
Customised Induction Rules for Proving
Correctness of Imperative Programs

Angela Wallenburg

angelaw@cs.chalmers.se

4th International Symposium

June 9, 2005, Lökeberg

Outline

1. Problem: Induction and Loops

2. First approach: Use idea from software testing to create induction rules

3. Next approach: Use to customise the rules instead and tie up loose ends

4. Ongoing work: Rippling – can it be used for the remaining challenges?

Angela Wallenburg, Chalmers and Göteborg University 2

Problems in Semi-Interactive Theorem Proving

1. Level of automation (a lot of user-interaction)

2. User-interaction complicated

Loops present the real challenge.

• Induction used to prove loops in KeY

• Induction hypothesis, required by the user

• Can be rather complicated, everything at once

• Recursion, similar problems

This holds for !

Angela Wallenburg, Chalmers and Göteborg University 3

Motivating Example

Proof obligation: ∀i ∈ N · ϕ(i),

where ϕ(i):
∀c ∈ N · i ≥ 0 ∧ c ≥ 1 → 〈 while (i > 0) {

if (i >= c) {
i = i − c;

} else {
i−−;

}
} 〉 i = 0

Angela Wallenburg, Chalmers and Göteborg University 4

Motivating Example

Standard induction step: ∀n ∈ N · ϕ(n) → ϕ(n + 1)

– Symbolic execution

– Unwind loop

– Two branches:

(1) (2)
i := i− c; i−−;

∀n ∈ N · ϕ(n) ∧ n ≥ c→ ϕ(n + 1− c) ∀n ∈ N · ϕ(n) ∧ n < c→ ϕ(n)

Problem!

Angela Wallenburg, Chalmers and Göteborg University 5

Goal

• Derive induction rule

• Automatically

• Program-specific induction rule

• Minimise user-interaction, not necessarily interested in proof-strength

Angela Wallenburg, Chalmers and Göteborg University 6

First Approach - Partition Testing as an Inspiration

• Using technique from software testing: partitioning

• Divide and Conquer!

• Partition analysis can be performed automatically

• White-box partition analysis using branch predicates

• Partition the proof!

Angela Wallenburg, Chalmers and Göteborg University 7

Example

int russianMultiplication(int a,int b) {

int z = 0;

while (a != 0) {

if (a mod 2 != 0) {

z = z + b;

}

a = a/2;

b = b*2;

}

return z;

}

Angela Wallenburg, Chalmers and Göteborg University 8

Example Partition

Partition of domain of a (N), based on the branch predicates:

D1 = {x ∈ N |x = 0} = {0}

D2 = {x ∈ N |x 6= 0 ∧ x mod 2 6= 0}

D3 = {x ∈ N |x 6= 0 ∧ x mod 2 = 0}

Angela Wallenburg, Chalmers and Göteborg University 9

Overview of the method

1. Construct partition of induction variable’s domain

– using branch predicates
– automatically

2. Refine the partition

– using implicit case distinctions of operators
– desired format

3. Create new induction rule

– based on refined partition
– k base cases, matching finite subdomains
– l step cases, matching infinite subdomains

4. Hopefully less user-interaction required

Angela Wallenburg, Chalmers and Göteborg University 10

Method by Example

The partitioned induction rule

ϕ(0) (1)

∀n ∈ N1 · ϕ(n)→ ϕ(2 ∗ n) (2)

∀n ∈ N · ϕ(n)→ ϕ(2 ∗ n + 1) (3)

to prove ∀n ∈ N · ϕ(n)

Angela Wallenburg, Chalmers and Göteborg University 11

Resulting User Interaction

User interaction required with partitioned induction rule:

• Instantiation

• Induction rule application

• Unwinding of the loop

• Decision procedure

• Arithmetic

Angela Wallenburg, Chalmers and Göteborg University 12

Next Approach – Generate Partitions with

Problems with the approach described so far:

• Branch predicates might not be related to the update of the induction variable
– resulting induction rule provides no simplification!

• Relies on quite sophisticated refinement of the partitions.

Rather we would like to:

• Let the side effects on the induction variable performed inside loop decide the
induction steps.

• Use failed proof attempts and updates!

Angela Wallenburg, Chalmers and Göteborg University 13

Generate Partitions Using a Theorem Prover

The productive use of failure:

• perform an attempt at proving the loop

• get stuck

• figure out why

• use this when starting over

Use the machinery of semi-automatic theorem prover , in particular the
updates, to do this.

