
Can we make use of ADTs in KeY?

Richard Bubel

June 28, 2005

Can we make use of ADTs in KeY? June 28, 2005 1 / 13

Abstract Data Types (ADT)

\sorts {

\object LString;

}

\functions {

LString nil;

// first is char modeled as int

LString cat(int, LString);

\nonRigid[location]

LString content(java.lang.String);

int length(LString);

LString substring(int, int);

// first is char modeled as int

int indexOf(int, LString);

}

\rules {

compute_length_1 {

\find (length(cat(ch, lstr))) \replacewith (1+length(lstr))

};

compute_length_2 {

\find (length(nil)) \replacewith (0)

};

LString_is_generated { // needs length definition

\find (lstr)

\varcond(\notFreeIn(chV, lstr), \notFreeIn(tailV, lstr))

\add(\exists chV; \exists tailV;

((lstr=cat(chV, tailV) & length(lstr)=length(tailV)+1) |

lstr=nil | lstr=null) ==>)

};

focus on functional specification

well-founded theory

initiality → structural induction

executable (if axioms allow definition of a term rewriting system)

Can we make use of ADTs in KeY? June 28, 2005 2 / 13

Abstract Data Types (ADT)

\sorts {

\object LString;

}

\functions {

LString nil;

// first is char modeled as int

LString cat(int, LString);

\nonRigid[location]

LString content(java.lang.String);

int length(LString);

LString substring(int, int);

// first is char modeled as int

int indexOf(int, LString);

}

\rules {

compute_length_1 {

\find (length(cat(ch, lstr))) \replacewith (1+length(lstr))

};

compute_length_2 {

\find (length(nil)) \replacewith (0)

};

LString_is_generated { // needs length definition

\find (lstr)

\varcond(\notFreeIn(chV, lstr), \notFreeIn(tailV, lstr))

\add(\exists chV; \exists tailV;

((lstr=cat(chV, tailV) & length(lstr)=length(tailV)+1) |

lstr=nil | lstr=null) ==>)

};

focus on functional specification

well-founded theory

initiality → structural induction

executable (if axioms allow definition of a term rewriting system)

Can we make use of ADTs in KeY? June 28, 2005 2 / 13

Where may abstract data types help in KeY?

Structural induction
make structural induction available in JavaCardDL

generate correctness proof obligation

Specification of concrete data types

for general use in proofs, e.g. java.lang.String

for intermediate usage: use to model partial aspects of a Java data
type, e.g. inherent list structures

Therefore

concrete data type has to be (partially) mapped to an ADT

mapping has to be proven correct

Can we make use of ADTs in KeY? June 28, 2005 3 / 13

Where may abstract data types help in KeY?

Structural induction
make structural induction available in JavaCardDL

generate correctness proof obligation

Specification of concrete data types

for general use in proofs, e.g. java.lang.String

for intermediate usage: use to model partial aspects of a Java data
type, e.g. inherent list structures

Therefore

concrete data type has to be (partially) mapped to an ADT

mapping has to be proven correct

Can we make use of ADTs in KeY? June 28, 2005 3 / 13

Where may abstract data types help in KeY?

Structural induction
make structural induction available in JavaCardDL

generate correctness proof obligation

Specification of concrete data types

for general use in proofs, e.g. java.lang.String

for intermediate usage: use to model partial aspects of a Java data
type, e.g. inherent list structures

Therefore

concrete data type has to be (partially) mapped to an ADT

mapping has to be proven correct

Can we make use of ADTs in KeY? June 28, 2005 3 / 13

Structural Induction - Preliminaries

Definition (Constructors C)
Set of n-ary functions containing at least one nullary function
(constants/base elements).
The nullary constants are usually described by a characterizing
formula φbasis(x).

For example: C = {null, next} or C = {null, (left, right)}

Definition (Generated)

A data type T is generated by C, if for all objects o ∈ T there exists a
ground term only made up of elements in C .

Can we make use of ADTs in KeY? June 28, 2005 4 / 13

Structural Induction - Preliminaries

Definition (Constructors C)
Set of n-ary functions containing at least one nullary function
(constants/base elements).
The nullary constants are usually described by a characterizing
formula φbasis(x).

For example: C = {null, next} or C = {null, (left, right)}

Definition (Generated)

A data type T is generated by C, if for all objects o ∈ T there exists a
ground term only made up of elements in C .

Can we make use of ADTs in KeY? June 28, 2005 4 / 13

Structural Induction - Rule

Let Ψ(x) denote the induction hypothesis over type T

Base Case: ==> \forall T x ; (φbasis(x) -> Ψ(x))

Step Case: ==>
∧

c∈C,α(c)=n \forall T y , x1, . . . , xn;

(
∧

i=1...n Ψ(xi) & y
.
= c(x1 . . . xn)->Ψ(y))

Use Case: \forall T x ; Ψ(x) ==>

Example (Single Linked List)

T = List, Φbasis(x) :⇔ x
.
= null, C := {next}

Base Case: ==> \forall List x ; (x = null-> Ψ(x))

Step Case: ==> \forall List y , x1; (Ψ(x1) & y .next
.
= x1->Ψ(y))

Use Case: \forall List x ; Ψ(x) ==>

Can we make use of ADTs in KeY? June 28, 2005 5 / 13

Structural Induction - Rule

Let Ψ(x) denote the induction hypothesis over type T

Base Case: ==> \forall T x ; (φbasis(x) -> Ψ(x))

Step Case: ==>
∧

c∈C,α(c)=n \forall T y , x1, . . . , xn;

(
∧

i=1...n Ψ(xi) & y
.
= c(x1 . . . xn)->Ψ(y))

Use Case: \forall T x ; Ψ(x) ==>

Example (Single Linked List)

T = List, Φbasis(x) :⇔ x
.
= null, C := {next}

Base Case: ==> \forall List x ; (x = null-> Ψ(x))

Step Case: ==> \forall List y , x1; (Ψ(x1) & y .next
.
= x1->Ψ(y))

Use Case: \forall List x ; Ψ(x) ==>

Can we make use of ADTs in KeY? June 28, 2005 5 / 13

Induction Rule - Soundness

Soundness Proofobligation:

∀y : T.generated(y)

where
generated(y) :⇔ ∃d : int.(d >= 0 & generated(y , d)) :⇔∨

c∈C,α(c)=n ∃x1 . . . xn : T.∃d1 . . . dn : int.

