
Verified Provers

Martin Giese

Radon Institute for Computational and Applied Mathematics

Austrian Academy of Sciences

Linz, Austria

KeY Symposium, Lökeberg, 8 June 2005

KeY Symposium 2005, Lökeberg, Sweden – p.1

Theorema

Theorema aims to be a software system that supports

the entire process of mathematical theory exploration:

• invention of concepts

• invention & verification (proof) of propositions about concepts

• invention of problems formulated in terms of concepts

• invention & verification of algorithms to solve problems

• storage and retrieval of all this information

Project started by Bruno Buchberger in 1996/1997

KeY Symposium 2005, Lökeberg, Sweden – p.2

Three Types of Reasoning

Three typical mathematical activities:

• Computing: Given f (x) and a value v for x, compute f (v).

• Solving: Given P(x) find a value v with |= P(v)

• Proving: Show that for all values v, |= P(v)

Computer algebra systems quite good at Computing and Solving

à use these capabilities for Proving.

KeY Symposium 2005, Lökeberg, Sweden – p.3

Three Types of Reasoning

Three typical mathematical activities:

• Computing: Given f (x) and a value v for x, compute f (v).

• Solving: Given P(x) find a value v with |= P(v)

• Proving: Show that for all values v, |= P(v)

Computer algebra systems quite good at Computing and Solving

à use these capabilities for Proving.

KeY Symposium 2005, Lökeberg, Sweden – p.3

Three Types of Reasoning

Three typical mathematical activities:

• Computing: Given f (x) and a value v for x, compute f (v).

• Solving: Given P(x) find a value v with |= P(v)

• Proving: Show that for all values v, |= P(v)

Computer algebra systems quite good at Computing and Solving

à use these capabilities for Proving.

KeY Symposium 2005, Lökeberg, Sweden – p.3

Three Types of Reasoning

Three typical mathematical activities:

• Computing: Given f (x) and a value v for x, compute f (v).

• Solving: Given P(x) find a value v with |= P(v)

• Proving: Show that for all values v, |= P(v)

Computer algebra systems quite good at Computing and Solving

à use these capabilities for Proving.

KeY Symposium 2005, Lökeberg, Sweden – p.3

Mathematical TP vs. Program Verification

KeY wants to make mechanized formal methods

attractive to software people.

Theorema wants to make mechanized formal methods

attractive to mathematics people.

(OK, mathematicians don’t like to be too formal either.

But they’ll just have to learn)

KeY Symposium 2005, Lökeberg, Sweden – p.4

Mathematical TP vs. Program Verification

KeY wants to make mechanized formal methods

attractive to software people.

Theorema wants to make mechanized formal methods

attractive to mathematics people.

(OK, mathematicians don’t like to be too formal either.

But they’ll just have to learn)

KeY Symposium 2005, Lökeberg, Sweden – p.4

Mathematical TP vs. Program Verification

KeY wants to make mechanized formal methods

attractive to software people.

Theorema wants to make mechanized formal methods

attractive to mathematics people.

(OK, mathematicians don’t like to be too formal either.

But they’ll just have to learn)

KeY Symposium 2005, Lökeberg, Sweden – p.4

Syntax

• For software engineers, ASCII is best:

• For math, 2D Mathematical Syntax and Symbols are a must

à Theorema uses Mathematica front-end.

KeY Symposium 2005, Lökeberg, Sweden – p.5

Syntax

• For software engineers, ASCII is best:

• For math, 2D Mathematical Syntax and Symbols are a must

à Theorema uses Mathematica front-end.

KeY Symposium 2005, Lökeberg, Sweden – p.5

Syntax

• For software engineers, ASCII is best:

• For math, 2D Mathematical Syntax and Symbols are a must

à Theorema uses Mathematica front-end.

KeY Symposium 2005, Lökeberg, Sweden – p.5

Logic

• For Software verification, we can decide:

• Use classical first-order logic (+ program logic)

• Use type system adapted to the programming language

• Use a sequent calculus

• Mathematicians

• might want to use intuitionistic logic, probably higher-order

• might want to use Martin-Löf’s type theory, or Constable’s, or

Coquand’s. Or set theory with no types at all. Or. . .

• might require odd calculi

à Need to keep architecture very open

KeY Symposium 2005, Lökeberg, Sweden – p.6

Logic

• For Software verification, we can decide:

• Use classical first-order logic (+ program logic)

• Use type system adapted to the programming language

• Use a sequent calculus

• Mathematicians

• might want to use intuitionistic logic, probably higher-order

• might want to use Martin-Löf’s type theory, or Constable’s, or

Coquand’s. Or set theory with no types at all. Or. . .

