
|

KeY Proof Obligations

Andreas Roth

June 9, 2005

Proof Obligations June 9, 2005 1



Introduction |

KeY Proof Obligations So Far

I Ad hoc
I No concept of global correctness, when finished?
I Bugs in (horizontal) POs

Example

1. class A{ /*@instance invariant b==0 & a!=this*/
private int b; A a;
void m() {a.b=1;} }

PreservesInvariant for m() passes!

2. class A{ /*@instance invariant b.c==0; */ private B b;}
class B{ private int c; setC(int c){this.c=c;} }

PreservesInvariant for setC(int) not available!

3. class A{ B b; /*\result==0*/int m() {return b.getC();}}
class B{int c; /*instance invariant c==0;*/ int getC(){return c;}}

Not proveable with EnsuresPostcondition

Proof Obligations June 9, 2005 2



Introduction |

KeY Proof Obligations So Far

I Ad hoc
I No concept of global correctness, when finished?
I Bugs in (horizontal) POs

Example
1. class A{ /*@instance invariant b==0 & a!=this*/

private int b; A a;
void m() {a.b=1;} }

PreservesInvariant for m() passes!

2. class A{ /*@instance invariant b.c==0; */ private B b;}
class B{ private int c; setC(int c){this.c=c;} }

PreservesInvariant for setC(int) not available!

3. class A{ B b; /*\result==0*/int m() {return b.getC();}}
class B{int c; /*instance invariant c==0;*/ int getC(){return c;}}

Not proveable with EnsuresPostcondition

Proof Obligations June 9, 2005 2



Introduction |

KeY Proof Obligations So Far

I Ad hoc
I No concept of global correctness, when finished?
I Bugs in (horizontal) POs

Example
1. class A{ /*@instance invariant b==0 & a!=this*/

private int b; A a;
void m() {a.b=1;} }

PreservesInvariant for m() passes!

2. class A{ /*@instance invariant b.c==0; */ private B b;}
class B{ private int c; setC(int c){this.c=c;} }

PreservesInvariant for setC(int) not available!

3. class A{ B b; /*\result==0*/int m() {return b.getC();}}
class B{int c; /*instance invariant c==0;*/ int getC(){return c;}}

Not proveable with EnsuresPostcondition

Proof Obligations June 9, 2005 2



Introduction |

KeY Proof Obligations So Far

I Ad hoc
I No concept of global correctness, when finished?
I Bugs in (horizontal) POs

Example
1. class A{ /*@instance invariant b==0 & a!=this*/

private int b; A a;
void m() {a.b=1;} }

PreservesInvariant for m() passes!

2. class A{ /*@instance invariant b.c==0; */ private B b;}
class B{ private int c; setC(int c){this.c=c;} }

PreservesInvariant for setC(int) not available!

3. class A{ B b; /*\result==0*/int m() {return b.getC();}}
class B{int c; /*instance invariant c==0;*/ int getC(){return c;}}

Not proveable with EnsuresPostcondition
Proof Obligations June 9, 2005 2



Introduction |

The Task

Input from Translation OCL→DL or JML→DL

:
I Operation contracts:

I the method declaration op in class or interface D,
I a precondition ψopct(o, p1, . . . , pn)
I a postcondition ϕopct(o, p1, . . . , pn, r , exc)

}
as FOL formula

I an assignable clause {l1, . . . , ln} as FOL terms
I a marker from {partial , total}

I Instance invariants Inv inst as FOL formulas

Shape: ϕ(o). Treat as

∀o:T ϕ(o) :=

∀o:T (o.<created>→ ϕ(o))

I Static invariants Inv stat as FOL formulas (not from OCL)

Output: Proof Obligations, (sets of) JavaDL formulas whose validity
ensures a “good” property of a model or program.

Proof Obligations June 9, 2005 3



Introduction |

The Task

Input from Translation OCL→DL or JML→DL:
I Operation contracts:

I the method declaration op in class or interface D,

I a precondition ψopct(o, p1, . . . , pn)
I a postcondition ϕopct(o, p1, . . . , pn, r , exc)

}
as FOL formula

I an assignable clause {l1, . . . , ln} as FOL terms
I a marker from {partial , total}

I Instance invariants Inv inst as FOL formulas

Shape: ϕ(o). Treat as

∀o:T ϕ(o) :=

∀o:T (o.<created>→ ϕ(o))

I Static invariants Inv stat as FOL formulas (not from OCL)

Output: Proof Obligations, (sets of) JavaDL formulas whose validity
ensures a “good” property of a model or program.

Proof Obligations June 9, 2005 3



Introduction |

The Task

Input from Translation OCL→DL or JML→DL:
I Operation contracts:

I the method declaration op in class or interface D,
I a precondition ψopct(o, p1, . . . , pn)

I a postcondition ϕopct(o, p1, . . . , pn, r , exc)

}
as FOL formula

I an assignable clause {l1, . . . , ln} as FOL terms
I a marker from {partial , total}

I Instance invariants Inv inst as FOL formulas

Shape: ϕ(o). Treat as

∀o:T ϕ(o) :=

∀o:T (o.<created>→ ϕ(o))

I Static invariants Inv stat as FOL formulas (not from OCL)

Output: Proof Obligations, (sets of) JavaDL formulas whose validity
ensures a “good” property of a model or program.

Proof Obligations June 9, 2005 3



Introduction |

The Task

Input from Translation OCL→DL or JML→DL:
I Operation contracts:

I the method declaration op in class or interface D,
I a precondition ψopct(o, p1, . . . , pn)
I a postcondition ϕopct(o, p1, . . . , pn, r , exc)

}
as FOL formula

I an assignable clause {l1, . . . , ln} as FOL terms
I a marker from {partial , total}

I Instance invariants Inv inst as FOL formulas

Shape: ϕ(o). Treat as

∀o:T ϕ(o) :=

∀o:T (o.<created>→ ϕ(o))

I Static invariants Inv stat as FOL formulas (not from OCL)

Output: Proof Obligations, (sets of) JavaDL formulas whose validity
ensures a “good” property of a model or program.

Proof Obligations June 9, 2005 3



Introduction |

The Task

Input from Translation OCL→DL or JML→DL:
I Operation contracts:

I the method declaration op in class or interface D,
I a precondition ψopct(o, p1, . . . , pn)
I a postcondition ϕopct(o, p1, . . . , pn, r , exc)

}
as FOL formula

I an assignable clause {l1, . . . , ln} as FOL terms

I a marker from {partial , total}
I Instance invariants Inv inst as FOL formulas

Shape: ϕ(o). Treat as

∀o:T ϕ(o) :=

∀o:T (o.<created>→ ϕ(o))

I Static invariants Inv stat as FOL formulas (not from OCL)

Output: Proof Obligations, (sets of) JavaDL formulas whose validity
ensures a “good” property of a model or program.

Proof Obligations June 9, 2005 3



Introduction |

The Task

Input from Translation OCL→DL or JML→DL:
I Operation contracts:

I the method declaration op in class or interface D,
I a precondition ψopct(o, p1, . . . , pn)
I a postcondition ϕopct(o, p1, . . . , pn, r , exc)

}
as FOL formula

I an assignable clause {l1, . . . , ln} as FOL terms
I a marker from {partial , total}

I Instance invariants Inv inst as FOL formulas

Shape: ϕ(o). Treat as

∀o:T ϕ(o) :=

∀o:T (o.<created>→ ϕ(o))

I Static invariants Inv stat as FOL formulas (not from OCL)

Output: Proof Obligations, (sets of) JavaDL formulas whose validity
ensures a “good” property of a model or program.

