bigwedge \Gamma \rightarrow \bigvee \Delta$

is valid

## **Soundness of Calculi**

- Sequent  $\Gamma \vdash \Delta$  is called valid iff

$$\bigwedge \Gamma \to \bigvee \Delta$$

is valid

 A calculus is sound iff only valid sequents can be derived

## **Soundness of Rules**

 Sufficient criterion for soundness of calculus: Rule applications preserve validity

## **Soundness of Rules**

 Sufficient criterion for soundness of calculus: Rule applications preserve validity

$$\frac{P_1 \quad P_2 \quad \cdots \quad P_k}{Q}$$

$$P_1, P_2, \dots, P_k \text{ valid} \Longrightarrow Q \text{ valid}$$

Method introduced by Elmar Habermalz:

Method introduced by Elmar Habermalz: Taclet *t* 

Method introduced by Elmar Habermalz: Taclet t  $\downarrow$ Meaning formula M(t)

Method introduced by Elmar Habermalz: Taclet tMeaning formula M(t)Proof obligation  $M_{Sk}(t)$ 

Method introduced by Elmar Habermalz: Taclet tMeaning formula M(t)Proof obligation  $M_{Sk}(t)$ 

#### $M_{\mathsf{Sk}}(t)$ valid $\iff t$ sound

## **Example of Meaning Formula**

Taclet t<sub>1</sub> exchanging quantifiers:
 find ( ⊢ ∀y.∀x.φ)
 replacewith ( ⊢ ∀x.∀y.φ)

## **Example of Meaning Formula**

- Taclet t<sub>1</sub> exchanging quantifiers:
   find ( ⊢ ∀y.∀x.φ)
   replacewith ( ⊢ ∀x.∀y.φ)
- $M(t_1) = \forall \boldsymbol{x}. \forall \boldsymbol{y}. \boldsymbol{\phi} \rightarrow \forall \boldsymbol{y}. \forall \boldsymbol{x}. \boldsymbol{\phi}$

## **Example of Meaning Formula (2)**

Taclet t<sub>2</sub> splitting an if-statement:

 $find(\langle I: if (x==0) \# s else \# t \rangle \phi)$ replacewith( $\langle I: \# s \rangle \phi$ ) add( $x \doteq 0 \vdash$ ); replacewith( $\langle I: \# t \rangle \phi$ ) add( $\vdash x \doteq 0$ )

## Example of Meaning Formula (2) find( $\langle I: if (x==0) \# s else \# t \rangle \phi$ ) replacewith( $\langle I: \# s \rangle \phi$ ) add( $x \doteq 0 \vdash$ ); replacewith( $\langle I: \# t \rangle \phi$ ) add( $\vdash x \doteq 0$ )

## Example of Meaning Formula (2) find( $\langle I: if (x==0) \# s else \# t \rangle \phi$ ) replacewith( $\langle I: \# s \rangle \phi$ ) add( $x \doteq 0 \vdash$ ); replacewith( $\langle I: \# t \rangle \phi$ ) add( $\vdash x \doteq 0$ )



Generation of Proof Obligations to Ensure the Soundness of Taclets - p.12/20

 Schema variables of meaning formulas are replaced with skolem symbols

 Schema variables of meaning formulas are replaced with skolem symbols

SVs for terms

 $\rightarrow$  function symbols

 Schema variables of meaning formulas are replaced with skolem symbols

SVs for terms $\rightarrow$ function symbolsSVs for formulas $\rightarrow$ predicate symbols

 Schema variables of meaning formulas are replaced with skolem symbols

SVs for terms $\rightarrow$ function symbolsSVs for formulas $\rightarrow$ predicate symbolsSVs for logical variables $\rightarrow$ logical variables

 Schema variables of meaning formulas are replaced with skolem symbols

SVs for terms $\rightarrow$ function symbolsSVs for formulas $\rightarrow$ predicate symbolsSVs for logical variables $\rightarrow$ logical variablesSVs for program var. $\rightarrow$ program variables

- Schema variables of meaning formulas are replaced with skolem symbols
  - SVs for terms $\rightarrow$ SVs for formulas $\rightarrow$ SVs for logical variables $\rightarrow$
  - SVs for program var.  $\rightarrow$ SVs for statements  $\rightarrow$

- function symbols
- → predicate symbols
  - logical variables
- → program variables
- $\rightarrow$  atomic programs

- Schema variables of meaning formulas are replaced with skolem symbols
  - SVs for terms $\rightarrow$ SVs for formulas $\rightarrow$ SVs for logical variables $\rightarrow$
  - SVs for program var. SVs for statements SVs for expressions

- $\rightarrow$  function symbols
- → predicate symbols
- $\rightarrow$  logical variables
- $\rightarrow$  program variables
- $\rightarrow$  atomic programs
- $\rightarrow$  "atomic expr."