Angela Wallenburg, Chalmers and Göteborg University 14

Example of a Failed Proof Attempt with Update

` ∀il ∈ Z · il ≥ 0 →
{i := il}
〈 while (i > 0) {

i = i - 2;

} 〉 i = 0 ∨ i = −1

Stuck after unwinding of the loop:

ilc > 0
`
{i := ilc − 2}
〈 while (i > 0) {

i = i - 2;

} 〉 i = 0 ∨ i = −1

Angela Wallenburg, Chalmers and Göteborg University 15

Destructor Style Induction

– Avoid inverting functions during creation of induction step

– Use “predecessor functions”, starting “one step earlier”

– Process of proving still the same: unwind right-hand side to attain syntactic
equivalence

– Computations only performed in the forwards direction

Γ ` ∀i ∈ Db · ϕ(i) Γ ` ∀i ∈ Ds · ϕ(p(i))→ ϕ(i)

Γ ` ∀i ∈ N · ϕ(i)

Angela Wallenburg, Chalmers and Göteborg University 16

Example Constructor versus Destructor Style Induction

Induction rule for previous example, in constructor style:

Γ ` ∀i ∈ Db · ϕ(i) Γ ` ∀i ∈ Ds · ϕ(i)→ ϕ(i + 2)

Γ ` ∀i ∈ Z · ϕ(i)

and in destructor style:

Γ ` ∀i ∈ Db · ϕ(i) Γ ` ∀i ∈ Ds · ϕ(i− 2)→ ϕ(i)

Γ ` ∀i ∈ Z · ϕ(i)

Angela Wallenburg, Chalmers and Göteborg University 17

Soundness

Customised induction rule so far:

Γ ` ∀i ·BC(i) → ϕ(i)

Γ ` ∀i ·BP1(i) ∧ ϕ(p1(i))→ ϕ(i) . . . Γ ` ∀i ·BPn(i) ∧ ϕ(pn(i))→ ϕ(i)

Γ ` ∀i · ϕ(i)
(4)

where BC(i) ↔ ¬BP1(i) ∧ . . . ∧ ¬BPn(i).

Noetherian induction: proving

∀m ∈ M · (∀k ∈M · k ≺M m→ ϕ(k))→ ϕ(m) (5)

and that (M,≺M) is a well-founded set, together with the well-founded induction
principle means that we have verified ∀m ∈M · ϕ(m).

Angela Wallenburg, Chalmers and Göteborg University 18

Soundness (ii)

To ensure well-foundedness of the induction set we need some extra proof
obligations:

• Allow only predecessor functions that decrease the argument:

(∀i ·BP1(i) → p1(i) < i) ∧ . . . ∧ (∀i ·BPn(i) → pn(i) < i) ∧

∀i, j ·BC(i) ∧ ¬BC(j) → i < j
(6)

• Make sure there exists some element in the domain of the base case:

∃i ·BC(i) (7)

Angela Wallenburg, Chalmers and Göteborg University 19

The Customised Induction Rule

Now this rule is sound (proof in thesis):

Γ ` ∀i ·BC(i) → ϕ(i)

Γ ` ∀i ·BP1(i) ∧ ϕ(p1(i)) → ϕ(i) . . . Γ ` ∀i ·BPn(i) ∧ ϕ(pn(i))→ ϕ(i)

Γ `
(∀i ·

∧
k=1...n

BPk(i) → pk(i) < i) ∧ ∀i, j ·BC(i) ∧ ¬BC(j) → i < j ∨

(∀i ·
∧

k=1...n
BPk(i) → pk(i) > i) ∧ ∀i, j ·BC(i) ∧ ¬BC(j) → i > j

Γ ` ∃i ·BC(i)

Γ ` ∀i · ϕ(i)
(8)

Angela Wallenburg, Chalmers and Göteborg University 20

Russian Multiplication Example Revisited

Γ ` ∀i · i ≤ 0 → ϕ(i)

Γ ` ∀i · i > 0 ∧ i mod 2 6= 0 ∧ ϕ(i/2)→ ϕ(i)

Γ ` ∀i · i > 0 ∧ i mod 2 = 0 ∧ ϕ(i/2)→ ϕ(i)

Γ `

((∀i · (i > 0 ∧ i mod 2 6= 0→ i/2 < i)∧
(i > 0 ∧ i mod 2 = 0 → i/2 < i)) ∧ ∀i, j · i ≤ 0 ∧ ¬j ≤ 0 → i < j) ∨

((∀i · (i > 0 ∧ i mod 2 6= 0→ i/2 > i)∧
(i > 0 ∧ i mod 2 = 0 → i/2 > i)) ∧ ∀i, j · i ≤ 0 ∧ ¬j ≤ 0 → i > j)

Γ ` ∃i · i ≤ 0

Γ ` ∀i · ϕ(i)

Angela Wallenburg, Chalmers and Göteborg University 21

Comparison to Noetherian Induction

Differences mainly in usability and interaction requirements, not proof-strength

• WFI introduces only one new proof branch – at least four for PI

• a failed proof attempt in PI is much easier to debug

– PI separates the different concerns of the proof
– PI “knows” more about the problem, presents the branches “up-front”

• base case is separated in PI, implicit in WFI.