Proof Obligations June 9, 2005 3



Introduction |

The Task

Input from Translation OCL→DL or JML→DL:
I Operation contracts:

I the method declaration op in class or interface D,
I a precondition ψopct(o, p1, . . . , pn)
I a postcondition ϕopct(o, p1, . . . , pn, r , exc)

}
as FOL formula

I an assignable clause {l1, . . . , ln} as FOL terms
I a marker from {partial , total}

I Instance invariants Inv inst as FOL formulas

Shape: ϕ(o). Treat as

∀o:T ϕ(o) :=

∀o:T (o.<created>→ ϕ(o))

I Static invariants Inv stat as FOL formulas (not from OCL)

Output: Proof Obligations, (sets of) JavaDL formulas whose validity
ensures a “good” property of a model or program.

Proof Obligations June 9, 2005 3



Introduction |

The Task

Input from Translation OCL→DL or JML→DL:
I Operation contracts:

I the method declaration op in class or interface D,
I a precondition ψopct(o, p1, . . . , pn)
I a postcondition ϕopct(o, p1, . . . , pn, r , exc)

}
as FOL formula

I an assignable clause {l1, . . . , ln} as FOL terms
I a marker from {partial , total}

I Instance invariants Inv inst as FOL formulas
Shape: ϕ(o). Treat as

∀o:T ϕ(o) :=

∀o:T (o.<created>→ ϕ(o))

I Static invariants Inv stat as FOL formulas (not from OCL)

Output: Proof Obligations, (sets of) JavaDL formulas whose validity
ensures a “good” property of a model or program.

Proof Obligations June 9, 2005 3



Introduction |

The Task

Input from Translation OCL→DL or JML→DL:
I Operation contracts:

I the method declaration op in class or interface D,
I a precondition ψopct(o, p1, . . . , pn)
I a postcondition ϕopct(o, p1, . . . , pn, r , exc)

}
as FOL formula

I an assignable clause {l1, . . . , ln} as FOL terms
I a marker from {partial , total}

I Instance invariants Inv inst as FOL formulas
Shape: ϕ(o). Treat as ∀o:T ϕ(o) := ∀o:T (o.<created>→ ϕ(o))

I Static invariants Inv stat as FOL formulas (not from OCL)

Output: Proof Obligations, (sets of) JavaDL formulas whose validity
ensures a “good” property of a model or program.

Proof Obligations June 9, 2005 3



Introduction |

The Task

Input from Translation OCL→DL or JML→DL:
I Operation contracts:

I the method declaration op in class or interface D,
I a precondition ψopct(o, p1, . . . , pn)
I a postcondition ϕopct(o, p1, . . . , pn, r , exc)

}
as FOL formula

I an assignable clause {l1, . . . , ln} as FOL terms
I a marker from {partial , total}

I Instance invariants Inv inst as FOL formulas
Shape: ϕ(o). Treat as ∀o:T ϕ(o) := ∀o:T (o.<created>→ ϕ(o))

I Static invariants Inv stat as FOL formulas (not from OCL)

Output: Proof Obligations, (sets of) JavaDL formulas whose validity
ensures a “good” property of a model or program.

Proof Obligations June 9, 2005 3



Introduction |

The Task

Input from Translation OCL→DL or JML→DL:
I Operation contracts:

I the method declaration op in class or interface D,
I a precondition ψopct(o, p1, . . . , pn)
I a postcondition ϕopct(o, p1, . . . , pn, r , exc)

}
as FOL formula

I an assignable clause {l1, . . . , ln} as FOL terms
I a marker from {partial , total}

I Instance invariants Inv inst as FOL formulas
Shape: ϕ(o). Treat as ∀o:T ϕ(o) := ∀o:T (o.<created>→ ϕ(o))

I Static invariants Inv stat as FOL formulas (not from OCL)

Output: Proof Obligations, (sets of) JavaDL formulas whose validity
ensures a “good” property of a model or program.

Proof Obligations June 9, 2005 3



Introduction |

The Task

Input from Translation OCL→DL or JML→DL:
I Operation contracts:

I the method declaration op in class or interface D,
I a precondition ψopct(o, p1, . . . , pn)
I a postcondition ϕopct(o, p1, . . . , pn, r , exc)

}
as FOL formula

I an assignable clause {l1, . . . , ln} as FOL terms
I a marker from {partial , total}

I Instance invariants Inv inst as FOL formulas
Shape: ϕ(o). Treat as ∀o:T ϕ(o) := ∀o:T (o.<created>→ ϕ(o))

I Static invariants Inv stat as FOL formulas (not from OCL)

Output: Proof Obligations, (sets of) JavaDL formulas whose validity
ensures a “good” property of a model or program.

Proof Obligations June 9, 2005 3



Introduction |

The Task

Input from Translation OCL→DL or JML→DL:
I Operation contracts:

I the method declaration op in class or interface D,
I a precondition ψopct(o, p1, . . . , pn)
I a postcondition ϕopct(o, p1, . . . , pn, r , exc)

}
as FOL formula

I an assignable clause {l1, . . . , ln} as FOL terms
I a marker from {partial , total}

I Instance invariants Inv inst as FOL formulas
Shape: ϕ(o). Treat as ∀o:T ϕ(o) := ∀o:T (o.<created>→ ϕ(o))

I Static invariants Inv stat as FOL formulas (not from OCL)

Output: Proof Obligations, (sets of) JavaDL formulas whose validity
ensures a “good” property of a model or program.

Proof Obligations June 9, 2005 3



Introduction |

The Task

Input from Translation OCL→DL or JML→DL:
I Operation contracts:

I the method declaration op in class or interface D,
I a precondition ψopct(o, p1, . . . , pn)
I a postcondition ϕopct(o, p1, . . . , pn, r , exc)

}
as FOL formula

I an assignable clause {l1, . . . , ln} as FOL terms
I a marker from {partial , total}

I Instance invariants Inv inst as FOL formulas
Shape: ϕ(o). Treat as ∀o:T ϕ(o) := ∀o:T (o.<created>→ ϕ(o))

I Static invariants Inv stat as FOL formulas (not from OCL)

Output: Proof Obligations, (sets of) JavaDL formulas whose validity
ensures a “good” property of a model or program.

Proof Obligations June 9, 2005 3



Introduction |

The Task

Input from Translation OCL→DL or JML→DL:
I Operation contracts:

I the method declaration op in class or interface D,
I a precondition ψopct(o, p1, . . . , pn)
I a postcondition ϕopct(o, p1, . . . , pn, r , exc)

}
as FOL formula

I an assignable clause {l1, . . . , ln} as FOL terms
I a marker from {partial , total}

I Instance invariants Inv inst as FOL formulas
Shape: ϕ(o). Treat as ∀o:T ϕ(o) := ∀o:T (o.<created>→ ϕ(o))

I Static invariants Inv stat as FOL formulas (not from OCL)

Output: Proof Obligations, (sets of) JavaDL formulas whose validity
ensures a “good” property of a model or program.

Proof Obligations June 9, 2005 3



Introduction |

Overview

Lightweight
Design Validation

Properties

Lightweight
Program Correctness

Properties

single properties
of interest

Heavyweight
Program Correctness

Properties

statements about
whole program

Model only, (Correctness)
No Program Properties of Programs

Horizontal Verification Vertical Verification

Proof Obligations June 9, 2005 4



Introduction |

Overview

Lightweight
Design Validation

Properties

Lightweight
Program Correctness

Properties

single properties
of interest

Heavyweight
Program Correctness

Properties

statements about
whole program

Model only,

(Correctness)

No Program

Properties of Programs

Horizontal Verification

Vertical Verification

Proof Obligations June 9, 2005 4



Introduction |

Overview

Lightweight
Design Validation

Properties

Lightweight
Program Correctness

Properties

single properties
of interest

Heavyweight
Program Correctness

Properties

statements about
whole program

Model only, (Correctness)
No Program Properties of Programs

Horizontal Verification Vertical Verification

Proof Obligations June 9, 2005 4



Introduction |

Overview

Lightweight
Design Validation

Properties

Lightweight
Program Correctness

Properties

single properties
of interest

Heavyweight
Program Correctness

Properties

statements about
whole program

Model only, (Correctness)
No Program Properties of Programs

Horizontal Verification Vertical Verification

Proof Obligations June 9, 2005 4



Introduction |

Overview

Lightweight
Design Validation

Properties

Lightweight
Program Correctness

Properties

single properties
of interest

Heavyweight
Program Correctness

Properties

statements about
whole program

Model only, (Correctness)
No Program Properties of Programs

Horizontal Verification Vertical Verification

Proof Obligations June 9, 2005 4



Introduction |

Overview

Lightweight
Design Validation

Properties

Lightweight
Program Correctness

Properties

single properties
of interest

Heavyweight
Program Correctness

Properties

statements about
whole program

Model only, (Correctness)
No Program Properties of Programs

Horizontal Verification Vertical Verification

Proof Obligations June 9, 2005 4



Horizontal Proof Obligations | Structural/Behavioural Subtyping

Structural Subtyping

C

D

Original Idea: Invariants of D at least as strong as those of C.

