

A Temporal Logic for Programs

Steffen Schlager

3rd KeY Workshop Königswinter, June 2004

KeY Workshop 2004 – p.1

<u>KGX</u>

Dynamic Logic (DL)

- "talks" about final state of program
- not useful for non-terminating programs
- does not allow reasoning about temporal properties
- "waste": symbolic execution computes all intermediate program states (trace) but throws away everything except for the final state!

First approach [Beckert & Schlager, 2001]

- Extension of DL with additional modalities "preserves", "throughout", and "at least once"
- Example: $x > 0 \rightarrow [[while (true) x++]]x > 0$
- Calculus for JavaCard-DL in [Beckert & Mostowski, 2003] implemented in KeY

- Each modality strictly bound to one program
- Modalities cannot be combined as usual in temporal logics

```
Example: \Box(x < 0 \rightarrow \Diamond x > 0)
```

"It must hold in all states that if *x* becomes negative eventually it will become positive"

Expressing above property requires new modality

- Decouple modal operators and programs
- Program defines structure which temporal formula is evaluated in
- Example:

 $\forall x. (i \doteq x \rightarrow \llbracket \text{ while (true) i++} \rrbracket \Box (x < 0 \rightarrow \Diamond x > 0))$

Semantics of $[\![p]\!]$ is the (in-)finite trace of program p

Syntax of Dynamic Temporal Logic (DTL)

- if $\phi \in F(FOL)$ then $\phi \in F(DTL)$
- if $\phi, \psi \in F(DTL)$, p is a program, and x is a variable then
 - $\Box \phi, \Diamond \phi, \phi \mathbf{U} \psi \in F(DTL)$
 - $\neg \phi, \phi \land \psi \in F(DTL)$
 - $\llbracket p \rrbracket \phi \in F(DTL)$ if ϕ contains an unbound modal operator
 - $\forall x.\phi \in F(DTL)$

Semantics of DTL

- $I_s(\llbracket p \rrbracket) = (s_0, s_1, \dots, s_n)$ where s is initial state
- $I_s(x=t) = (s_x^t)$ (transitions only by assignments)
- $I_s(u; v) = I_s(u) \circ I_{last(I_s(u))}(v)$
- for $\phi \in F(FOL)$: $s \models [\![p]\!]\phi$ iff $s \models \phi$
- $s \models \llbracket p \rrbracket \phi \mathbf{U} \psi$ iff for a s_i with $0 \le i \le n$ holds $s_i \models (s_{i+1}, s_{i+2}, \dots, s_n)$ and for all s_j with $0 \le j < i$ holds $s_j \models (s_{j+1}, s_{j+2}, \dots, s_{i-1})$
- $s \models \llbracket p \rrbracket \Box \phi$ iff for all s_i with $0 \le i \le n$ holds $s_i \models (s_{i+1}, s_{i+2}, \ldots, s_n)$
- $s \models \llbracket p \rrbracket \Diamond \phi$ iff for a s_i with $0 \le i \le n$ holds $s_i \models (s_{i+1}, s_{i+2}, \ldots, s_n)$

Examples

- $\square false$ holds only in final states
- DL modalities can be expressed
 - $[p]\phi \equiv \llbracket p \rrbracket \Box (\Box false \to \phi)$
 - $\langle p \rangle \phi \equiv \llbracket p \rrbracket \Diamond (\Box false \land \phi)$
- [[i=1; while (true) i++]] $\forall x.\Box(i \doteq x \rightarrow \Diamond i \doteq 2x)$

Assignment Rule for "throughout"

$$\begin{array}{ll} \Gamma \vdash \phi, \ \Delta & \Gamma \vdash \{x := t\} [[\omega]] \phi, \ \Delta \\ \\ \Gamma \vdash [[x = t; \omega]] \phi, \ \Delta \end{array}$$

Assignment Rule for

$$\Gamma \vdash \{x := t\}\llbracket \omega \rrbracket \phi, \Delta \qquad \Gamma \vdash \{x := t\}\llbracket \omega \rrbracket \Box \phi, \Delta$$
$$\Gamma \vdash \llbracket x = t; \omega \rrbracket \Box \phi, \Delta$$

Concatenation rule for "at least once

 $\Gamma \vdash \langle\!\langle \alpha \rangle\!\rangle \phi, \ \langle \alpha \rangle \langle\!\langle \beta \rangle\!\rangle \phi, \ \Delta$

 $\Gamma \vdash \langle\!\langle \alpha; \beta \rangle\!\rangle \phi, \, \Delta$

General concatenation rule for DTL not possible!