• WFI beyond PI in application domain

• additional well-foundedness-proof-obligations in PI

Angela Wallenburg, Chalmers and Göteborg University 22

Customised Induction Rules – Summary

• automatic creation of customised induction rules for proving the total correct-
ness of loops

• the resulting rules are

– tailor-made for the respective loops to be verified
– sound

• in comparison to Peano induction or Noetherian induction, the customised
induction rules significantly simplify the user interaction required

• using a customised induction rule, the resulting proof becomes more modu-
larised

• a shift of focus for the user interacting with the prover

Angela Wallenburg, Chalmers and Göteborg University 23

Customised Induction Rules – Summary

• limitations and future work

– Other data structures: so far only integers, extend with lists, trees
– Nested loops and multiple induction variables
– Expression simplification
– Partial correctness/box modality
– Separate termination analysis
– Hybrid with Noetherian induction
– Generalisation of post-conditions
– Towards full automation...

Angela Wallenburg, Chalmers and Göteborg University 24

Induction Proving Process

1. Apply strategy (without unwinding of loops).

2. Decide induction variable. Look at the termination condition.

3. Decide which kind of induction rule to use. Look at the update to the induction
variable inside the loop.

4. Induction hypothesis. Start with the proof obligation.

5. Apply the induction rule. Apply strategy and Simplify.

– Use case: a lot of instantiations should do the trick.
– Base/Step cases: Unwind loop in subsequent. Instantiations, arithmetic.

6. Generalise the induction hypothesis, if needed. It is the updates and the
postconditions that have to be changed, the program will stay the same.

Angela Wallenburg, Chalmers and Göteborg University 25

Cubic Sum Example

i=0;

r=0;

while (i < n) {

i++;

r = r + (i*i*i);

}

Precondition n ≥ 0

Postcondition 4 ∗ r = nl2 ∗ (nl + 1)2

Angela Wallenburg, Chalmers and Göteborg University 26

Cubic Sum Example

Induction variable: new variable kl (nl − il). Generalised induction hypothesis:

all nl:int.(all rl:int.(

(geq(nl, 0) & geq(rl, 0) & geq(kl, 0) & geq(nl, kl)) ->

{i:=+(nl,~m(kl)),

n:=nl,

r:=rl}

<{

while (i<n) {

i++;

r=r+(i*i*i);

}

}> mul(4, +(r,~m(rl)))

= +((mul(mul(mul(nl,nl),+(nl,1)),+(nl,1))),

~m(mul(mul(mul(+(nl,~m(kl)),+(nl,~m(kl))),

+(+(nl,~m(kl)),1)),+(+(nl,~m(kl)),1))))))

Angela Wallenburg, Chalmers and Göteborg University 27

Cubic Sum Example

Original postcondition:

4 ∗ r = nl2 ∗ (nl + 1)2

Generalised postcondition:

4 ∗ (r − rl) = nl2 ∗ (nl + 1)2 − (nl − kl)2 ∗ (nl − kl + 1)2

Generalisation can be non-trivial!

Angela Wallenburg, Chalmers and Göteborg University 28

Rippling

In general:

• technique to annotate formulas, colouring

• restrict rewriting rules, wave rules

• allow only rewrites that make the conjecture similar to lemma or hypothesis

• originates from Bundy, Ireland etc, functional programming

Angela Wallenburg, Chalmers and Göteborg University 29

Rippling

In particular:

• useful for proving the induction step

• can be used together with “productive use of failure” approach

• creating induction rules

• generalising induction formula

• currently investigating

• translate concept of rippling to

Angela Wallenburg, Chalmers and Göteborg University 30

The End

Thanks.

Angela Wallenburg, Chalmers and Göteborg University 31

Related Work

Combinig testing and proving

• FATES

• Z, B, VDM, ASML, Haskell...

• Partition testing, Howden 76 etc.

• Using testing to aid in proving Geller 78

• Dynamic analysis, generating invariants, Nimmer et al.

• Avoiding failed proof attempts, Qiao

Angela Wallenburg, Chalmers and Göteborg University 32

Related Work

Mechanizing induction proving

• Explicit induction

• Implicit induction

• Walther, Bundy, Boyer and Moore, see refs thesis

• Generating induction schemas, Slind

• Cyclic reasoning, Sprenger and Dam

Angela Wallenburg, Chalmers and Göteborg University 33

Related Work

Simplifying user interaction

• Automtic generation of loop invariants, Kapur et el.

• Rippling, Bundy

• B method

• ACL2, industrial strength theorem prover

Angela Wallenburg, Chalmers and Göteborg University 34

