
Translating OCL to
Natural Language

David Burke and Kristofer Johannisson

Background

Existing system for linking formal software
specifications in OCL to Natural Language

Based on the Grammatical Framework [Ranta]

Can we make it scale to handle a case study?

Translating formal (OCL) specifications of
the Java Card API into English

Motivation

The KeY Project: Integrate formal software
specification and verification into the
industrial software engineering process.

Observation:

Formal specifications necessary for proving
that a program is correct

Informal specifications required by
customers, managers, software engineers

Goals

Link formal and informal specifications:

authoring and maintaining formal/informal
specifications

presenting specifications to different
audiences

‣ Batch translation of existing formal
specifications into natural language

Case Study

Can we automatically translate an existing
collection of non-trivial formal specifications
into natural language of acceptable quality?

OCL specifications of the Java Card API
[Larsson, Mostowski]

context OwnerPIN::check(
 pin : Sequence(Integer),
 offset : Integer,
 length : Integer) : Boolean
...
post: (self.tryCounter > 0 and pin <> null and
 offset >= 0 and length >= 0 and
 offset+length <= pin->size()
 and Util.arrayCompare(self.pin, 0, pin,
 offset, length) = 0
) implies
 (result = true and
 self.isValidated() and
 tryCounter = maxTries)

for the operation check (pin : Seq(Integer) ,
offset : Integer , length : Integer) : Boolean of
the class javacard::framework::OwnerPIN the
following holds : the following postconditions
should hold : ... (*) if the tryCounter of the
ownerPIN is greater than 0 and pin is not equal
to null and offset is at least 0 and length is at
least 0 and offset plus length is at most the
size of pin and the query arrayCompare (the
pin of the ownerPIN , 0 , pin , offset , length)
to Util is equal to 0 , the result is equal to
true and the query isValidated () holds for the
ownerPIN and the tryCounter of the ownerPIN
is equal to the maxTries of the ownerPIN

for the operation check (pin : Seq(Integer) ,
offset : Integer , length : Integer) : Boolean of
the class javacard::framework::OwnerPIN the
following holds : the following postconditions
should hold : ... (*) if the tryCounter of the
ownerPIN is greater than 0 and pin is not equal to
null and offset is at least 0 and length is at least
0 and offset plus length is at most the size of pin
and the query arrayCompare (the pin of the
ownerPIN , 0 , pin , offset , length) to Util is
equal to 0 , the result is equal to true and the
query isValidated () holds for the ownerPIN and
the tryCounter of the ownerPIN is equal to the
maxTries of the ownerPIN

for the operation check (pin : Seq(Integer) ,
offset : Integer , length : Integer) : Boolean of
the class javacard::framework::OwnerPIN the
following holds : the following postconditions
should hold : ... (*) if the tryCounter of the
ownerPIN is greater than 0 and pin is not equal to
null and offset is at least 0 and length is at least
0 and offset plus length is at most the size of pin
and the query arrayCompare (the pin of the
ownerPIN , 0 , pin , offset , length) to Util is
equal to 0 , the result is equal to true and the
query isValidated () holds for the ownerPIN and
the tryCounter of the ownerPIN is equal to the
maxTries of the ownerPIN

For the operation check (pin: Sequence(Integer), offset:
Integer, length: Integer): Boolean of the class
javacard::framework::OwnerPIN , the following post-conditions
should hold:
(...)
• if the following conditions are true
◦ the try counter is greater than 0
◦ pin is not equal to null
◦ offset and length are at least 0
◦ offset plus length is at most the size of pin
◦ the query arrayCompare (the pin, 0, pin , offset , length)
 on Util is equal to 0
 then this implies that the following conditions are true
◦ the result is equal to true
◦ this owner PIN is validated
◦ the try counter is equal to the maximum number of tries

KeY-integration

GF for OCL and NL

The Grammatical Framework (GF) is a grammar
formalism and toolkit [Ranta].

We have a multilingual GF grammar for
specifications in OCL and natural language.

GF grammars

GF grammars separate abstract from
concrete syntax.