• might require odd calculi

à Need to keep architecture very open

KeY Symposium 2005, Lökeberg, Sweden – p.6

Logic

• For Software verification, we can decide:

• Use classical first-order logic (+ program logic)

• Use type system adapted to the programming language

• Use a sequent calculus

• Mathematicians

• might want to use intuitionistic logic, probably higher-order

• might want to use Martin-Löf’s type theory, or Constable’s, or

Coquand’s. Or set theory with no types at all. Or. . .

• might require odd calculi

à Need to keep architecture very open

KeY Symposium 2005, Lökeberg, Sweden – p.6

Domains

• For software:

• Domains like lists, sets, maps, trees. . . (all finite)

• Reasoning mostly by induction following data types

• External ‘Simplify’ call useful, but not really central

• For mathematics:

• Domains like natural numbers, real numbers, polynomials rings,. . .

• Various proof techniques, depending on domains

• very powerful decision procedures for some domains (Gröbner bases

for algebraic equations, Paule-Schorn method for combinatorial and

other special functions, CAD for inequalities)

KeY Symposium 2005, Lökeberg, Sweden – p.7

Domains

• For software:

• Domains like lists, sets, maps, trees. . . (all finite)

• Reasoning mostly by induction following data types

• External ‘Simplify’ call useful, but not really central

• For mathematics:

• Domains like natural numbers, real numbers, polynomials rings,. . .

• Various proof techniques, depending on domains

• very powerful decision procedures for some domains (Gröbner bases

for algebraic equations, Paule-Schorn method for combinatorial and

other special functions, CAD for inequalities)

KeY Symposium 2005, Lökeberg, Sweden – p.7

Extension of Reasoners

• invention of domain-specific simplification or proof methods

is part of mathematical exploration

• want to implement these as part of exploration process

• optimally in same mathematical language

• want to formally verify them

Basic ideas:

B. Buchberger: Proving by First and Intermediate Principles

Invited talk at TYPES Workshop, Nov 1-2, 2004

University of Nijmegen, The Netherlands

KeY Symposium 2005, Lökeberg, Sweden – p.8

Taclets?

Couldn’t we use taclets and their Proof Obligations for this?

Maybe, but

• Taclets are for one logic (classical)

• Taclets are for one calculus (sequents)

• Taclets are not for complicated programs

à Probably rather not.

But maybe we can carry some ideas over?

KeY Symposium 2005, Lökeberg, Sweden – p.9

Taclets?

Couldn’t we use taclets and their Proof Obligations for this?

Maybe, but

• Taclets are for one logic (classical)

• Taclets are for one calculus (sequents)

• Taclets are not for complicated programs

à Probably rather not.

But maybe we can carry some ideas over?

KeY Symposium 2005, Lökeberg, Sweden – p.9

Taclets?

Couldn’t we use taclets and their Proof Obligations for this?

Maybe, but

• Taclets are for one logic (classical)

• Taclets are for one calculus (sequents)

• Taclets are not for complicated programs

à Probably rather not.

But maybe we can carry some ideas over?

KeY Symposium 2005, Lökeberg, Sweden – p.9

Taclets?

Couldn’t we use taclets and their Proof Obligations for this?

Maybe, but

• Taclets are for one logic (classical)

• Taclets are for one calculus (sequents)

• Taclets are not for complicated programs

à Probably rather not.

But maybe we can carry some ideas over?

KeY Symposium 2005, Lökeberg, Sweden – p.9

Taclets?

Couldn’t we use taclets and their Proof Obligations for this?

Maybe, but

• Taclets are for one logic (classical)

• Taclets are for one calculus (sequents)

• Taclets are not for complicated programs

à Probably rather not.

But maybe we can carry some ideas over?

KeY Symposium 2005, Lökeberg, Sweden – p.9

Taclets?

Couldn’t we use taclets and their Proof Obligations for this?

Maybe, but

• Taclets are for one logic (classical)

• Taclets are for one calculus (sequents)

• Taclets are not for complicated programs

à Probably rather not.

But maybe we can carry some ideas over?

KeY Symposium 2005, Lökeberg, Sweden – p.9

Example

Example: After having shown

∀
x,y,z

(x + y) + z = x + (y + z)

for natural numbers, we decide to simplify all such expressions by shifting

parentheses to the right.