Translation of instance invariant of C: ∀o:C ϕC (o)
FOL inclusion semantics: Quantification covers instances of D
∀o:C ϕC (o) → ∀o:D ϕC (o).

Invariant of C is already (implicit) invariant of D.
Thus: invariants of D at least as strong as that of C by definition.

No need for PO?
Alternatives:

I Yes, no need

I Use exact quantification in translation unnatural

I No problem. Specs. are better if they occur again in subclasses. . .
PO: ∀o:D (ϕD(o) → ϕC (o))

Proof Obligations June 9, 2005 5



Horizontal Proof Obligations | Structural/Behavioural Subtyping

Structural Subtyping

C

D

Original Idea: Invariants of D at least as strong as those of C.
Translation of instance invariant of C: ∀o:C ϕC (o)

FOL inclusion semantics: Quantification covers instances of D
∀o:C ϕC (o) → ∀o:D ϕC (o).

Invariant of C is already (implicit) invariant of D.
Thus: invariants of D at least as strong as that of C by definition.

No need for PO?
Alternatives:

I Yes, no need

I Use exact quantification in translation unnatural

I No problem. Specs. are better if they occur again in subclasses. . .
PO: ∀o:D (ϕD(o) → ϕC (o))

Proof Obligations June 9, 2005 5



Horizontal Proof Obligations | Structural/Behavioural Subtyping

Structural Subtyping

C

D

Original Idea: Invariants of D at least as strong as those of C.
Translation of instance invariant of C: ∀o:C ϕC (o)
FOL inclusion semantics: Quantification covers instances of D
∀o:C ϕC (o) → ∀o:D ϕC (o).

Invariant of C is already (implicit) invariant of D.
Thus: invariants of D at least as strong as that of C by definition.

No need for PO?
Alternatives:

I Yes, no need

I Use exact quantification in translation unnatural

I No problem. Specs. are better if they occur again in subclasses. . .
PO: ∀o:D (ϕD(o) → ϕC (o))

Proof Obligations June 9, 2005 5



Horizontal Proof Obligations | Structural/Behavioural Subtyping

Structural Subtyping

C

D

Original Idea: Invariants of D at least as strong as those of C.
Translation of instance invariant of C: ∀o:C ϕC (o)
FOL inclusion semantics: Quantification covers instances of D
∀o:C ϕC (o) → ∀o:D ϕC (o).

Invariant of C is already (implicit) invariant of D.
Thus: invariants of D at least as strong as that of C by definition.

No need for PO?

Alternatives:

I Yes, no need

I Use exact quantification in translation unnatural

I No problem. Specs. are better if they occur again in subclasses. . .
PO: ∀o:D (ϕD(o) → ϕC (o))

Proof Obligations June 9, 2005 5



Horizontal Proof Obligations | Structural/Behavioural Subtyping

Structural Subtyping

C

D

Original Idea: Invariants of D at least as strong as those of C.
Translation of instance invariant of C: ∀o:C ϕC (o)
FOL inclusion semantics: Quantification covers instances of D
∀o:C ϕC (o) → ∀o:D ϕC (o).

Invariant of C is already (implicit) invariant of D.
Thus: invariants of D at least as strong as that of C by definition.

No need for PO?
Alternatives:

I Yes, no need

I Use exact quantification in translation unnatural

I No problem. Specs. are better if they occur again in subclasses. . .
PO: ∀o:D (ϕD(o) → ϕC (o))

Proof Obligations June 9, 2005 5



Horizontal Proof Obligations | Structural/Behavioural Subtyping

Structural Subtyping

C

D

Original Idea: Invariants of D at least as strong as those of C.
Translation of instance invariant of C: ∀o:C ϕC (o)
FOL inclusion semantics: Quantification covers instances of D
∀o:C ϕC (o) → ∀o:D ϕC (o).

Invariant of C is already (implicit) invariant of D.
Thus: invariants of D at least as strong as that of C by definition.

No need for PO?
Alternatives:

I Yes, no need

I Use exact quantification in translation unnatural

I No problem. Specs. are better if they occur again in subclasses. . .
PO: ∀o:D (ϕD(o) → ϕC (o))

Proof Obligations June 9, 2005 5



Horizontal Proof Obligations | Structural/Behavioural Subtyping

Structural Subtyping

C

D

Original Idea: Invariants of D at least as strong as those of C.
Translation of instance invariant of C: ∀o:C ϕC (o)
FOL inclusion semantics: Quantification covers instances of D
∀o:C ϕC (o) → ∀o:D ϕC (o).

Invariant of C is already (implicit) invariant of D.
Thus: invariants of D at least as strong as that of C by definition.

No need for PO?
Alternatives:

I Yes, no need

I Use exact quantification in translation unnatural

I No problem. Specs. are better if they occur again in subclasses. . .
PO: ∀o:D (ϕD(o) → ϕC (o))

Proof Obligations June 9, 2005 5



Horizontal Proof Obligations | Structural/Behavioural Subtyping

Behavioural Subtyping

mD overrides mC .
Pre-conditions: ψD as weak as ψC , Post-conditions: ϕD as strong as ϕC

Can be enforced by inheriting operation contracts (as in JML)

If inheritance of specifications not desired:

ψC → ψD (1)

ϕD → ϕC (2)

with ψC , ψD pre-conditions
with ϕC , ϕD post-conditions
with {l1, . . . , ln} modifies clause

or no modifies information: ϕD → ϕC (2′)

Proof Obligations June 9, 2005 6



Horizontal Proof Obligations | Structural/Behavioural Subtyping

Behavioural Subtyping

mD overrides mC .
Pre-conditions: ψD as weak as ψC , Post-conditions: ϕD as strong as ϕC

Can be enforced by inheriting operation contracts (as in JML)

If inheritance of specifications not desired:

ψC → ψD (1)

ϕD → ϕC (2)

with ψC , ψD pre-conditions
with ϕC , ϕD post-conditions
with {l1, . . . , ln} modifies clause

or no modifies information: ϕD → ϕC (2′)

Proof Obligations June 9, 2005 6



Horizontal Proof Obligations | Structural/Behavioural Subtyping

Behavioural Subtyping

mD overrides mC .
Pre-conditions: ψD as weak as ψC , Post-conditions: ϕD as strong as ϕC

Can be enforced by inheriting operation contracts (as in JML)

If inheritance of specifications not desired:

ψC → ψD (1)

ϕD → ϕC (2)

with ψC , ψD pre-conditions
with ϕC , ϕD post-conditions
with {l1, . . . , ln} modifies clause

or no modifies information: ϕD → ϕC (2′)

Proof Obligations June 9, 2005 6



Horizontal Proof Obligations | Structural/Behavioural Subtyping

Behavioural Subtyping

mD overrides mC .
Pre-conditions: ψD as weak as ψC , Post-conditions: ϕD as strong as ϕC

