
Agilent – GeneralStore
a case study

Ignaz Rutter

KeY workshop 2004



Electronical Engineering Institute
ITIV

Who is involved



Case study
 use KeY in a real world scenario:

 Software from Agilent Technologies
 Used in their chemical analysis modules



Case study
 Parser is a system library



Overview
 Some facts on the system
 Making the system ready for verification 

with KeY
 Problems expected/encountered during 

verification
 Our next steps



The System
 Parser (better: command interpreter)

 Generates a parser from a 
description

 Can add new instructions and data 
types at run-time

 Written in C++
 ~12 classes



Parser
 Contains the two basic tables:

 Ranges (RangeTable)
 Commands (CommandTable)

 Receives incoming InstructionSignal
 Checks incoming instruction using 

CommandTable
 Replies with a TotabSignal if a matching 

is found.



Ranges
 A Range defines a datatype:

 Basetype: INT, FLOAT, STR, INSTR
 Example: „myIntRange“, BTYP_INT, 

„1..10;15;50..100“
 Can be used to describe the syntax of 

instructions
 Are implemented as lists of RangeElem
 RangeTable holds a list of all Ranges
 May have subranges



Commands
 It holds all the information for a single 

command:
 Parameter types
 Optional?

 For each Command there exists a 
CmdTabEntry

 Commands can be looked up by id



ParElem
 Is the base class of all parameters
 One derived class for each basetype:

 ParInt, ParFloat, ParStr, ParInstr

 A parameterlist for an instruction is a list 
of ParElems

 ParElems may have sublists for variable 
length parameters



Interactions
 Set up a new type by sending a 

RangeDefSignal describing it
 Issue Commands by sending an 

InstructionSignal
 The parser checks the syntax
 Dispatches the command to the execution units
 A Totabsignal is sent containing the result of the 

parsing operation



Problems

 Parser is written in C++, KeY needs 
Java.

 How do we get the same program in 
Java?



Main Problem

Whatever happens here...

... we should at least have some indication, that the proof 
says something about the correctness of the C++ program

proof



Our Solution

Together

GS
UML model

Generate C++ code

Run unit tests

Generate Java code

ITIV Uka

GS

MeDeLa
implementation



Our Solution

Together

GS
UML model

Generate C++ code

Run unit tests

Generate Java code

ITIV Uka

GS

MeDeLa
implementation

To be honest:
We don‘t know anything
About the correctness of GS



General Store
 Is a UML Tool, developed at ITIV at Uka
 Allows implementation of Methods in a 

language called MeDeLa (Method 
Definition language)

 Can generate Java and C++ code



General Store

List of all classes
and their members

MeDeLa editor window

Status window

List of tools



Steps
 Import the C++ code into Together and 

generate a UML model from it
 Export this model to GeneralStore and 

(re-)implement the methods in MeDeLa
 Generate Java and C++ code
 Run the original C++ unit tests on the 

generated C++ code
 Add OCL-constraints to the java version
 Prove the correctness of the generated Java 

code



Sounds easy, but...
 GS is still under development

 Had to type implementations into the properties-
window in Together in <medela></medela> tags in 
the beginning

 Various problems with code generation:
 No static and abstract specifier
 Return type of constructor: void
 No switch in medela
 And some more

 Need to emulate some C++ constructs in 
Java



What are we going to prove?
 Correctness of type system:

 RangeIds are unique
 inserting and checking ranges is correct

 ParElems should only have a rangeID 
of their own base type

 Recursive list manipulations are correct
 Relation: input, resulting TotabSignal



Challenges
 Mostly recursive searching and 

inserting
 We need some automatic variable 

renaming in KeY
 structural induction

 String handling:
 The parsers output heavily depends on the 

input: „null vs. not null“ clearly isn‘t enough
 ParStr and ParInstr are based on strings



So far
 We have translated about ¾ of the 

system
 I‘ve got familiar with KeY by working 

through the proof-examples
 We did some minor proofs:

 Assigning id/name to a range works 
correctly

 Assigned id is unique


