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Motivation

Dynamic Logic (DL)

“talks” about final state of program

not useful for non-terminating programs

does not allow reasoning about temporal properties

“waste”: symbolic execution computes all intermediate program

states (trace) but throws away everything except for the final state!

KeY Workshop 2004 – p.2



Background

First approach [Beckert & Schlager, 2001]

Extension of DL with additional modalities “preserves”,

“throughout”, and “at least once”

Example: x > 0→ [[ � � �� � ��� �	 � 
 x � �]]x > 0

Calculus for JavaCard-DL in [Beckert & Mostowski, 2003]

implemented in KeY
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Deficiencies

Each modality strictly bound to one program

Modalities cannot be combined as usual in temporal logics

Example: 2(x < 0→ 3x > 0)

“It must hold in all states that if x becomes negative eventually it will

become positive”

Expressing above property requires new modality
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Idea

Combine ideas from Dynamic Logic and Temporal Logic

Decouple modal operators and programs

Program defines structure which temporal formula is evaluated in

Example:

∀x.(i .= x→ [[ � � �� � ��� �	 � 
 � � �]]2(x < 0→ 3x > 0))

Semantics of [[p]] is the (in-)finite trace of program p
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Syntax of Dynamic Temporal Logic (DTL)

if φ ∈ F(FOL) then φ ∈ F(DTL)

if φ,ψ ∈ F(DTL), p is a program, and x is a variable then

2φ,3φ, φUψ ∈ F(DTL)

¬φ, φ∧ ψ ∈ F(DTL)

[[p]]φ ∈ F(DTL) if φ contains an unbound modal operator

∀x.φ ∈ F(DTL)
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Semantics of DTL

Is([[p]]) = (s0, s1, . . . , sn) where s is initial state

Is( �� � ) = (st
x) (transitions only by assignments)

Is(	 � �) = Is(	 ) ◦ Ilast(Is( �))( �)

for φ ∈ F(FOL): s |= [[p]]φ iff s |= φ

s |= [[p]]φUψ iff for a si with 0 ≤ i ≤ n holds si |= (si+1, si+2, . . . , sn) and

for all s j with 0 ≤ j < i holds s j |= (s j+1, s j+2, . . . , si−1)

s |= [[p]]2φ iff for all si with 0 ≤ i ≤ n holds si |= (si+1, si+2, . . . , sn)

s |= [[p]]3φ iff for a si with 0 ≤ i ≤ n holds si |= (si+1, si+2, . . . , sn)

S0 S2S

x=t1 x=t2 x=t3 x=t4 x=tn

[[p]]

...S1 Sn
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Examples

2false holds only in final states

DL modalities can be expressed

[p]φ ≡ [[p]]2(2false → φ)

〈p〉φ ≡ [[p]]3(2false ∧ φ)

[[ � � � � � � �� � ��� �	 � 
 � � �]]∀x.2(i .= x→ 3i .= 2x)
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A Sequent Calculus for DTL

Assignment Rule for “throughout”

Γ ` φ, ∆ Γ ` {x := t}[[ω]]φ, ∆

Γ ` [[x = t;ω]]φ, ∆

Assignment Rule for 2

Γ ` {x := t}[[ω]]φ, ∆ Γ ` {x := t}[[ω]]2φ, ∆

Γ ` [[x = t;ω]]2φ, ∆
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A Sequent Calculus for DTL

Concatenation rule for “at least once

Γ ` 〈〈α〉〉φ, 〈α〉〈〈β〉〉φ, ∆

Γ ` 〈〈α;β〉〉φ, ∆

General concatenation rule for DTL not possible!

Rule for special case φ ∈ F(FOL)

Γ ` [[α]]3φ, 〈α〉[[β]]3φ, ∆

Γ ` [[α;β]]3φ, ∆
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Improving the previous concatenation rule

Γ ` [[α]]3φ, 〈α〉[[β]]3φ, ∆

Γ ` [[α;β]]3φ, ∆

Rule requires duplicate computation of trace of α!

Similar to the rule for “at least once”

Improved rule

Γ ` [[α]]3(φ∨ (2false ∧ [[β]]3φ)), ∆

Γ ` [[α;β]]3φ, ∆
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Towards a CTL-Version

Now we consider non-deterministic languages!

Semantics of 3?

there is a path such that 3φ or for all paths 3φ

Γ ` [[α]]3φ, 〈α〉[[β]]3φ, ∆

Γ ` [[α;β]]3φ, ∆

Γ ` [[α]]Q(3(φ∨ (2false ∧ [[β]]Q3φ))), ∆

Γ ` [[α;β]]Q3φ, ∆

α
β

φ

φ

φ
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Rules for Loops

Similar to rules for µ-calculus

Idea: identify repeats in the proof

Example:

i .= 1 ` i > 0

A

i .= c, c > 0 ` [[p]]2(i .= x0 → 3i .= 2x0)
i .= i′ + 1, i− 1 .

= c, c + 1 > 0 ` [[p]]2(i .= x0 → 3i .= 2x0)
Subst.{c← c + 1}

i .= i′ + 1, i′ .= c, c > 0 ` [[p]]2(i .= x0 → 3i .= 2x0)
Cut&Weakening

i .= c, c > 0 ` [[i � �; p]]2(i .= x0 → 3i .= 2x0)
Assignm.

i .= c, c > 0 ` [[p]]2(i .= x0 → 3i .= 2x0)
i .= 1 ` [[p]]2(i .= x0 → 3i .= 2x0) Gen.

i .= 1 ` [[ � � �� � ��� 	 � � 


i � �]]∀x.2(i .= x→ 3i .= 2x)

with

A := i .= i′ + 1, i′ .= c, c > 0 ` [[p]](i .= x0 → 3i .= 2x0)
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Future Work

Finishing work on rules for loops

DTL for PROMELA+

non-deterministic constructs

communication via channels

processes and dynamic process creation

Translating statecharts into PROMELA+ for verification of temporal

properties
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