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ﬁ% Who iIs involved

Agilent Technologies

KR



Case study

+ use KeY in a real world scenario:
+ Software from Agilent Technologies
+ Used Iin their chemical analysis modules




&W Case study

+ Parser is a system library

Application




w Overview

+ Some facts on the system

+ Making the system ready for verification
with KeY

+ Problems expected/encountered during
verification

+ Our next steps




&m The System

+ Parser (better: command interpreter)

+ Generates a parser from a
description

+ Can add new instructions and data
types at run-time

+ Written in C++
+ ~12 classes



&M Parser

+ Contains the two basic tables:
+ Ranges (RangeTable)
+ Commands (CommandTable)

+ Receives incoming InstructionSignal

+ Checks incoming instruction using
CommandTable

+ Replies with a TotabSignal if a matching
Is found.



&W Ranges

* A Range defines a datatype:
+ Basetype: INT, FLOAT, STR, INSTR

+ Example: ,myIntRange”, BTYP INT,
,1..10:15:50..100°

+ Can be used to describe the syntax of
instructions

+ Are implemented as lists of RangeElem
* RangeTable holds a list of all Ranges
+ May have subranges



&W Commands

+ It holds all the information for a single
command:

+ Parameter types
+ Optional?

+ For each Command there exists a
CmdTabEntry

+ Commands can be looked up by id




&M ParElem

+ Is the base class of all parameters

* One derived class for each basetype:
+ Parlnt, ParFloat, ParStr, Parlnstr

+ A parameterlist for an instruction is a list
of ParElems

+ ParElems may have sublists for variable
length parameters



&W Interactions

+ Set up a new type by sending a
RangeDefSignal describing it

+ Issue Commands by sending an
nstructionSignal

+ The parser checks the syntax

+ Dispatches the command to the execution units

A Totabsignal is sent containing the result of the
parsing operation




&M Problems

+ Parser is written in C++, KeY needs
Java.

+ How do we get the same program in
Java”?



\Whatever happens here...

=)

... we should at least have some indication, that the proof
says something about the correctness of the C++ program



*ﬂ Our Solution

Agllant Technologies Run unit teStS
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C-;- L
MeDelLa
implementation Generate C++ code
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*W Our Solution

i+ Agilent Technologies Run unit tests

b C"‘"" =) Together

MeDelLa
implementation

Generate C++ code

UML model

To be honest:
We don‘t know anything
About the correctness of GS | TIV Uka



&% General Store

+ Is a UML Tool, developed at ITIV at Uka

+ Allows implementation of Methods in a

language called MeDelLa (Method
Definition language)

+ Can generate Java and C++ code




List of tools
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&M Steps

* Import the C++ code into Together and
generate a UML model from it

+ Export this model to GeneralStore and
(re-)implement the methods in MeDela

+ (Generate Java and C++ code

* Run the original C++ unit tests on the
generated C++ code

+ Add OCL-constraints to the java version

* Prove the correctness of the generated Java
code




w Sounds easy, but...

+ GS is still under development

+ Had to type implementations into the properties-
window in Together in <medela></medela> tags in
the beginning

+ Various problems with code generation:

+ No static and abstract specifier
+ Return type of constructor: void
* No switch in medela

* And some more

+ Need to emulate some C++ constructs in
Java



w What are we going to prove?

+ Correctness of type system:
+ Rangelds are unique
+ Inserting and checking ranges is correct

+ ParElems should only have a rangelD
of their own base type

+ Recursive list manipulations are correct
+ Relation: input, resulting TotabSignal



&W Challenges

+ Mostly recursive searching and
inserting

+ We need some automatic variable
renaming in KeY

+ structural induction
+ String handling:
+ The parsers output heavily depends on the
input: ,null vs. not null” clearly isn‘'t enough
+ ParStr and Parlnstr are based on strings



&W So far

+ We have translated about %4 of the
system

+ |'ve got familiar with KeY by working
through the proof-examples

+ We did some minor proofs:

+ Assigning id/name to a range works
correctly

+ Assigned id is unique