For instance

((a + b) + (c + d)) + e ; a + (b + (c + (d + e)))

KeY Symposium 2005, Lökeberg, Sweden – p.10

Data structure

Compute one term from another

à need representation for terms.

Restrict to first-order terms:

Term = Var[Name] | Apply[Name, List[Term]]

Example: term 0 + x is represented as

Apply[“+”, {Apply[“0”, {}], Var[“x”]}]

KeY Symposium 2005, Lökeberg, Sweden – p.11

Color Quoting

Make syntax easier to read by using a colour for quoting:

0 + x

stands for

Apply[“+”, {Apply[“0”, {}], Var[“x”]}]

(x is of type Nat on object level) and

0 + x

for

Apply[“+”, {Apply[“0”, {}], x}]

(x is of type Term on meta level)

KeY Symposium 2005, Lökeberg, Sweden – p.12

Implementation of Simplifier

shi f tParens :: Term → Term

shi f tParens[t] = sumList[collect[t, {}]]

collect :: Term × List[Term] → List[Term]

collect[0, acc] = 0.acc

collect[succ[t], acc] = succ[t].acc

collect[Var[name], acc] = Var[name].acc

collect[t1+t2 , acc] = collect[t1 , collect[t2 , acc]]

sumList :: List[Term] → Term

sumList[{}] = 0

sumList[{t}] = t

sumList[s.t.ts] = s+sumList[t.ts]

KeY Symposium 2005, Lökeberg, Sweden – p.13

Implementation of Simplifier

shi f tParens :: Term → Term

shi f tParens[t] = sumList[collect[t, {}]]

collect :: Term × List[Term] → List[Term]

collect[0, acc] = 0.acc

collect[succ[t], acc] = succ[t].acc

collect[Var[name], acc] = Var[name].acc

collect[t1+t2 , acc] = collect[t1 , collect[t2 , acc]]

sumList :: List[Term] → Term

sumList[{}] = 0

sumList[{t}] = t

sumList[s.t.ts] = s+sumList[t.ts]

KeY Symposium 2005, Lökeberg, Sweden – p.13

Implementation of Simplifier

shi f tParens :: Term → Term

shi f tParens[t] = sumList[collect[t, {}]]

collect :: Term × List[Term] → List[Term]

collect[0, acc] = 0.acc

collect[succ[t], acc] = succ[t].acc

collect[Var[name], acc] = Var[name].acc

collect[t1+t2 , acc] = collect[t1 , collect[t2 , acc]]

sumList :: List[Term] → Term

sumList[{}] = 0

sumList[{t}] = t

sumList[s.t.ts] = s+sumList[t.ts]
KeY Symposium 2005, Lökeberg, Sweden – p.13

Informal Verification

Need to show that the term represented by t and the term represented by

shi f tParens[t] have the same value.

‘value’ is a model theoretic concept.

à not good for (Meta-)mathematics.

à prove e.g. that there is a rewriting derivation between the two, using

equalities in the knowledge base.

Strengthen induction: For any t and l, there is a rewriting between

sumList[collect[t, l]] and t+sumList[l].

. . . (Fairly easy exercise) . . .

KeY Symposium 2005, Lökeberg, Sweden – p.14

Informal Verification

Need to show that the term represented by t and the term represented by

shi f tParens[t] have the same value.

‘value’ is a model theoretic concept.

à not good for (Meta-)mathematics.

à prove e.g. that there is a rewriting derivation between the two, using

equalities in the knowledge base.

Strengthen induction: For any t and l, there is a rewriting between

sumList[collect[t, l]] and t+sumList[l].

. . . (Fairly easy exercise) . . .

KeY Symposium 2005, Lökeberg, Sweden – p.14

Informal Verification

Need to show that the term represented by t and the term represented by

shi f tParens[t] have the same value.

‘value’ is a model theoretic concept.

à not good for (Meta-)mathematics.

à prove e.g. that there is a rewriting derivation between the two, using

equalities in the knowledge base.

Strengthen induction: For any t and l, there is a rewriting between

sumList[collect[t, l]] and t+sumList[l].

. . . (Fairly easy exercise) . . .

KeY Symposium 2005, Lökeberg, Sweden – p.14

Informal Verification

Need to show that the term represented by t and the term represented by

shi f tParens[t] have the same value.

‘value’ is a model theoretic concept.

