
Agilent – GeneralStore
a case study

Ignaz Rutter

KeY workshop 2004



Electronical Engineering Institute
ITIV

Who is involved



Case study
 use KeY in a real world scenario:

 Software from Agilent Technologies
 Used in their chemical analysis modules



Case study
 Parser is a system library



Overview
 Some facts on the system
 Making the system ready for verification 

with KeY
 Problems expected/encountered during 

verification
 Our next steps



The System
 Parser (better: command interpreter)

 Generates a parser from a 
description

 Can add new instructions and data 
types at run-time

 Written in C++
 ~12 classes



Parser
 Contains the two basic tables:

 Ranges (RangeTable)
 Commands (CommandTable)

 Receives incoming InstructionSignal
 Checks incoming instruction using 

CommandTable
 Replies with a TotabSignal if a matching 

is found.



Ranges
 A Range defines a datatype:

 Basetype: INT, FLOAT, STR, INSTR
 Example: „myIntRange“, BTYP_INT, 

„1..10;15;50..100“
 Can be used to describe the syntax of 

instructions
 Are implemented as lists of RangeElem
 RangeTable holds a list of all Ranges
 May have subranges



Commands
 It holds all the information for a single 

command:
 Parameter types
 Optional?

 For each Command there exists a 
CmdTabEntry

 Commands can be looked up by id



ParElem
 Is the base class of all parameters
 One derived class for each basetype:

 ParInt, ParFloat, ParStr, ParInstr

 A parameterlist for an instruction is a list 
of ParElems

 ParElems may have sublists for variable 
length parameters



Interactions
 Set up a new type by sending a 

RangeDefSignal describing it
 Issue Commands by sending an 

InstructionSignal
 The parser checks the syntax
 Dispatches the command to the execution units
 A Totabsignal is sent containing the result of the 

parsing operation



Problems

 Parser is written in C++, KeY needs 
Java.

 How do we get the same program in 
Java?



Main Problem

Whatever happens here...

... we should at least have some indication, that the proof 
says something about the correctness of the C++ program

proof



Our Solution

Together

GS
UML model

Generate C++ code

Run unit tests

Generate Java code

ITIV Uka

GS

MeDeLa
implementation



Our Solution

Together

GS
UML model

Generate C++ code

Run unit tests

Generate Java code

ITIV Uka

GS

MeDeLa
implementation

To be honest:
We don‘t know anything
About the correctness of GS



General Store
 Is a UML Tool, developed at ITIV at Uka
 Allows implementation of Methods in a 

language called MeDeLa (Method 
Definition language)

 Can generate Java and C++ code



General Store

List of all classes
and their members

MeDeLa editor window

Status window

List of tools



Steps
 Import the C++ code into Together and 

generate a UML model from it
 Export this model to GeneralStore and 

(re-)implement the methods in MeDeLa
 Generate Java and C++ code
 Run the original C++ unit tests on the 

generated C++ code
 Add OCL-constraints to the java version
 Prove the correctness of the generated Java 

code



Sounds easy, but...
 GS is still under development

 Had to type implementations into the properties-
window in Together in <medela></medela> tags in 
the beginning

 Various problems with code generation:
 No static and abstract specifier
 Return type of constructor: void
 No switch in medela
 And some more

 Need to emulate some C++ constructs in 
Java



What are we going to prove?
 Correctness of type system:

 RangeIds are unique
 inserting and checking ranges is correct

 ParElems should only have a rangeID 
of their own base type

 Recursive list manipulations are correct
 Relation: input, resulting TotabSignal



Challenges
 Mostly recursive searching and 

inserting
 We need some automatic variable 

renaming in KeY
 structural induction

 String handling:
 The parsers output heavily depends on the 

input: „null vs. not null“ clearly isn‘t enough
 ParStr and ParInstr are based on strings



So far
 We have translated about ¾ of the 

system
 I‘ve got familiar with KeY by working 

through the proof-examples
 We did some minor proofs:

 Assigning id/name to a range works 
correctly

 Assigned id is unique