- Meaning formula of  $t_1$  is  $M(t_1) = \forall x. \forall y. \phi \rightarrow \forall y. \forall x. \phi$ 

Meaning formula of t₁ is M(t₁) = ∀𝑥.∀𝑥.𝑘 → ∀y.∀𝑥.𝑘
Taclet proof obligation: M<sub>Sk</sub>(t₁) = ∀u.∀v.𝑘<sub>Sk</sub>(𝑢,𝗤) → ∀v.∀u.𝑘<sub>Sk</sub>(𝑢,𝗤)

• Meaning formula of  $t_2$  is

 $\begin{aligned} &(\mathbf{x} \doteq 0 \land \\ &(\langle \mathbf{l} : \mathbf{if} \ (\mathbf{x} = = \mathbf{0}) \ \# \mathbf{s} \ \mathbf{else} \ \# \mathbf{t} \rangle \phi \leftrightarrow \langle \mathbf{l} : \ \# \mathbf{s} \ \rangle \phi) ) \\ & \lor \left( \neg (\mathbf{x} \doteq 0) \land \\ &(\langle \mathbf{l} : \mathbf{if} \ (\mathbf{x} = = \mathbf{0}) \ \# \mathbf{s} \ \mathbf{else} \ \# \mathbf{t} \rangle \phi \leftrightarrow \langle \mathbf{l} : \ \# \mathbf{t} \ \rangle \phi) \right) \end{aligned}$ 

# $\begin{array}{l} \left( \mathbf{x} \doteq \mathbf{0} \wedge \\ \left( \left\langle \mathsf{I} : \ \mathbf{if} \ (\mathbf{x} = = \mathbf{0}) \ \# \mathbf{s} \ \mathbf{else} \ \# \mathbf{t} \right\rangle \phi \leftrightarrow \left\langle \mathsf{I} : \ \# \mathbf{s} \ \right\rangle \phi \right) \right) \\ \lor \left( \neg \left( \mathbf{x} \doteq \mathbf{0} \right) \wedge \\ \left( \left\langle \mathsf{I} : \ \mathbf{if} \ (\mathbf{x} = = \mathbf{0}) \ \# \mathbf{s} \ \mathbf{else} \ \# \mathbf{t} \right\rangle \phi \leftrightarrow \left\langle \mathsf{I} : \ \# \mathbf{t} \ \right\rangle \phi \right) \right) \end{array}$

 $(\mathbf{x} \doteq 0 \wedge$  $\left| \left( \left\langle I : \text{ if } (x = 0) \# s \right| \text{ else } \# t \right\rangle \phi \leftrightarrow \left\langle I : \# s \right\rangle \phi \right) \right|$  $\vee (\neg (\mathbf{x} \doteq 0) \land$  $(\langle I : if (x==0) \# s else \# t \rangle \phi \leftrightarrow \langle I : \# t \rangle \phi))$ Proof obligation of  $t_2$ :  $(\mathbf{x} \doteq 0 \wedge$  $(\langle I : if (x==0) \beta_1 else \beta_2 \rangle p_{Sk}(x) \leftrightarrow \langle I : \beta_1 \rangle p_{Sk}(x)))$  $\vee (\neg (\mathbf{x} \doteq 0) \land$  $(\langle I : if (x==0) \beta_1 else \beta_2 \rangle p_{Sk}(x) \leftrightarrow \langle I : \beta_2 \rangle p_{Sk}(x)))$ 

Proof obligation of  $t_2$ :

 $\begin{array}{l} \left( \mathbf{x} \doteq \mathbf{0} \wedge \\ \left( \langle \mathsf{I} : \text{ if } (\mathbf{x} == \mathbf{0}) \beta_1 \text{ else } \beta_2 \rangle p_{\mathsf{Sk}}(\mathbf{x}) \leftrightarrow \langle \mathsf{I} : \beta_1 \rangle p_{\mathsf{Sk}}(\mathbf{x}) \right) \right) \\ \vee \left( \neg (\mathbf{x} \doteq \mathbf{0}) \wedge \\ \left( \langle \mathsf{I} : \text{ if } (\mathbf{x} == \mathbf{0}) \beta_1 \text{ else } \beta_2 \rangle p_{\mathsf{Sk}}(\mathbf{x}) \leftrightarrow \langle \mathsf{I} : \beta_2 \rangle p_{\mathsf{Sk}}(\mathbf{x}) \right) \right) \end{array}$ 

Proof obligation of  $t_2$ :

 $\begin{array}{l} \left( \mathbf{x} \doteq \mathbf{0} \wedge \\ \left( \langle \mathbf{I} : \mathbf{if} \ (\mathbf{x} == \mathbf{0}) \ \beta_1 \ \mathbf{else} \ \beta_2 \rangle p_{\mathsf{Sk}}(\mathbf{x}) \leftrightarrow \langle \mathbf{I} : \ \beta_1 \ \rangle p_{\mathsf{Sk}}(\mathbf{x}) \right) \right) \\ \vee \left( \neg (\mathbf{x} \doteq \mathbf{0}) \wedge \\ \left( \langle \mathbf{I} : \mathbf{if} \ (\mathbf{x} == \mathbf{0}) \ \beta_1 \ \mathbf{else} \ \beta_2 \rangle p_{\mathsf{Sk}}(\mathbf{x}) \leftrightarrow \langle \mathbf{I} : \ \beta_2 \ \rangle p_{\mathsf{Sk}}(\mathbf{x}) \right) \right) \end{array}$ 

 $\beta_1 = s_{Sk}(x, t_{#*}, d_{#*}; break |; throw t_{#*});$  $\beta_2 = t_{Sk}(x, t_{#*}, d_{#*}; break |; throw t_{#*});$ 





The presented approach ...
 treats first-order taclets completely

- The presented approach ...
  treats first-order taclets completely
  handles the most important kinds of
  - JavaCardDL schema variables

- treats first-order taclets completely
- handles the most important kinds of JavaCardDL schema variables
- is fully implemented

- treats first-order taclets completely
- handles the most important kinds of JavaCardDL schema variables
- is fully implemented
- Future work:

- treats first-order taclets completely
- handles the most important kinds of JavaCardDL schema variables
- is fully implemented
- Future work:
  - Support more JavaCardDL schema variables

- treats first-order taclets completely
- handles the most important kinds of JavaCardDL schema variables
- is fully implemented
- Future work:
  - Support more JavaCardDL schema variables
  - Consider some special characteristics of KeY, e.g. untyped schema variables