à not good for (Meta-)mathematics.

à prove e.g. that there is a rewriting derivation between the two, using

equalities in the knowledge base.

Strengthen induction: For any t and l, there is a rewriting between

sumList[collect[t, l]] and t+sumList[l].

. . . (Fairly easy exercise) . . .

KeY Symposium 2005, Lökeberg, Sweden – p.14

Formal Verification

Define predicate: provablyEq[KB, t1 , t2]

Theorems/Axioms include:

∧

{

l=r ∈ KB

subterm[t, pos] = l
⇒ provablyEq[KB, t, replace[t, pos, r]]

provablyEq[KB, t, t]

∧

{

provablyEq[KB, t1 , t2]

provablyEq[KB, t2 , t3]
⇒ provablyEq[KB, t1 , t3]

Structural induction schema on terms

etc., etc.. . .

Given some patience, the informal proof should be formalizable.

KeY Symposium 2005, Lökeberg, Sweden – p.15

Formal Verification

Define predicate: provablyEq[KB, t1 , t2]

Theorems/Axioms include:

∧

{

l=r ∈ KB

subterm[t, pos] = l
⇒ provablyEq[KB, t, replace[t, pos, r]]

provablyEq[KB, t, t]

∧

{

provablyEq[KB, t1 , t2]

provablyEq[KB, t2 , t3]
⇒ provablyEq[KB, t1 , t3]

Structural induction schema on terms

etc., etc.. . .

Given some patience, the informal proof should be formalizable.

KeY Symposium 2005, Lökeberg, Sweden – p.15

Formal Verification

Define predicate: provablyEq[KB, t1 , t2]

Theorems/Axioms include:

∧

{

l=r ∈ KB

subterm[t, pos] = l
⇒ provablyEq[KB, t, replace[t, pos, r]]

provablyEq[KB, t, t]

∧

{

provablyEq[KB, t1 , t2]

provablyEq[KB, t2 , t3]
⇒ provablyEq[KB, t1 , t3]

Structural induction schema on terms

etc., etc.. . .

Given some patience, the informal proof should be formalizable.

KeY Symposium 2005, Lökeberg, Sweden – p.15

Formal Verification

Define predicate: provablyEq[KB, t1 , t2]

Theorems/Axioms include:

∧

{

l=r ∈ KB

subterm[t, pos] = l
⇒ provablyEq[KB, t, replace[t, pos, r]]

provablyEq[KB, t, t]

∧

{

provablyEq[KB, t1 , t2]

provablyEq[KB, t2 , t3]
⇒ provablyEq[KB, t1 , t3]

Structural induction schema on terms

etc., etc.. . .

Given some patience, the informal proof should be formalizable.

KeY Symposium 2005, Lökeberg, Sweden – p.15

Formal Verification

Define predicate: provablyEq[KB, t1 , t2]

Theorems/Axioms include:

∧

{

l=r ∈ KB

subterm[t, pos] = l
⇒ provablyEq[KB, t, replace[t, pos, r]]

provablyEq[KB, t, t]

∧

{

provablyEq[KB, t1 , t2]

provablyEq[KB, t2 , t3]
⇒ provablyEq[KB, t1 , t3]

Structural induction schema on terms

etc., etc.. . .

Given some patience, the informal proof should be formalizable.

KeY Symposium 2005, Lökeberg, Sweden – p.15

Formal Verification

Define predicate: provablyEq[KB, t1 , t2]

Theorems/Axioms include:

∧

{

l=r ∈ KB

subterm[t, pos] = l
⇒ provablyEq[KB, t, replace[t, pos, r]]

provablyEq[KB, t, t]

∧

{

provablyEq[KB, t1 , t2]

provablyEq[KB, t2 , t3]
⇒ provablyEq[KB, t1 , t3]

Structural induction schema on terms

etc., etc.. . .

Given some patience, the informal proof should be formalizable.