Rule for special case $\phi \in F(FOL)$

 $\Gamma \vdash \llbracket \alpha \rrbracket \diamondsuit \phi, \ \langle \alpha \rangle \llbracket \beta \rrbracket \diamondsuit \phi, \ \Delta$

 $\Gamma \vdash \llbracket \alpha; \beta \rrbracket \diamondsuit \phi, \Delta$

KeY Workshop 2004 – p.10

$\Gamma \vdash \llbracket \alpha \rrbracket \diamondsuit \phi, \ \langle \alpha \rangle \llbracket \beta \rrbracket \diamondsuit \phi, \ \Delta$

$\Gamma \vdash \llbracket \alpha; \beta \rrbracket \diamondsuit \phi, \Delta$

Rule requires duplicate computation of trace of α !

Similar to the rule for "at least once"

$\Gamma \vdash \llbracket \alpha \rrbracket \diamondsuit \phi, \ \langle \alpha \rangle \llbracket \beta \rrbracket \diamondsuit \phi, \ \Delta$

$\Gamma \vdash \llbracket \alpha; \beta \rrbracket \diamondsuit \phi, \Delta$

Rule requires duplicate computation of trace of α !

Similar to the rule for "at least once"

Improved rule

 $\Gamma \vdash \llbracket \alpha \rrbracket \diamondsuit (\phi \lor (\Box false \land \llbracket \beta \rrbracket \diamondsuit \phi)), \Delta$

 $\Gamma \vdash \llbracket \alpha; \beta \rrbracket \diamondsuit \phi, \Delta$

Semantics of \diamond ?

there is a path such that $\Diamond \phi$ or for all paths $\Diamond \phi$

 $\Gamma \vdash [[\alpha]] \diamondsuit \phi, \ \langle \alpha \rangle [[\beta]] \diamondsuit \phi, \ \Delta$

 $\Gamma \vdash [[\alpha;\beta]] \diamondsuit \phi, \Delta$

Semantics of \diamond ?

there is a path such that $\diamondsuit \phi$ or for all paths $\diamondsuit \phi$

 $\Gamma \vdash [[\alpha]] \diamondsuit \phi, \ \langle \alpha \rangle true \land [\alpha] [[\beta]] \diamondsuit \phi, \ \Delta$

 $\Gamma \vdash [[\alpha;\beta]] \diamondsuit \phi, \Delta$

Semantics of \diamond ?

there is a path such that $\diamondsuit \phi$ or for all paths $\diamondsuit \phi$

 $\Gamma \vdash [[\alpha]] \diamondsuit (\phi \lor (\Box false \land [[\beta]] \diamondsuit \phi)), \Delta$

 $\Gamma \vdash [[\alpha;\beta]] \diamondsuit \phi, \, \Delta$

Semantics of \diamond ?

there is a path such that $\Diamond\phi$ or for all paths $\Diamond\phi$

 $\Gamma \vdash [[\alpha]] \mathbb{Q}(\diamondsuit(\phi \lor (\Box false \land [[\beta]] \mathbb{Q} \diamondsuit \phi))), \Delta$

 $\Gamma \vdash [[\alpha;\beta]] \mathbb{Q} \diamondsuit \phi, \Delta$

Rules for Loops

- **m Similar to rules for** $<math>\mu$ **-calculus**
- Idea: identify repeats in the proof

Example:

with

$$A := i \doteq i' + 1, \ i' \doteq c, \ c > 0 \vdash \llbracket p \rrbracket (i \doteq x_0 \rightarrow \Diamond i \doteq 2x_0)$$

Future Work

- Finishing work on rules for loops
- DTL for PROMELA⁺
 - non-deterministic constructs
 - communication via channels
 - processes and dynamic process creation
- Translating statecharts into PROMELA⁺ for verification of temporal properties