Translating OCL to
Natural Language

David Burke and Kristofer Johannisson

Background

@ Existing system for linking formal software
specifications in OCL to Natural Language

® Based on the Grammatical Framework [Rantd]
® Can we make it scale to handle a case study?

@ Translating formal (OCL) specifications of
the Java Card API into English

Motivation

The KeY Project: Integrate formal software
specification and verification into the
industrial software engineering process.

Observation:

@ Formal specifications necessary for proving
that a program is correct

@ Informal specifications required by
customers, managers, soffware engineers

Goals

@ Link formal and informal specifications:

@ authoring and maintaining formal/informal
specifications

@ presenting specifications fo different
audiences

p Batch translation of existing formal
specifications into natural language

Case Study

Can we automatically translate an existing
collection of non-trivial formal specifications
into natural language of acceptable quality?

@ OCL specifications of the Java Card API
[Larsson, Mostowski]

context OwnerPIN: :check(
pin : Sequence(Integer),
offset : Integer,
length : Integer) : Boolean

post: (self.tryCounter > @ and pin <> null and
offset >= @ and length >= @ and
of fset+length <= pin->size()
and Util.arrayCompare(self.pin, 0, pin,
offset, length) = 0

) implies

(result = true and
self.1sValidated() and
tryCounter = maxTries)

for the operation check (pin : Seq(Integer) ,
offset : Integer , length : Integer) : Boolean of
the class javacard::framework::OwnerPIN the
following holds : the following postconditions
should hold : ... (*) if the tryCounter of the
ownerPIN is greater than O and pin is not equal
to null and offset is at least O and length is at
least O and offset plus length is at most the
size of pin and the query arrayCompare (the
pin of the ownerPIN , O , pin, offset , length)
to Util is equal to O, the result is equal to
true and the query isValidated () holds for the
ownerPIN and the tryCounter of the ownerPIN
is equal to the maxTries of the ownerPIN

for the operation check (pin : Seq(Integer) ,
offset : Integer , length : Integer) : Boolean of
the class javacard::framework::OwnerPIN the
following holds : the following postconditions

should hold : ... (*) if the of the

Is greater than O and pin is not equal to
null and offset is at least O and length is at least
O and offset plus length is at most the size of pin

and the query (the pin of the

, 0, pin, offset , length) to Util is
equal to O, the result is equal to true and the

query () holds for the and
the of the is equal to the
of the

for the operation check (pin : Seq(Integer) ,
offset : Integer , length : Integer) : Boolean of
the class javacard::framework::OwnerPIN the
following holds : the following postconditions

should hold : ... (*) if the tryCounter

Is greater than O and pin is not equal to
null and offset is at least O and length is at least
O and offset plus length is at most the size of pin

and the query arrayCompare (the pin

, 0, pin , offset , length) to Util is
equal to O , the result is equal to frue and the
query isValidated () holds for the ownerPIN and

the tryCounter IS equal to the
maxTries

For the operation check (pin: Sequence(integer), offset:
Integer, length: Integer): Boolean of the class

javacard:framework::OwnerPIN , the following post-conditions
should hold:

()
* if the following conditions are true
o the try counter is greater than 0
pin is not equal to null
offset and length are at least O
offset plus length is at most the size of pin
the query arrayCompare (the pin, @, pin , offset , length)

Q. O “EE

on Util isequalto0
then this implies that the following conditions are true
O the result is equal to true
O this owner PIN is validated
O the try counter is equal to the maximum number of tries

KeY-integration

Borland Together 6.2 -- paycard

", | F‘E? | i ‘;ﬁg | []}J E" | S5 WWiorkspace: | Codinghiorksp

Aot |

0N6O

Spara i | [paycard "'l"| ||_T|..j

|j| all.ocl |j| allzpecs tex |j| modelinfo.umiypes

E‘| allzpecs.aux E‘| CardException java E‘| PayCard java

|j| allzpecs html |j| Chargelll java |j| pavcard tpr
[allzpecs log [defaut dfPackage [parvcard tws Choase autput farmeat.

|j| allzpecs.ocl E‘| default dfPackage winf E‘| paycard xml
|j| allzpecs pdf |j| lzzueCardUl java |j| PayCarddunior java

oL
Filname: Matural LanguageHTML (reguires GF)

Filfarmat: | &lla filer Matural LanguagelaTex (reguires GF)
= R ———]

Spara Avhryt

GF for OCL and NL

The Grammatical Framework (GF) is a grammar
formalism and toolkit [Ranta].