Can be enforced by inheriting operation contracts (as in JML)

If inheritance of specifications not desired:

ψC → ψD (1)

∀x1, . . . , xn(ψD → {l1 := x1, . . . , ln := xn}(ϕD → ϕC )) (2)

with ψC , ψD pre-conditions
with ϕC , ϕD post-conditions
with {l1, . . . , ln} modifies clause

or no modifies information: ϕD → ϕC (2′)

Proof Obligations June 9, 2005 6



Horizontal Proof Obligations | Structural/Behavioural Subtyping

Behavioural Subtyping

mD overrides mC .
Pre-conditions: ψD as weak as ψC , Post-conditions: ϕD as strong as ϕC

Can be enforced by inheriting operation contracts (as in JML)

If inheritance of specifications not desired:

ψC → ψD (1)

∀x1, . . . , xn(ψD → {l1 := x1, . . . , ln := xn}(ϕD → ϕC )) (2)

with ψC , ψD pre-conditions
with ϕC , ϕD post-conditions
with {l1, . . . , ln} modifies clause

or no modifies information: ϕD → ϕC (2′)

Proof Obligations June 9, 2005 6



Horizontal Proof Obligations | New Design Validation POs

Strong Postcondition

Does the post condition on its own establish own instance invariant
(after operation call)?

Otherwise: Operation contract not “functionally complete”.

∀x1, . . . , xn

(
ϕpre ∧

∧
ϕ∈I

ϕ→ {l1 := x1, . . . , ln := xn}

(
ϕpost →

∧
ϕ∈I

ϕ
)

)

with I instance invariants
ϕpost post-conditions

with ϕpre pre-conditions
{l1, . . . , ln} modifies clause

Proof Obligations June 9, 2005 7



Horizontal Proof Obligations | New Design Validation POs

Strong Postcondition

Does the post condition on its own establish own instance invariant
(after operation call)?

Otherwise: Operation contract not “functionally complete”.

∀x1, . . . , xn

(
ϕpre ∧

∧
ϕ∈I

ϕ→ {l1 := x1, . . . , ln := xn}

(
ϕpost →

∧
ϕ∈I

ϕ
)

)

with I instance invariants
ϕpost post-conditions

with ϕpre pre-conditions
{l1, . . . , ln} modifies clause

Proof Obligations June 9, 2005 7



Horizontal Proof Obligations | New Design Validation POs

Strong Postcondition

Does the post condition on its own establish own instance invariant
(after operation call)?

Otherwise: Operation contract not “functionally complete”.

∀x1, . . . , xn

(
ϕpre ∧

∧
ϕ∈I

ϕ→ {l1 := x1, . . . , ln := xn}

(
ϕpost →

∧
ϕ∈I

ϕ
)

)

with I instance invariants
ϕpost post-conditions

with ϕpre pre-conditions
{l1, . . . , ln} modifies clause

Proof Obligations June 9, 2005 7



Horizontal Proof Obligations | New Design Validation POs

Strong Postcondition

Does the post condition on its own establish own instance invariant
(after operation call)?

Otherwise: Operation contract not “functionally complete”.

∀x1, . . . , xn

(
ϕpre ∧

∧
ϕ∈I

ϕ→ {l1 := x1, . . . , ln := xn}
(
ϕpost →

∧
ϕ∈I

ϕ
))

with I instance invariants
ϕpost post-conditions
with ϕpre pre-conditions
{l1, . . . , ln} modifies clause

Proof Obligations June 9, 2005 7



Horizontal Proof Obligations | New Design Validation POs

Distinct Preconditions

Given two operation contracts opct1, opct2. Do the pre-conditions not
overlap?

Important for JML normal behavior / exceptional behavior

Example
/* @ normal behavior

@ requires true //. . .
@ also exceptional behavior
@ requires p==0 //. . .
@*/

public void m(int p) {//. . .

∀o∀r∀p1, . . . , pn(¬ψ1(o, r , p1, . . . , pn) ∨ ¬ψ2(o, r , p1, . . . , pn))

with ψi (o, r , p1, . . . , pn) precondition of opcti (o, r , p1, . . . , pn)

Proof Obligations June 9, 2005 8



Horizontal Proof Obligations | New Design Validation POs

Distinct Preconditions

Given two operation contracts opct1, opct2. Do the pre-conditions not
overlap?

Important for JML normal behavior / exceptional behavior

Example
/* @ normal behavior

@ requires true //. . .
@ also exceptional behavior
@ requires p==0 //. . .
@*/

public void m(int p) {//. . .

∀o∀r∀p1, . . . , pn(¬ψ1(o, r , p1, . . . , pn) ∨ ¬ψ2(o, r , p1, . . . , pn))

with ψi (o, r , p1, . . . , pn) precondition of opcti (o, r , p1, . . . , pn)

Proof Obligations June 9, 2005 8



Horizontal Proof Obligations | New Design Validation POs

Distinct Preconditions

Given two operation contracts opct1, opct2. Do the pre-conditions not
overlap?

Important for JML normal behavior / exceptional behavior

Example
/* @ normal behavior

@ requires true //. . .
@ also exceptional behavior
@ requires p==0 //. . .
@*/

public void m(int p) {//. . .

∀o∀r∀p1, . . . , pn(¬ψ1(o, r , p1, . . . , pn) ∨ ¬ψ2(o, r , p1, . . . , pn))

with ψi (o, r , p1, . . . , pn) precondition of opcti (o, r , p1, . . . , pn)

Proof Obligations June 9, 2005 8



Program Correctness |

Overview

Lightweight
Design Validation

Properties

Lightweight
Program Correctness

Properties

single properties
of interest

Heavyweight
Program Correctness

Properties

statements about
whole program

Model only, (Correctness)
No Program Properties of Programs

Horizontal Verification Vertical Verification

Proof Obligations June 9, 2005 9



Program Correctness | Notions of Correctness

Observational Correctness (single-threaded Java)

Set of classes

P

Arbitrary Observer Program Obs

Observer program: arbitrary calls to P.
Judges: Does call of P correspond to specification S of P?

I What are requirements on Obs (Assumptions on calls to P)?
I How is judgement made?

Two variants: call correctness and persistent correctness

Proof Obligations June 9, 2005 10



Program Correctness | Notions of Correctness

Observational Correctness (single-threaded Java)

Set of classes

P

Arbitrary Observer Program Obs

Observer program: arbitrary calls to P.
Judges: Does call of P correspond to specification S of P?

I What are requirements on Obs (Assumptions on calls to P)?
I How is judgement made?

Two variants: call correctness and persistent correctness

Proof Obligations June 9, 2005 10



Program Correctness | Notions of Correctness

Observational Correctness (single-threaded Java)

Set of classes

P

Arbitrary Observer Program Obs

Observer program: arbitrary calls to P.
Judges: Does call of P correspond to specification S of P?

I What are requirements on Obs (Assumptions on calls to P)?
I How is judgement made?

Two variants: call correctness and persistent correctness

Proof Obligations June 9, 2005 10



Program Correctness | Notions of Correctness

Observational Correctness (single-threaded Java)

Set of classes

P

Arbitrary Observer Program Obs

Observer program: arbitrary calls to P.
Judges: Does call of P correspond to specification S of P?

I What are requirements on Obs (Assumptions on calls to P)?
I How is judgement made?

Two variants: call correctness and persistent correctness

Proof Obligations June 9, 2005 10



Program Correctness | Notions of Correctness

Observational Correctness (single-threaded Java)

Set of classes

P

Arbitrary Observer Program Obs

Observer program: arbitrary calls to P.
Judges: Does call of P correspond to specification S of P?

I What are requirements on Obs (Assumptions on calls to P)?
I How is judgement made?

