
Visualization of Open Goals in KeY

Marcus Baum

University of Karlsruhe



Motivation

� Understanding a proof is useful in many 
situations

� Interactions with the prover

� Finding errors in programs

� The proof tree is usually too complex to 
get an overview of the proof

� An intuitive visualization would be helpful



What should be visualized?

� Symbolic execution of a proof path

� Executed statements

� Loop unwindigs

� Control flow

� Method calls

� The logical part of a proof is not treated



Visualization

� Visualization by different views

� Marking statements

� UML-sequence and object diagrams

� Build a model of a proof branch

� Extract the information for the visualization



Visualization Model Definition

A sequence of executed statements with

additional information (HistoryElement)

� Represents exactly one execution trace

� It is possible to get a set of models for 
one goal, e. g. if there is more than one 
diamond in the goal



Model Overview

SourceHistoryElement

� Statement comes originally from the source code

HistoryElement

SourceHistoryElement

ParentSourceHistoryElement

NextSameLevel NextExecuted

NextInProof



Model Overview

ParentSourceHistoryElement

� Splitted up into statements from the source code

� Loops, branches and method calls

HistoryElement

SourceHistoryElement

ParentSourceHistoryElement

NextSameLevel NextExecuted

NextInProof



Extracting the Model

� Step 1

� Bottom to top

� Finds the execution traces

� Step 2

� Computes NextSameLevel

� Step 3

� Further information,

e.g. number of executions



Eclipse-Plugin

� Currently work in progress

� The connection to KeY is not yet completed

� Statements are marked by annotation 
markers

� A tree view of the proof branch helps to 
get an overview



Example

Bubblesort with a bug

int[] h={3,2,1};

public void exchange(int i,int j){

int tmp=h[j];

h[j]=h[i];

h[i]=tmp;

}

public void sort(){

for (int i=0;i<h.length;i++)

for (int j=0;j<h.length;j++)

if (h[j]>h[j+1]){

exchange(j,j+1);

}

}



Summary

� Model for the execution trace 

� Visualization by marking statements

� Future work

� Extensions of the model

� Implementation of other views