Abstract syntax: rules for building syntax
trees representing a restricted domain

Concrete syntax: rules for linearizing syntax
trees into expressions of a concrete language

We can give several concrete syntaxes for
one abstract syntax

GF grammars (2)

Abstract syntax is formulated in constructive
type theory.

Concrete syntax gives compositional
linearization rules expressed in a restricted
functional language.

the linearization of a tree is expressed in
terms of the linearization of its subtrees
— not the subtrees themselves

Functionality provided by
GF

Linearization

Parsing

Multilingual, syntax-directed editor

Linking OCL and NL
Define a GF grammar for software
specifications:

represent software specifications in the
abstract syntax

concrete syntaxes for showing
specifications in OCL and in NL

Use GF for:

translating OCL to NL

multilingual editor for specifications in
OCL and NL

Abstract Syntax
for

Specifications

lin
ea

riz
at

io
n

p
ar

si
n
g

Concrete
Syntax for

OCL

linearization

p
a
rsin

g

Concrete
Syntax for

English

translation

Abstract Syntax

Semantic representation of specifications

Compromise between OCL and NL
(interlingua)

Ensures correctness of typing and variable
bindings (using dependent types, higher
order abstract syntax)

Concrete Syntax

Present specifications in OCL and NL (English,
German)

We make use of the GF resource grammar
library:

linguistically motivated types and functions

raises the level of abstraction in concrete
syntax

common interface for 7 languages

Abstract Syntax
for

Specifications

lin
ea

riz
at

io
n

p
ar

si
n
g

Concrete
Syntax for

OCL

linearization

p
a
rsin

g

Concrete
Syntax for

English

translation

Extensions

To handle the case study, we improve our GF-
based system with e.g.

formatting

customizable domain-specific vocabulary

These improvements are partly implemented
inside the GF grammar, partly using external
programs.

Formatting

Fonts and structure (variables in italic, bullet
lists)

GF interface module with formatting
functions

interface used in the GF linearization
rules

three implementations: no formatting,
HTML and LaTeX

Structure
The following
conditions
hold:

s1

s2

...

sn

s1 and s2 and ... and sn

This can be seen as a transformation of syntax
trees.

Tree Transformations
External program for transforming (optimizing)
abstract syntax trees:

andList (cons s1 (cons s2 (... cons sn nil)))

and s1 (and s2 (... and sn-1 sn))

Domain-Specific
Concepts

Each new concept in a class diagram extends
the language of specifications

Program for generating GF grammar modules
from class diagrams

Simple heuristics based on name and type

the class OwnerPIN → the noun “owner
PIN”

the boolean method isValidated() → the
predicate “...is validated”

API for Domain-Specific
Concepts

The generated GF modules need some by-hand
modifications.

We define an API module with common
constructions for domain-specific vocabulary.

• The API is used by the grammar generator
and when performing by-hand
modifications

• It hides the complexity of the rest of the
grammar.

Example Customization

The maxTries attribute of the class OwnerPIN

Automatically generated linearization:

lin maxTries = mkSimpleProperty
 (adjCN “max” (strCN “tries”));

After by-hand modification:

lin maxTries = mkSimpleProperty (
 ofCN (adjCN “maximum” (strCN “number”))
 (strCN “tries”));

KeY Integration

Future work:

Use javadoc-annotations to customize the
translation of classes, attributes, operations
and associations.

OCL Parsing &
Typechecking

We use an external OCL parser/typechecker:

work-around for limitation in GF-derived
parser for our grammar

more efficient for large specifications

special cases of OCL syntax/typing does
not need to be described in GF grammar

System Overview

OCL
Text

UML Class
Diagram

GF Grammar
Modules
(dynamic)

Parsing &
Typechecking

GF Abstract
Syntax Tree

Grammar
Generator

GF Grammar
Modules
(static)

GF
English

Text

Optimization

KeY /
Together

Limitations

OCL parser & typechecker

Exporting OCL/UML from KeY/Together

Domain-specific concepts for German

Conclusion

We translate non-trivial OCL specifications
to NL which is acceptable to a human reader.

A multilingual GF grammar is complemented
with grammar generation and syntax tree
transformations.

The translation can be customized without
requiring GF expertise.