Two variants: call correctness and persistent correctness

Proof Obligations June 9, 2005 10



Program Correctness | Notions of Correctness

Observational Correctness (single-threaded Java)

Set of classes

P

Arbitrary Observer Program Obs

Observer program: arbitrary calls to P.
Judges: Does call of P correspond to specification S of P?

I What are requirements on Obs (Assumptions on calls to P)?
I How is judgement made?

Two variants: call correctness and persistent correctness
Proof Obligations June 9, 2005 10



Program Correctness | Call Correctness

Definition of Call Correctness

Given program P, observer Obs.

Obs calls operations in P only if

1. one of the preconditions holds

2. all invariants are satisfied

P is call correct if

1. every operation call to P in Obs fulfils the operation contracts
attached to that operation

2. all invariants of all objects and classes hold after operation call to P

Example

Instance invariants: ∀o:T (o.<created>→ ϕ(o))
Before constructor call

√
After constructor call

√

Proof Obligations June 9, 2005 11



Program Correctness | Call Correctness

Definition of Call Correctness

Given program P, observer Obs.

Obs calls operations in P only if

1. one of the preconditions holds

2. all invariants are satisfied

P is call correct if

1. every operation call to P in Obs fulfils the operation contracts
attached to that operation

2. all invariants of all objects and classes hold after operation call to P

Example

Instance invariants: ∀o:T (o.<created>→ ϕ(o))
Before constructor call

√
After constructor call

√

Proof Obligations June 9, 2005 11



Program Correctness | Call Correctness

Definition of Call Correctness

Given program P, observer Obs.

Obs calls operations in P only if

1. one of the preconditions holds

2. all invariants are satisfied

P is call correct if

1. every operation call to P in Obs fulfils the operation contracts
attached to that operation

2. all invariants of all objects and classes hold after operation call to P

Example

Instance invariants: ∀o:T (o.<created>→ ϕ(o))
Before constructor call

√
After constructor call

√

Proof Obligations June 9, 2005 11



Program Correctness | Call Correctness

Definition of Call Correctness

Given program P, observer Obs.

Obs calls operations in P only if

1. one of the preconditions holds

2. all invariants are satisfied

P is call correct if

1. every operation call to P in Obs fulfils the operation contracts
attached to that operation

2. all invariants of all objects and classes hold after operation call to P

Example

Instance invariants: ∀o:T (o.<created>→ ϕ(o))
Before constructor call

√
After constructor call

√

Proof Obligations June 9, 2005 11



Program Correctness | Call Correctness

Definition of Call Correctness

Given program P, observer Obs.

Obs calls operations in P only if

1. one of the preconditions holds

2. all invariants are satisfied

P is call correct if

1. every operation call to P in Obs fulfils the operation contracts
attached to that operation

2. all invariants of all objects and classes hold after operation call to P

Example

Instance invariants: ∀o:T (o.<created>→ ϕ(o))
Before constructor call

√
After constructor call

√

Proof Obligations June 9, 2005 11



Program Correctness | Call Correctness

Definition of Call Correctness

Given program P, observer Obs.

Obs calls operations in P only if

1. one of the preconditions holds

2. all invariants are satisfied

P is call correct if

1. every operation call to P in Obs fulfils the operation contracts
attached to that operation

2. all invariants of all objects and classes hold after operation call to P

Example

Instance invariants: ∀o:T (o.<created>→ ϕ(o))
Before constructor call

√
After constructor call

√

Proof Obligations June 9, 2005 11



Program Correctness | Call Correctness

Definition of Call Correctness

Given program P, observer Obs.

Obs calls operations in P only if

1. one of the preconditions holds

2. all invariants are satisfied

P is call correct if

1. every operation call to P in Obs fulfils the operation contracts
attached to that operation

2. all invariants of all objects and classes hold after operation call to P

Example

Instance invariants: ∀o:T (o.<created>→ ϕ(o))
Before constructor call

√
After constructor call

√

Proof Obligations June 9, 2005 11



Program Correctness | Call Correctness

Definition of Call Correctness

Given program P, observer Obs.

Obs calls operations in P only if

1. one of the preconditions holds

2. all invariants are satisfied

P is call correct if

1. every operation call to P in Obs fulfils the operation contracts
attached to that operation

2. all invariants of all objects and classes hold after operation call to P

Example

Instance invariants: ∀o:T (o.<created>→ ϕ(o))
Before constructor call

√
After constructor call

√

Proof Obligations June 9, 2005 11



Program Correctness | From Call Correctness to Proof Obligations

Proof Obligations for Call Correctness

Proof Obligation: Simulate observer call generically

General shape of proof obligations:

ψ → 〈α〉ϕ

I Assumptions

I Programs

I Assertions

I Modalities

Proof Obligations June 9, 2005 12



Program Correctness | From Call Correctness to Proof Obligations

Proof Obligations for Call Correctness

Proof Obligation: Simulate observer call generically

General shape of proof obligations:

ψ → 〈α〉ϕ

I Assumptions

I Programs

I Assertions

I Modalities

Proof Obligations June 9, 2005 12



Program Correctness | From Call Correctness to Proof Obligations

Proof Obligations for Call Correctness

Proof Obligation: Simulate observer call generically

General shape of proof obligations:

ψ → 〈α〉ϕ

I Assumptions

I Programs

I Assertions

I Modalities

Proof Obligations June 9, 2005 12



Program Correctness | From Call Correctness to Proof Obligations

Proof Obligations for Call Correctness

Proof Obligation: Simulate observer call generically

General shape of proof obligations:

ψ → 〈α〉ϕ

I Assumptions

I Programs

I Assertions

I Modalities

Proof Obligations June 9, 2005 12



Program Correctness | From Call Correctness to Proof Obligations

Proof Obligations for Call Correctness

Proof Obligation: Simulate observer call generically

General shape of proof obligations:

ψ → 〈α〉ϕ

I Assumptions

I Programs

I Assertions

I Modalities

Proof Obligations June 9, 2005 12



Program Correctness | From Call Correctness to Proof Obligations

Proof Obligations for Call Correctness

Proof Obligation: Simulate observer call generically

General shape of proof obligations:

ψ → 〈α〉ϕ

I Assumptions

I Programs

I Assertions

I Modalities

Proof Obligations June 9, 2005 12



Program Correctness | From Call Correctness to Proof Obligations

Call Correctness: Assumptions

In Observer: Which conditions hold before a call to P?

The general assumption A(op, o, p1, . . . , pn) before call to method or
constructor op on object described by o:∧
ϕ ∈ Inv cl

ϕ ∧
∨

ϕpre(
−→x )

precondition
of OpCtop

ϕpre(o, p1, . . . , pn) ∧ o.<created> = TRUE

I all invariants of all classes hold,

I at least one of the preconditions of op holds,

I called object is created

Proof Obligations June 9, 2005 13



Program Correctness | From Call Correctness to Proof Obligations

Call Correctness: Assumptions

In Observer: Which conditions hold before a call to P?
The general assumption A(op, o, p1, . . . , pn) before call to method or
constructor op on object described by o:∧
ϕ ∈ Inv cl

ϕ ∧
∨

ϕpre(
−→x )

precondition
of OpCtop

ϕpre(o, p1, . . . , pn) ∧ o.<created> = TRUE

I all invariants of all classes hold,

I at least one of the preconditions of op holds,

I called object is created

Proof Obligations June 9, 2005 13



Program Correctness | From Call Correctness to Proof Obligations

Call Correctness: Assumptions

In Observer: Which conditions hold before a call to P?
The general assumption A(op, o, p1, . . . , pn) before call to method or
constructor op on object described by o:∧
ϕ ∈ Inv cl

ϕ ∧
∨

ϕpre(
−→x )

precondition
of OpCtop

ϕpre(o, p1, . . . , pn) ∧ o.<created> = TRUE

I all invariants of all classes hold,

I at least one of the preconditions of op holds,

I called object is created

Proof Obligations June 9, 2005 13



Program Correctness | From Call Correctness to Proof Obligations

Call Correctness: Assumptions

In Observer: Which conditions hold before a call to P?
The general assumption A(op, o, p1, . . . , pn) before call to method or
constructor op on object described by o:∧
ϕ ∈ Inv cl