KeY Symposium 2005, Lökeberg, Sweden – p.15

Plugging it into the Prover

Prover needs to support adding simplifiers:

Prove :: KBase × Term × List[Term → Term] → Proo f Result

Define predicate:

isSoundSimpli f ier(KB, s) :⇔ ∀
t∈Term

provablyEq[KB, t, s[t]]

Soundness of Prove:

∧

{

∀
s∈l

isSoundSimpli f ier[KB, s]

success f ul[Prove[KB,φ, l]]
⇒ provable[KB,φ]

Definition of provable, maybe:

provable[KB,φ] :⇔ success f ul[Prove[KB,φ, {}]]

KeY Symposium 2005, Lökeberg, Sweden – p.16

Plugging it into the Prover

Prover needs to support adding simplifiers:

Prove :: KBase × Term × List[Term → Term] → Proo f Result

Define predicate:

isSoundSimpli f ier(KB, s) :⇔ ∀
t∈Term

provablyEq[KB, t, s[t]]

Soundness of Prove:

∧

{

∀
s∈l

isSoundSimpli f ier[KB, s]

success f ul[Prove[KB,φ, l]]
⇒ provable[KB,φ]

Definition of provable, maybe:

provable[KB,φ] :⇔ success f ul[Prove[KB,φ, {}]]

KeY Symposium 2005, Lökeberg, Sweden – p.16

Plugging it into the Prover

Prover needs to support adding simplifiers:

Prove :: KBase × Term × List[Term → Term] → Proo f Result

Define predicate:

isSoundSimpli f ier(KB, s) :⇔ ∀
t∈Term

provablyEq[KB, t, s[t]]

Soundness of Prove:

∧

{

∀
s∈l

isSoundSimpli f ier[KB, s]

success f ul[Prove[KB,φ, l]]
⇒ provable[KB,φ]

Definition of provable, maybe:

provable[KB,φ] :⇔ success f ul[Prove[KB,φ, {}]]

KeY Symposium 2005, Lökeberg, Sweden – p.16

Plugging it into the Prover

Prover needs to support adding simplifiers:

Prove :: KBase × Term × List[Term → Term] → Proo f Result

Define predicate:

isSoundSimpli f ier(KB, s) :⇔ ∀
t∈Term

provablyEq[KB, t, s[t]]

Soundness of Prove:

∧

{

∀
s∈l

isSoundSimpli f ier[KB, s]

success f ul[Prove[KB,φ, l]]
⇒ provable[KB,φ]

Definition of provable, maybe:

provable[KB,φ] :⇔ success f ul[Prove[KB,φ, {}]]

KeY Symposium 2005, Lökeberg, Sweden – p.16

Efficient Verification

• Proving everything by induction on terms is tedious.

• Recognize common algorithm patterns, e.g. exhaustive application of

rewrite rule (x + y) + z 7→ x + (y + z)

• Capture generic algorithm, e.g.

simpli f yByRewriting :: List[RewriteRule] → (Term → Term)

• generic soundness:

∀
r∈l

isSoundRewriteRule[KB, r] ⇒

isSoundSimpli f ier[KB, simpli f yByRewriting[l]]

• prove this by term induction.

KeY Symposium 2005, Lökeberg, Sweden – p.17

Efficient Verification

• Proving everything by induction on terms is tedious.

• Recognize common algorithm patterns, e.g. exhaustive application of

rewrite rule (x + y) + z 7→ x + (y + z)

• Capture generic algorithm, e.g.

simpli f yByRewriting :: List[RewriteRule] → (Term → Term)

• generic soundness:

∀
r∈l

isSoundRewriteRule[KB, r] ⇒

isSoundSimpli f ier[KB, simpli f yByRewriting[l]]

• prove this by term induction.

KeY Symposium 2005, Lökeberg, Sweden – p.17

Efficient Verification

• Proving everything by induction on terms is tedious.

• Recognize common algorithm patterns, e.g. exhaustive application of

rewrite rule (x + y) + z 7→ x + (y + z)

• Capture generic algorithm, e.g.

simpli f yByRewriting :: List[RewriteRule] → (Term → Term)

• generic soundness:

∀
r∈l

isSoundRewriteRule[KB, r] ⇒

isSoundSimpli f ier[KB, simpli f yByRewriting[l]]

• prove this by term induction.

KeY Symposium 2005, Lökeberg, Sweden – p.17

Efficient Verification

• Proving everything by induction on terms is tedious.

• Recognize common algorithm patterns, e.g. exhaustive application of

rewrite rule (x + y) + z 7→ x + (y + z)

• Capture generic algorithm, e.g.

simpli f yByRewriting :: List[RewriteRule] → (Term → Term)

• generic soundness:

∀
r∈l

isSoundRewriteRule[KB, r] ⇒

isSoundSimpli f ier[KB, simpli f yByRewriting[l]]

• prove this by term induction.

KeY Symposium 2005, Lökeberg, Sweden – p.17

Efficient Verification

• Proving everything by induction on terms is tedious.

