Agilent — GeneralStore

! a case study

Ignaz Rutter

KeY workshop 2004

ﬁ% Who iIs involved

Agilent Technologies

KR

Case study

+ use KeY in a real world scenario:
+ Software from Agilent Technologies
+ Used Iin their chemical analysis modules

&W Case study

+ Parser is a system library

Application

w Overview

+ Some facts on the system

+ Making the system ready for verification
with KeY

+ Problems expected/encountered during
verification

+ Our next steps

&m The System

+ Parser (better: command interpreter)

+ Generates a parser from a
description

+ Can add new instructions and data
types at run-time

+ Written in C++
+ ~12 classes

&M Parser

+ Contains the two basic tables:
+ Ranges (RangeTable)
+ Commands (CommandTable)

+ Receives incoming InstructionSignal

+ Checks incoming instruction using
CommandTable

+ Replies with a TotabSignal if a matching
Is found.

&W Ranges

* A Range defines a datatype:
+ Basetype: INT, FLOAT, STR, INSTR

+ Example: ,myIntRange”, BTYP INT,
,1..10:15:50..100°

+ Can be used to describe the syntax of
instructions

+ Are implemented as lists of RangeElem
* RangeTable holds a list of all Ranges
+ May have subranges

&W Commands

+ It holds all the information for a single
command:

+ Parameter types
+ Optional?

+ For each Command there exists a
CmdTabEntry

+ Commands can be looked up by id

&M ParElem

+ Is the base class of all parameters

* One derived class for each basetype:
+ Parlnt, ParFloat, ParStr, Parlnstr

+ A parameterlist for an instruction is a list
of ParElems

+ ParElems may have sublists for variable
length parameters

&W Interactions

+ Set up a new type by sending a
RangeDefSignal describing it

+ Issue Commands by sending an
nstructionSignal

+ The parser checks the syntax

+ Dispatches the command to the execution units

A Totabsignal is sent containing the result of the
parsing operation

&M Problems

+ Parser is written in C++, KeY needs
Java.

+ How do we get the same program in
Java”?

\Whatever happens here...

=)

... we should at least have some indication, that the proof
says something about the correctness of the C++ program

*ﬂ Our Solution

Agllant Technologies Run unit teStS

-,--;- m) Together

C-;- L
MeDelLa
implementation Generate C++ code
")
UML model e

*W Our Solution

i+ Agilent Technologies Run unit tests

b C"‘"" =) Together

MeDelLa
implementation

Generate C++ code

UML model

To be honest:
We don‘t know anything
About the correctness of GS | TIV Uka

&% General Store

+ Is a UML Tool, developed at ITIV at Uka

+ Allows implementation of Methods in a

language called MeDelLa (Method
Definition language)

+ Can generate Java and C++ code

List of tools

LiSt Of a” Classes ﬂl E' tnek| Mol MRt '.i-lﬂ":f!.!\:ﬂ-ﬂMHMLvr.

B Projoct = :i] Mrihod Eufinition _-___Lw“ »
. & W RengeTyon A8 FangeSiom ac = mpHangolist e
and their members &
gelhard_irptsndisund ! m
= W RangeElem G4 whils ¢ ound &8 act=ruil}
L] . RangeTable |
E insed g :H act petianeicompareTal pRag@pemamed == 0]
B = DO ¥ d0rY alles Inserling of baes Bpe Bode Fakisr meldan)
=] _'-"-"-"'-"-'-'-" ﬂﬁ F i act gD » mBaseTypeil)
(=Rt {1713 a1 suninged(pRamge);
Bl RangaTase Ol found = b,
B e Mz |
B seanhbTye B o
" td: sl = selgetdanl;
(=TT] BiE
B check ORED [| St §
B check ﬂ'l_?-:'. {
arthEisn g it mpRanpel sk)
E ‘,I,::r_ i m mpFREnpaListinge] pRangs)
elsa
B mersnTypail EH! mpRangolisl = pRange;
B moRangelist 0z |
" B s 03z
Status window o .
e [Syramiarser UIE
@ [l TolabSignal DI
, 07
& B Rangeleignal = m = |
- -
Haren G] =
(T34 #DOT 5] 6l wies syedem =
WSy #00010] DalaBsced spaned: host=localhost port=3308 S0=WYTEST Mnd=rmyogiDB
MTEET#0020] opan DS GeneralSoes 1,33 - WYTEST incahost 2306{systarn|
[T ITEL #1003 =61 model Ve OTT 2004-05-18 IDIFIT)
[OTE10 #O39L6] mad (Tue May &8 205135 CEST 2004) model wemion Vor 0.77 [J004:0%-18 F0:37T17)
SR30 #1.3500] read (Tue May 25 205735 CEST 2004) rodel vergion Ver .77 (3004-05-18 2D:2TA 7). reaty, B [inms). 14130 :
10l @07 | read contesres. Midela_Cantsinar
[113724 #30121] mad contamer Medala_Corkinar ieady tma fnme] 131 =
sy ([aner s mot actwatea | [T Ev e T

&M Steps

* Import the C++ code into Together and
generate a UML model from it

+ Export this model to GeneralStore and
(re-)implement the methods in MeDela

+ (Generate Java and C++ code

* Run the original C++ unit tests on the
generated C++ code

+ Add OCL-constraints to the java version

* Prove the correctness of the generated Java
code

w Sounds easy, but...

+ GS is still under development

+ Had to type implementations into the properties-
window in Together in <medela></medela> tags in
the beginning

+ Various problems with code generation:

+ No static and abstract specifier
+ Return type of constructor: void
* No switch in medela

* And some more

+ Need to emulate some C++ constructs in
Java

w What are we going to prove?

+ Correctness of type system:
+ Rangelds are unique
+ Inserting and checking ranges is correct

+ ParElems should only have a rangelD
of their own base type

+ Recursive list manipulations are correct
+ Relation: input, resulting TotabSignal

&W Challenges

+ Mostly recursive searching and
inserting

+ We need some automatic variable
renaming in KeY

+ structural induction
+ String handling:
+ The parsers output heavily depends on the
input: ,null vs. not null” clearly isn‘'t enough
+ ParStr and Parlnstr are based on strings

&W So far

+ We have translated about %4 of the
system

+ |'ve got familiar with KeY by working
through the proof-examples

+ We did some minor proofs:

+ Assigning id/name to a range works
correctly

+ Assigned id is unique