ϕ ∧
∨

ϕpre(
−→x )

precondition
of OpCtop

ϕpre(o, p1, . . . , pn) ∧ o.<created> = TRUE

I all invariants of all classes hold,

I at least one of the preconditions of op holds,

I called object is created

Proof Obligations June 9, 2005 13



Program Correctness | From Call Correctness to Proof Obligations

Call Correctness: Assumptions

In Observer: Which conditions hold before a call to P?
The general assumption A(op, o, p1, . . . , pn) before call to method or
constructor op on object described by o:∧
ϕ ∈ Inv cl

ϕ ∧
∨

ϕpre(
−→x )

precondition
of OpCtop

ϕpre(o, p1, . . . , pn) ∧ o.<created> = TRUE

I all invariants of all classes hold,

I at least one of the preconditions of op holds,

I called object is created

Proof Obligations June 9, 2005 13



Program Correctness | From Call Correctness to Proof Obligations

Programs 1

“Generic” Observer contains statement αopD
(self, (p1, . . . , pn), r):

Instance methods opD :
self.m@D(p1,. . . ,pn):r;
self.m@D(p1,. . . ,pn);

Static methods:
r=D.m(p1,. . . ,pn);
D.m(p1,. . . ,pn);

Constructors:
new D(p1,. . . ,pn);

Proof Obligations June 9, 2005 14



Program Correctness | From Call Correctness to Proof Obligations

Programs 1

“Generic” Observer contains statement αopD
(self, (p1, . . . , pn), r):

Instance methods opD :
self.m@D(p1,. . . ,pn):r;
self.m@D(p1,. . . ,pn);

Static methods:
r=D.m(p1,. . . ,pn);
D.m(p1,. . . ,pn);

Constructors:
new D(p1,. . . ,pn);

Proof Obligations June 9, 2005 14



Program Correctness | From Call Correctness to Proof Obligations

Programs 1

“Generic” Observer contains statement αopD
(self, (p1, . . . , pn), r):

Instance methods opD :
self.m@D(p1,. . . ,pn):r;
self.m@D(p1,. . . ,pn);

Static methods:
r=D.m(p1,. . . ,pn);
D.m(p1,. . . ,pn);

Constructors:
new D(p1,. . . ,pn);

Proof Obligations June 9, 2005 14



Program Correctness | From Call Correctness to Proof Obligations

Programs 1

“Generic” Observer contains statement αopD
(self, (p1, . . . , pn), r):

Instance methods opD :
self.m@D(p1,. . . ,pn):r;
self.m@D(p1,. . . ,pn);

Static methods:
r=D.m(p1,. . . ,pn);
D.m(p1,. . . ,pn);

Constructors:
new D(p1,. . . ,pn);

Proof Obligations June 9, 2005 14



Program Correctness | From Call Correctness to Proof Obligations

Programs 2

Gather information on abrupt termination behaviour:

α̃opD
(self, (p1, . . . , pn), r, exc) :=


exc=null;
try{

αopD (self, (p1, . . . , pn), r)
} catch (Throwable e) {

exc = e;
}

α̃opD
(self, (p1, . . . , pn), r) :=

{
try{

αopD (self, (p1, . . . , pn), r)
} catch (Throwable e) {}

Proof Obligations June 9, 2005 15



Program Correctness | From Call Correctness to Proof Obligations

Call Correctness: Assertions 1

An operation op fulfils operation contract opct

:

If op is called

1. on object described by o with parameters p1, . . . , pn and the
returned value is contained in r and the thrown exception in exc,

2. in a state which satisfies the general assumption
A(op, o, (p1, . . . , pn)), and

3. in a state which satisfies the precondition ψopct(o, (p1, . . . , pn))

then

1. if the total marker of opct is set, the call terminates in a post-state

2. if there is a post-state, then in the post-state

I the postcondition ϕopct(o, (p1, . . . , pn), r , exc) of opct holds and
I only the elements li (o, p1, . . . , pn) of the modifies clauses in the

operation contracts are (permanently) modified.

Proof Obligations June 9, 2005 16



Program Correctness | From Call Correctness to Proof Obligations

Call Correctness: Assertions 1

An operation op fulfils operation contract opct:

If op is called

1. on object described by o with parameters p1, . . . , pn and the
returned value is contained in r and the thrown exception in exc ,

2. in a state which satisfies the general assumption
A(op, o, (p1, . . . , pn)), and

3. in a state which satisfies the precondition ψopct(o, (p1, . . . , pn))

then

1. if the total marker of opct is set, the call terminates in a post-state

2. if there is a post-state, then in the post-state

I the postcondition ϕopct(o, (p1, . . . , pn), r , exc) of opct holds and
I only the elements li (o, p1, . . . , pn) of the modifies clauses in the

operation contracts are (permanently) modified.

Proof Obligations June 9, 2005 16



Program Correctness | From Call Correctness to Proof Obligations

Call Correctness: Assertions 1

An operation op fulfils operation contract opct:

If op is called

1. on object described by o with parameters p1, . . . , pn and the
returned value is contained in r and the thrown exception in exc ,

2. in a state which satisfies the general assumption
A(op, o, (p1, . . . , pn)), and

3. in a state which satisfies the precondition ψopct(o, (p1, . . . , pn))

then

1. if the total marker of opct is set, the call terminates in a post-state

2. if there is a post-state, then in the post-state

I the postcondition ϕopct(o, (p1, . . . , pn), r , exc) of opct holds and
I only the elements li (o, p1, . . . , pn) of the modifies clauses in the

operation contracts are (permanently) modified.

Proof Obligations June 9, 2005 16



Program Correctness | From Call Correctness to Proof Obligations

Call Correctness: Assertions 1

An operation op fulfils operation contract opct:

If op is called

1. on object described by o with parameters p1, . . . , pn and the
returned value is contained in r and the thrown exception in exc ,

2. in a state which satisfies the general assumption
A(op, o, (p1, . . . , pn)), and

3. in a state which satisfies the precondition ψopct(o, (p1, . . . , pn))

then

1. if the total marker of opct is set, the call terminates in a post-state

2. if there is a post-state, then in the post-state

I the postcondition ϕopct(o, (p1, . . . , pn), r , exc) of opct holds and
I only the elements li (o, p1, . . . , pn) of the modifies clauses in the

operation contracts are (permanently) modified.

Proof Obligations June 9, 2005 16



Program Correctness | From Call Correctness to Proof Obligations

Call Correctness: Assertions 1

An operation op fulfils operation contract opct:

If op is called

1. on object described by o with parameters p1, . . . , pn and the
returned value is contained in r and the thrown exception in exc ,

2. in a state which satisfies the general assumption
A(op, o, (p1, . . . , pn)), and

3. in a state which satisfies the precondition ψopct(o, (p1, . . . , pn))

then

1. if the total marker of opct is set, the call terminates in a post-state

2. if there is a post-state, then in the post-state

I the postcondition ϕopct(o, (p1, . . . , pn), r , exc) of opct holds and
I only the elements li (o, p1, . . . , pn) of the modifies clauses in the

operation contracts are (permanently) modified.

Proof Obligations June 9, 2005 16



Program Correctness | From Call Correctness to Proof Obligations

Call Correctness: Assertions 1

An operation op fulfils operation contract opct:

If op is called

1. on object described by o with parameters p1, . . . , pn and the
returned value is contained in r and the thrown exception in exc ,

2. in a state which satisfies the general assumption
A(op, o, (p1, . . . , pn)), and

3. in a state which satisfies the precondition ψopct(o, (p1, . . . , pn))

then

1. if the total marker of opct is set, the call terminates in a post-state

2. if there is a post-state, then in the post-state

I the postcondition ϕopct(o, (p1, . . . , pn), r , exc) of opct holds and
I only the elements li (o, p1, . . . , pn) of the modifies clauses in the

operation contracts are (permanently) modified.