• Recognize common algorithm patterns, e.g. exhaustive application of

rewrite rule (x + y) + z 7→ x + (y + z)

• Capture generic algorithm, e.g.

simpli f yByRewriting :: List[RewriteRule] → (Term → Term)

• generic soundness:

∀
r∈l

isSoundRewriteRule[KB, r] ⇒

isSoundSimpli f ier[KB, simpli f yByRewriting[l]]

• prove this by term induction.

KeY Symposium 2005, Lökeberg, Sweden – p.17

Efficient Verification (cont.)

When is a rewrite rule is sound?

isSoundRewriteRule[l 7→ r] :⇔ ∀
σ∈Subst

provablyEq[σ [l],σ [r]]

By the logic’s substitution theorem:

provable[univClosure[l=r]] ⇒ isSoundRewriteRule[l 7→ r]

E.g. for (x + y) + z 7→ x + (y + z), show:

provable[∀
x,y,z

(x + y) + z = x + (y + z)]

Which is the same as proving

∀
x,y,z

(x + y) + z = x + (y + z)

on the object level!

KeY Symposium 2005, Lökeberg, Sweden – p.18

Efficient Verification (cont.)

When is a rewrite rule is sound?

isSoundRewriteRule[l 7→ r] :⇔ ∀
σ∈Subst

provablyEq[σ [l],σ [r]]

By the logic’s substitution theorem:

provable[univClosure[l=r]] ⇒ isSoundRewriteRule[l 7→ r]

E.g. for (x + y) + z 7→ x + (y + z), show:

provable[∀
x,y,z

(x + y) + z = x + (y + z)]

Which is the same as proving

∀
x,y,z

(x + y) + z = x + (y + z)

on the object level!

KeY Symposium 2005, Lökeberg, Sweden – p.18

Efficient Verification (cont.)

When is a rewrite rule is sound?

isSoundRewriteRule[l 7→ r] :⇔ ∀
σ∈Subst

provablyEq[σ [l],σ [r]]

By the logic’s substitution theorem:

provable[univClosure[l=r]] ⇒ isSoundRewriteRule[l 7→ r]

E.g. for (x + y) + z 7→ x + (y + z), show:

provable[∀
x,y,z

(x + y) + z = x + (y + z)]

Which is the same as proving

∀
x,y,z

(x + y) + z = x + (y + z)

on the object level!

KeY Symposium 2005, Lökeberg, Sweden – p.18

Efficient Verification (cont.)

When is a rewrite rule is sound?

isSoundRewriteRule[l 7→ r] :⇔ ∀
σ∈Subst

provablyEq[σ [l],σ [r]]

By the logic’s substitution theorem:

provable[univClosure[l=r]] ⇒ isSoundRewriteRule[l 7→ r]

E.g. for (x + y) + z 7→ x + (y + z), show:

provable[∀
x,y,z

(x + y) + z = x + (y + z)]

Which is the same as proving

∀
x,y,z

(x + y) + z = x + (y + z)

on the object level!

KeY Symposium 2005, Lökeberg, Sweden – p.18

Efficient Verification (cont.)

When is a rewrite rule is sound?

isSoundRewriteRule[l 7→ r] :⇔ ∀
σ∈Subst

provablyEq[σ [l],σ [r]]

By the logic’s substitution theorem:

provable[univClosure[l=r]] ⇒ isSoundRewriteRule[l 7→ r]

E.g. for (x + y) + z 7→ x + (y + z), show:

provable[∀
x,y,z

(x + y) + z = x + (y + z)]

Which is the same as proving

∀
x,y,z

(x + y) + z = x + (y + z)

on the object level!

KeY Symposium 2005, Lökeberg, Sweden – p.18

Conclusion

• Theorema is a system for mathematical theory exploration.

• Mathematical theorem proving is different from TP for verification.

• Extension of reasoners requires full program verification in general.

• Maybe often possible to use object level reasoning like for taclets.

KeY Symposium 2005, Lökeberg, Sweden – p.19

	
	Theorema
	Three Types of Reasoning
	Mathematical TP vs.~Program Verification
	Syntax
	Logic
	Domains
	Extension of Reasoners
	Taclets?
	Example
	Data structure
	Color Quoting
	Implementation of Simplifier
	Informal Verification
	Formal Verification
	Plugging it into the Prover
	Efficient Verification
	Efficient Verification (cont.)
	Conclusion