(d1 >= 0 & . . . & dn >= 0 &

y = c(x1 . . . xn) & d = max{d1 . . . dn}+ 1 &
∧

i=1...n generated(xi , di))

Can we make use of ADTs in KeY? June 28, 2005 6 / 13

Structural Induction - In KeY

Can we make use of ADTs in KeY? June 28, 2005 7 / 13

Specification of concrete data types

Claim: In some cases an ADT specification offers an easier treatment of
data types

Example (String support in KeY)

Strings as an array of characters clutters proof

typical interested in the content of a String

Introduce a string ADT LString modeling string literals
Provide operations like substring or indexOf
Link to java.lang.String via content:String->LString function

\<{ s = "ab"; }\>s.content = cat(’a’,cat(’b’,nil))
Apply: assign_string_lit
{s:=c_new, c_new.content:=cat(’a’,cat(’b’,nil))}

\<{ }\>s.content = cat(’a’,cat(’b’,nil))

Can we make use of ADTs in KeY? June 28, 2005 8 / 13

Specification of concrete data types

Claim: In some cases an ADT specification offers an easier treatment of
data types

Example (String support in KeY)

Strings as an array of characters clutters proof

typical interested in the content of a String

Introduce a string ADT LString modeling string literals
Provide operations like substring or indexOf
Link to java.lang.String via content:String->LString function

\<{ s = "ab"; }\>s.content = cat(’a’,cat(’b’,nil))

Apply: assign_string_lit
{s:=c_new, c_new.content:=cat(’a’,cat(’b’,nil))}

\<{ }\>s.content = cat(’a’,cat(’b’,nil))

Can we make use of ADTs in KeY? June 28, 2005 8 / 13

Specification of concrete data types

Claim: In some cases an ADT specification offers an easier treatment of
data types

Example (String support in KeY)

Strings as an array of characters clutters proof

typical interested in the content of a String

Introduce a string ADT LString modeling string literals
Provide operations like substring or indexOf
Link to java.lang.String via content:String->LString function

\<{ s = "ab"; }\>s.content = cat(’a’,cat(’b’,nil))
Apply: assign_string_lit
{s:=c_new, c_new.content:=cat(’a’,cat(’b’,nil))}

\<{ }\>s.content = cat(’a’,cat(’b’,nil))

Can we make use of ADTs in KeY? June 28, 2005 8 / 13

Mapping from Java to ADT

Mapping

List ListADTftrans

f ′

trans

List next; Constructor

methods Functions

Rules Symbolic Execution of Java works on the ADT

We want
D |= ftrans(φ) ⇒ D |= f ′trans(ftrans(φ)) → φ

Which properties of the mapping guarantee sound rules?

Can we make use of ADTs in KeY? June 28, 2005 9 / 13

Mapping from Java to ADT

Mapping

List ListADTftrans

f ′

trans

List next; Constructor

methods Functions

Rules Symbolic Execution of Java works on the ADT

rw_eqn {
\find(ll1.#next = ll2 ==>)
\replacewith(ll1=cons(head(ll1), ll2)==>) };

assign_abstract {
\find (\<{.. #o.#next = #se; ...}\> post)
\replacewith((!(#o=null)->{#o:=cons(head(#o), #se)}

\<{.. ...}\>post)) };

We want
D |= ftrans(φ) ⇒ D |= f ′trans(ftrans(φ)) → φ

Which properties of the mapping guarantee sound rules?

Can we make use of ADTs in KeY? June 28, 2005 9 / 13

Mapping from Java to ADT

Mapping

List ListADTftrans

f ′

trans

List next; Constructor

methods Functions

Rules Symbolic Execution of Java works on the ADT

list_induction {
\varcond(\notFreeIn(ve,ind))
"Base Case": \add(==> {\subst iv; null} ind);
"Step Case": \add(==> \forall iv;(ind ->

\forall ve;{\subst iv; cons(ve, iv)}ind));
"Use Case": \add(\forall iv;ind==>)

};

We want
D |= ftrans(φ) ⇒ D |= f ′trans(ftrans(φ)) → φ

Which properties of the mapping guarantee sound rules?

Can we make use of ADTs in KeY? June 28, 2005 9 / 13

Mapping from Java to ADT

Mapping

List ListADTftrans

f ′

trans

List next; Constructor

methods Functions

Rules Symbolic Execution of Java works on the ADT

We want
D |= ftrans(φ) ⇒ D |= f ′trans(ftrans(φ)) → φ

Which properties of the mapping guarantee sound rules?

Can we make use of ADTs in KeY? June 28, 2005 9 / 13

Future Work

Functional verification of several Java Collection Framework classes
(e.g. LinkedList, ArrayList, TreeSet)

Optimising proofs of generateness and well-founded properties

Reuse of known structures and proven properties in classes (signature
homorphisms)

Can we make use of ADTs in KeY? June 28, 2005 10 / 13