Proof Obligations June 9, 2005 16



Program Correctness | From Call Correctness to Proof Obligations

Call Correctness: Assertions 1

An operation op fulfils operation contract opct:

If op is called

1. on object described by o with parameters p1, . . . , pn and the
returned value is contained in r and the thrown exception in exc ,

2. in a state which satisfies the general assumption
A(op, o, (p1, . . . , pn)), and

3. in a state which satisfies the precondition ψopct(o, (p1, . . . , pn))

then

1. if the total marker of opct is set, the call terminates in a post-state

2. if there is a post-state, then in the post-state
I the postcondition ϕopct(o, (p1, . . . , pn), r , exc) of opct holds and

I only the elements li (o, p1, . . . , pn) of the modifies clauses in the
operation contracts are (permanently) modified.

Proof Obligations June 9, 2005 16



Program Correctness | From Call Correctness to Proof Obligations

Call Correctness: Assertions 1

An operation op fulfils operation contract opct:

If op is called

1. on object described by o with parameters p1, . . . , pn and the
returned value is contained in r and the thrown exception in exc ,

2. in a state which satisfies the general assumption
A(op, o, (p1, . . . , pn)), and

3. in a state which satisfies the precondition ψopct(o, (p1, . . . , pn))

then

1. if the total marker of opct is set, the call terminates in a post-state

2. if there is a post-state, then in the post-state
I the postcondition ϕopct(o, (p1, . . . , pn), r , exc) of opct holds and
I only the elements li (o, p1, . . . , pn) of the modifies clauses in the

operation contracts are (permanently) modified.

Proof Obligations June 9, 2005 16



Program Correctness | From Call Correctness to Proof Obligations

Call Correctness: Assertions 2

Operation op recovers a set of invariants I

:

If

1. op is called on object described by o with parameters p1, . . . , pn,

2. op is called in a state which satisfies the general assumption
A(op, o, (p1, . . . , pn)),

3. the call terminates

then in the post-state all ϕ ∈ I are valid.

Proof Obligations June 9, 2005 17



Program Correctness | From Call Correctness to Proof Obligations

Call Correctness: Assertions 2

Operation op recovers a set of invariants I :

If

1. op is called on object described by o with parameters p1, . . . , pn,

2. op is called in a state which satisfies the general assumption
A(op, o, (p1, . . . , pn)),

3. the call terminates

then in the post-state all ϕ ∈ I are valid.

Proof Obligations June 9, 2005 17



Program Correctness | From Call Correctness to Proof Obligations

Call Correctness: Assertions 2

Operation op recovers a set of invariants I :

If

1. op is called on object described by o with parameters p1, . . . , pn,

2. op is called in a state which satisfies the general assumption
A(op, o, (p1, . . . , pn)),

3. the call terminates

then in the post-state all ϕ ∈ I are valid.

Proof Obligations June 9, 2005 17



Program Correctness | From Call Correctness to Proof Obligations

Call Correctness: Assertions 2

Operation op recovers a set of invariants I :

If

1. op is called on object described by o with parameters p1, . . . , pn,

2. op is called in a state which satisfies the general assumption
A(op, o, (p1, . . . , pn)),

3. the call terminates

then in the post-state all ϕ ∈ I are valid.

Proof Obligations June 9, 2005 17



Program Correctness | From Call Correctness to Proof Obligations

Call Correctness: Assertions 2

Operation op recovers a set of invariants I :

If

1. op is called on object described by o with parameters p1, . . . , pn,

2. op is called in a state which satisfies the general assumption
A(op, o, (p1, . . . , pn)),

3. the call terminates

then in the post-state all ϕ ∈ I are valid.

Proof Obligations June 9, 2005 17



Program Correctness | From Call Correctness to Proof Obligations

Call Correctness: Assertions 2

Operation op recovers a set of invariants I :

If

1. op is called on object described by o with parameters p1, . . . , pn,

2. op is called in a state which satisfies the general assumption
A(op, o, (p1, . . . , pn)),

3. the call terminates

then in the post-state all ϕ ∈ I are valid.

Proof Obligations June 9, 2005 17



Program Correctness | Proof Obligations

Program Correctness Proof Obligations

To prove entire call correctness, for all operations op:

I EnsuresPost

A(op, self, (p1, . . . , pn)) ∧ ψopct

→ 〈α̃op(self, (p1, . . . , pn), r, exc)〉ϕopct

equivalent to ∧
ϕ∈Inv cl

ϕ ∧ ψopct ∧ self.<created> = TRUE

→ 〈α̃op(self, (p1, . . . , pn), r, exc)〉ϕopct

I RespectsModifies
(see Ralf Sasse’s minor thesis or alternative in my draft)

I for set I of all invariants: RecoverInv

A(op, self, (p1, . . . , pn)) → [α̃opD
(self, (p1, . . . , pn), r)]

∧
ϕ∈I

ϕ

Proof Obligations June 9, 2005 18



Program Correctness | Proof Obligations

Program Correctness Proof Obligations

To prove entire call correctness, for all operations op:

I EnsuresPost

A(op, self, (p1, . . . , pn)) ∧ ψopct

→ 〈α̃op(self, (p1, . . . , pn), r, exc)〉ϕopct

equivalent to ∧
ϕ∈Inv cl

ϕ ∧ ψopct ∧ self.<created> = TRUE

→ 〈α̃op(self, (p1, . . . , pn), r, exc)〉ϕopct

I RespectsModifies
(see Ralf Sasse’s minor thesis or alternative in my draft)

I for set I of all invariants: RecoverInv

A(op, self, (p1, . . . , pn)) → [α̃opD
(self, (p1, . . . , pn), r)]

∧
ϕ∈I

ϕ

Proof Obligations June 9, 2005 18



Program Correctness | Proof Obligations

Program Correctness Proof Obligations

To prove entire call correctness, for all operations op:

I EnsuresPost

A(op, self, (p1, . . . , pn)) ∧ ψopct

→ 〈α̃op(self, (p1, . . . , pn), r, exc)〉ϕopct

equivalent to ∧
ϕ∈Inv cl

ϕ ∧ ψopct ∧ self.<created> = TRUE

→ 〈α̃op(self, (p1, . . . , pn), r, exc)〉ϕopct

I RespectsModifies
(see Ralf Sasse’s minor thesis or alternative in my draft)

I for set I of all invariants: RecoverInv

A(op, self, (p1, . . . , pn)) → [α̃opD
(self, (p1, . . . , pn), r)]

∧
ϕ∈I

ϕ

Proof Obligations June 9, 2005 18



Program Correctness | Proof Obligations

Program Correctness Proof Obligations

To prove entire call correctness, for all operations op:

I EnsuresPost

A(op, self, (p1, . . . , pn)) ∧ ψopct

→ 〈α̃op(self, (p1, . . . , pn), r, exc)〉ϕopct

equivalent to ∧
ϕ∈Inv cl

ϕ ∧ ψopct ∧ self.<created> = TRUE

→ 〈α̃op(self, (p1, . . . , pn), r, exc)〉ϕopct

I RespectsModifies
(see Ralf Sasse’s minor thesis or alternative in my draft)

I for set I of all invariants: RecoverInv

A(op, self, (p1, . . . , pn)) → [α̃opD
(self, (p1, . . . , pn), r)]

∧
ϕ∈I

ϕ

Proof Obligations June 9, 2005 18



Program Correctness | Proof Obligations

Refinement: Reducing the PO Explosion

For all operations and for all invariants: RecoverInv
Consequences:

I PO Explosion, to a high degree non-modular!

