Can we make use of ADTs in KeY?

Richard Bubel

June 28, 2005

Can we make use of ADTs in KeY?

Abstract Data Types (ADT)

```
\sorts {
    \object LString;
}

\functions {
    LString nil;
    // first is char modeled as int
    LString cat(int, LString);
    \nonRigid[location]
    LString content(java.lang.String);
    int length(LString);
    LString substring(int, int);
    // first is char modeled as int
    int indexOf(int, LString);
}
```

```
\rules {
  compute_length_1 {
     \find (length(cat(ch, lstr))) \replacewith (1+length(lstr)))
  };
  compute_length_2 {
     \find (length(nil)) \replacewith (0)
  };
  LString_is_generated { // needs length definition
     \find (lstr)
     \varcond(\notFreeIn(chV, lstr), \notFreeIn(tailV, lstr))
     \add(\exists chV; \exists tailV;
        ((lstr=cat(chV, tailV) & length(lstr)=length(tailV)+1) |
        lstr=nil | lstr=null) ==>)
  };
```

KG)

Abstract Data Types (ADT)

```
\sorts {
    \object LString;
}

\functions {
    LString nil;
    // first is char modeled as int
    LString cat(int, LString);
    \nonRigid[location]
    LString content(java.lang.String);
    int length(LString);
    LString substring(int, int);
    // first is char modeled as int
    int indexOf(int, LString);
}
```

```
\rules {
  compute_length_1 {
     \find (length(cat(ch, lstr))) \replacewith (1+length(lstr))
  };
  compute_length_2 {
     \find (length(nil)) \replacewith (0)
  };
  LString_is_generated { // needs length definition
     \find (lstr)
     \varcond(\notFreeIn(chV, lstr), \notFreeIn(tailV, lstr))
     \add(\exists chV; \exists tailV;
        ((lstr=cat(chV, tailV) & length(lstr)=length(tailV)+1) |
        lstr=nil | lstr=null) ==>)
  };
```

- focus on functional specification
- well-founded theory
 - $\bullet \ initiality \rightarrow structural \ induction$
- executable (if axioms allow definition of a term rewriting system)

KG

Where may abstract data types help in KeY?

Structural induction

- make structural induction available in JavaCardDL
- generate correctness proof obligation

Where may abstract data types help in KeY?

Structural induction

- make structural induction available in JavaCardDL
- generate correctness proof obligation

Specification of concrete data types

- for general use in proofs, e.g. java.lang.String
- for intermediate usage: use to model partial aspects of a *Java* data type, e.g. inherent list structures

KGX

Where may abstract data types help in KeY?

Structural induction

- make structural induction available in JavaCardDL
- generate correctness proof obligation

Specification of concrete data types

- for general use in proofs, e.g. java.lang.String
- for intermediate usage: use to model partial aspects of a *Java* data type, e.g. inherent list structures

Therefore

KGX

- concrete data type has to be (partially) mapped to an ADT
- mapping has to be proven correct

Definition (Constructors C**)**

Set of n-ary functions containing at least one nullary function (constants/base elements). The nullary constants are usually described by a characterizing formula $\phi_{basis}(x)$.

For example: $C = \{\texttt{null}, \texttt{next}\} \text{ or } C = \{\texttt{null}, (\texttt{left}, \texttt{right})\}$

Definition (Constructors C**)**

Set of n-ary functions containing at least one nullary function (constants/base elements). The nullary constants are usually described by a characterizing formula $\phi_{basis}(x)$.

For example: $C = \{ \texttt{null}, \texttt{next} \}$ or $C = \{ \texttt{null}, (\texttt{left}, \texttt{right}) \}$

Definition (Generated)

A data type T is generated by C, if for all objects $o \in T$ there exists a ground term only made up of elements in C.

Structural Induction - Rule

Let $\Psi(x)$ denote the induction hypothesis over type **T**

Let $\Psi(x)$ denote the induction hypothesis over type **T**

Example (Single Linked List)

$$\begin{aligned} \mathbf{T} &= \text{List}, \ \Phi_{basis}(x) :\Leftrightarrow x \doteq \text{null}, \ \mathcal{C} := \{\text{next}\} \\ \text{Base Case:} &= > \text{ forall List } x; (x = \text{null} -> \Psi(x)) \\ \text{Step Case:} &= > \text{ forall List } y, x_1; (\Psi(x_1) \& y.\text{next} \doteq x_1 -> \Psi(y)) \\ \text{Use Case:} & \text{ forall List } x; \Psi(x) ==> \end{aligned}$$

KRY

Soundness Proofobligation:

 $\forall y : \mathbf{T}.generated(y)$

where
generated(y):
$$\Leftrightarrow \exists d: int.(d \ge 0 \& generated(y, d)): \Leftrightarrow$$

 $\bigvee_{c \in \mathcal{C}, \alpha(c)=n} \exists x_1 \dots x_n : \mathbf{T}. \exists d_1 \dots d_n : int.$
 $(d_1 \ge 0 \& \dots \& d_n \ge 0 \&$
 $y = c(x_1 \dots x_n) \& d = max\{d_1 \dots d_n\} + 1 \& \bigwedge_{i=1\dots n} generated(x_i, d_i))$

Kgy

Structural Induction - In KeY

👻 🕼 KeY Prover <2>	_ 🛪 🗙
File View Proof Options Tools	Help
🕨 🕨 Simple JavaCardDL 🗸 🐹 Autoresume strategy 🔚 Run Simplify 📙 Goal Back 🛛 💹	
Tasis Env. with model announces java@08.58.18.#1 @ getLanikey 	
Proor- Proor- AcClass <default> AcClass ListElement: ListElement: </default>	
OK Cancel	
K☆/ Integrated Deductive Software Design: Ready	

Specification of concrete data types

Claim: In some cases an ADT specification offers an easier treatment of data types

Example (String support in KeY)

- Strings as an array of characters clutters proof
- typical interested in the content of a String

Introduce a string ADT LString modeling string literals Provide operations like substring or indexOf Link to java.lang.String via content:String->LString function

κα

Specification of concrete data types

Claim: In some cases an ADT specification offers an easier treatment of data types

Example (String support in KeY)

- Strings as an array of characters clutters proof
- typical interested in the content of a String

Introduce a string ADT LString modeling string literals Provide operations like substring or indexOf Link to java.lang.String via content:String->LString function

KG)

Specification of concrete data types

Claim: In some cases an ADT specification offers an easier treatment of data types

Example (String support in KeY)

- Strings as an array of characters clutters proof
- typical interested in the content of a String

Introduce a string ADT LString modeling string literals Provide operations like substring or indexOf Link to java.lang.String via content:String->LString function

Kŵ

Mapping

Rules Symbolic Execution of Java works on the ADT

Mapping

Rules Symbolic Execution of Java works on the ADT

KΩ

Mapping

Rules Symbolic Execution of Java works on the ADT

KΩ

Mapping

Rules Symbolic Execution of Java works on the ADT

We want

Kγ

$$\mathcal{D} \models f_{trans}(\phi) \Rightarrow \mathcal{D} \models f'_{trans}(f_{trans}(\phi)) \rightarrow \phi$$

Which properties of the mapping guarantee sound rules?

- Functional verification of several Java Collection Framework classes (e.g. LinkedList, ArrayList, TreeSet)
- Optimising proofs of generateness and well-founded properties
- Reuse of known structures and proven properties in classes (signature homorphisms)

Kγ