We have a multilingual GF grammar for
specifications in OCL and natural language.

GF grammars

@ GF grammars separate abstract from
concrete syntax.

@ Abstract syntax: rules for building syntax
trees representing a restricted domain

@ Concrete syntax: rules for linearizing syntax
trees info expressions of a concrete language

@ We can give several concrete syntaxes for
one abstract syntax

GF grammars (2)

@ Abstract syntax is formulated in constructive
type theory.

@ Concrete syntax gives compositional
linearization rules expressed in a restricted
functional language.

@ the linearization of a tree is expressed in
terms of the linearization of its subtrees
— not the subtrees themselves

Functionality provided by
GF

® Linearization
@ Parsing

@& Multilingual, syntax-directed editor

Linking OCL and NL

@ Define a GF grammar for software
specifications:

@ represent software specifications in the
abstract syntax

@ concrete syntaxes for showing
specifications in OCL and in NL

® Use GF for:

@ translating OCL to NL

@ multilingual editor for specifications in
OCL and NL

Abstract Syntax
for
Specifications

Concrete translation Concrete
Syntax for = J-TSSEERe st A e = e Syntax for
OCL English

Abstract Syntax

@ Semantic representation of specifications

@ Compromise between OCL and NL
(interlingua)

@ Ensures correctness of typing and variable
bindings (using dependent types, higher
order abstract syntax)

Concrete Syntax

@ Present specifications in OCL and NL (English,
German)

@ We make use of the GF resource grammar
library:

@ linguistically motivated types and functions

® raises the level of abstraction in concrete
syntax

@ common interface for 7 languages

Abstract Syntax
for
Specifications

Concrete translation Concrete
Syntax for = J-TSSEERe st A e = e Syntax for
OCL English

Extensions

To handle the case study, we improve our GF-
based system with e.q.

@ formatting
@ customizable domain-specific vocabulary

These improvements are partly implemented
inside the GF grammar, partly using external
programs.

Formatting

® Fonts and structure (variables in italic, bullet
lists)

@ GF interface module with formatting
functions

@ interface used in the GF linearization
rules

@ three implementations: no formatting,
HTML and LaTeX

Structure

s; and s, and ... and s, —>»

The following
conditions
hold:

% Y|
@S>
D ...

@ Sn

This can be seen as a transformation of syntax

trees.

Tree Transformations

External program for transforming (optimizing)
abstract syntax trees:

and s1 (and s2 (... and Sn-1 Sn))

l

andList (cons s1 (cons sz (... cons sn nil)))

Domain-Specific
Concepts

@ Each new concept in a class diagram extends
the language of specifications

@ Program for generating GF grammar modules
from class diagrams

@ Simple heuristics based on name and type

® the class OwnerPIN — the noun “owner
PIN”

@ the boolean method isValidated() — the
predicate "...is validated”

API for Domain-Specific
Concepts

The generated GF modules need some by-hand
modifications.

We define an API module with common
constructions for domain-specific vocabulary.

e The API is used by the grammar generator
and when performing by-hand
modifications

e It hides the complexity of the rest of the
grammar.

Example Customization

The maxTries attribute of the class OwnerPIN

@ Automatically generated linearization:

1lin maxTries = mkSimpleProperty
(adjCN “max” (strCN “tries”));

@ After by-hand modification:

1lin maxTries = mkSimpleProperty (
ofCN (adjCN “maximum” (strCN “number”))
(strCN “tries”));

KeY Integration

Future work:

Use javadoc-annotations to customize the
translation of classes, attributes, operations
and associations.

OCL Parsing &
Typechecking

We use an external OCL parser/typechecker:

® work-around for limitation in GF-derived
parser for our grammar

@ more efficient for large specifications

@ special cases of OCL syntax/typing does
not need to be described in GF grammar

System Overview

KeY /
Together

OCL
Text >

Parsing &
Typechecking

UML Class
Diagram

Grammar
Generator

GF Abstract
Syntax Tree

Optimization

GF Grammar
Modules
(static)

GF Grammar
Modules
(dynamic)

English
Text

Limitations

® OCL parser & typechecker
@ Exporting OCL/UML from KeY/Together

@ Domain-specific concepts for German

Conclusion

@ We translate non-trivial OCL specifications
to NL which is acceptable to a human reader.

@ A multilingual GF grammar is complemented
with grammar generation and syntax tree
transformations.

@ The translation can be customized without
requiring GF expertise.