I Coarse approximation to call correctness

Example

class A{ /*@instance invariant

ϕ︷ ︸︸ ︷
b.c=0; */ private B b;}

class B{ private int c; setC(int c){this.c=c;} }
Invariant ϕenc : A is the only class that holds references to object in b

System not provable correct with naive approach.
Advanced approach:

Only prove RecoverInv(ϕenc) and RecoverInv(ϕ) for A.

Work still in progress.

Proof Obligations June 9, 2005 19



Program Correctness | Proof Obligations

Refinement: Reducing the PO Explosion

For all operations and for all invariants: RecoverInv
Consequences:

I PO Explosion, to a high degree non-modular!

I Coarse approximation to call correctness

Example

class A{ /*@instance invariant

ϕ︷ ︸︸ ︷
b.c=0; */ private B b;}

class B{ private int c; setC(int c){this.c=c;} }
Invariant ϕenc : A is the only class that holds references to object in b

System not provable correct with naive approach.
Advanced approach:

Only prove RecoverInv(ϕenc) and RecoverInv(ϕ) for A.

Work still in progress.

Proof Obligations June 9, 2005 19



Program Correctness | Proof Obligations

Refinement: Reducing the PO Explosion

For all operations and for all invariants: RecoverInv
Consequences:

I PO Explosion, to a high degree non-modular!

I Coarse approximation to call correctness

Example

class A{ /*@instance invariant

ϕ︷ ︸︸ ︷
b.c=0; */ private B b;}

class B{ private int c; setC(int c){this.c=c;} }
Invariant ϕenc : A is the only class that holds references to object in b

System not provable correct with naive approach.
Advanced approach:

Only prove RecoverInv(ϕenc) and RecoverInv(ϕ) for A.

Work still in progress.

Proof Obligations June 9, 2005 19



Program Correctness | Proof Obligations

Refinement: Reducing the PO Explosion

For all operations and for all invariants: RecoverInv
Consequences:

I PO Explosion, to a high degree non-modular!

I Coarse approximation to call correctness

Example

class A{ /*@instance invariant

ϕ︷ ︸︸ ︷
b.c=0; */ private B b;}

class B{ private int c; setC(int c){this.c=c;} }
Invariant ϕenc : A is the only class that holds references to object in b

System not provable correct with naive approach.
Advanced approach:

Only prove RecoverInv(ϕenc) and RecoverInv(ϕ) for A.

Work still in progress.

Proof Obligations June 9, 2005 19



Program Correctness | Proof Obligations

Refinement: Reducing the PO Explosion

For all operations and for all invariants: RecoverInv
Consequences:

I PO Explosion, to a high degree non-modular!

I Coarse approximation to call correctness

Example

class A{ /*@instance invariant

ϕ︷ ︸︸ ︷
b.c=0; */ private B b;}

class B{ private int c; setC(int c){this.c=c;} }
Invariant ϕenc : A is the only class that holds references to object in b

System not provable correct with naive approach.

Advanced approach:
Only prove RecoverInv(ϕenc) and RecoverInv(ϕ) for A.

Work still in progress.

Proof Obligations June 9, 2005 19



Program Correctness | Proof Obligations

Refinement: Reducing the PO Explosion

For all operations and for all invariants: RecoverInv
Consequences:

I PO Explosion, to a high degree non-modular!

I Coarse approximation to call correctness

Example

class A{ /*@instance invariant

ϕ︷ ︸︸ ︷
b.c=0; */ private B b;}

class B{ private int c; setC(int c){this.c=c;} }
Invariant ϕenc : A is the only class that holds references to object in b

System not provable correct with naive approach.
Advanced approach:

Only prove RecoverInv(ϕenc) and RecoverInv(ϕ) for A.

Work still in progress.

Proof Obligations June 9, 2005 19



Program Correctness | Conclusions

Outlook: Persistent Correctness

For open programs call correctness is not enough.

Obs calls operations in P only if

I one of the preconditions holds

I all invariants are satisfied

P is call correct if

1. every operation call to P in Obs fulfils the operation contracts
attached to that operation

2. all invariants of all objects and classes hold after operation call to P

3. all invariants hold in every intermediate state of Obs

For closed programs: Call correctness ⇐⇒ Persistent Correctness

Proof Obligations June 9, 2005 20



Program Correctness | Conclusions

Outlook: Persistent Correctness

For open programs call correctness is not enough.

Obs calls operations in P only if

I one of the preconditions holds

I all invariants are satisfied

P is persistently correct if

1. every operation call to P in Obs fulfils the operation contracts
attached to that operation

2. all invariants of all objects and classes hold after operation call to P

3. all invariants hold in every intermediate state of Obs

For closed programs: Call correctness ⇐⇒ Persistent Correctness

Proof Obligations June 9, 2005 20



Program Correctness | Conclusions

Outlook: Persistent Correctness

For open programs call correctness is not enough.

Obs calls operations in P only if

I one of the preconditions holds

I all invariants are satisfied

P is persistently correct if

1. every operation call to P in Obs fulfils the operation contracts
attached to that operation

2. all invariants of all objects and classes hold after operation call to P

3. all invariants hold in every intermediate state of Obs

For closed programs: Call correctness ⇐⇒ Persistent Correctness

Proof Obligations June 9, 2005 20



Program Correctness | Conclusions

Outlook: Persistent Correctness

For open programs call correctness is not enough.

Obs calls operations in P only if

I one of the preconditions holds

I all invariants are satisfied

P is persistently correct if

1. every operation call to P in Obs fulfils the operation contracts
attached to that operation

2. all invariants of all objects and classes hold after operation call to P

3. all invariants hold in every intermediate state of Obs

For closed programs: Call correctness ⇐⇒ Persistent Correctness

Proof Obligations June 9, 2005 20



Program Correctness | Conclusions

Conclusions

I Current proof obligations of KeY are insufficient, need re-design
(already started)

I Purpose of structural/behavioural subtyping POs considered
doubtful

I Number of new design validation POs useful

I Notion of entire correctness of sequential Java programs
(observational call / persistent correctness)

I POs ensure these kinds of correctness

Proof Obligations June 9, 2005 21



Program Correctness | Conclusions

Conclusions

I Current proof obligations of KeY are insufficient, need re-design
(already started)

I Purpose of structural/behavioural subtyping POs considered
doubtful

I Number of new design validation POs useful

I Notion of entire correctness of sequential Java programs
(observational call / persistent correctness)

I POs ensure these kinds of correctness

Proof Obligations June 9, 2005 21



Program Correctness | Conclusions

Conclusions

I Current proof obligations of KeY are insufficient, need re-design
(already started)

I Purpose of structural/behavioural subtyping POs considered
doubtful

I Number of new design validation POs useful

I Notion of entire correctness of sequential Java programs
(observational call / persistent correctness)

I POs ensure these kinds of correctness

Proof Obligations June 9, 2005 21



Program Correctness | Conclusions

Conclusions

I Current proof obligations of KeY are insufficient, need re-design
(already started)

I Purpose of structural/behavioural subtyping POs considered
doubtful

I Number of new design validation POs useful

I Notion of entire correctness of sequential Java programs
(observational call / persistent correctness)

I POs ensure these kinds of correctness

Proof Obligations June 9, 2005 21



Program Correctness | Conclusions

Conclusions

I Current proof obligations of KeY are insufficient, need re-design
(already started)

I Purpose of structural/behavioural subtyping POs considered
doubtful

I Number of new design validation POs useful

I Notion of entire correctness of sequential Java programs
(observational call / persistent correctness)

I POs ensure these kinds of correctness

Proof Obligations June 9, 2005 21


	Introduction
	Horizontal Proof Obligations
	Structural/Behavioural Subtyping
	New Design Validation POs

	Program Correctness
	Notions of Correctness
	Call Correctness
	From Call Correctness to Proof Obligations
	Proof Obligations
	Conclusions


