The context of this work:

Uniform Variable Splitting

Roger Antonsen University of Oslo

June 9th 2005

4th KeY Symposium June 8-10 2005

- free variable tableaux / sequent calculi
- classical first-order logic
- proof search
- proof theory
- relation to KeY & incremental closure

Variable independence

A free variable can occur in different context/branches.

Question: When are variable occurrences independent, i.e. when is it sound to instantiate them differently?

Goal: To label variables differently (modulo a set of equations) exactly when they are independent.

γ -rules

Free variables are introduced.

$$\frac{\Gamma, \forall x \varphi, \varphi[x/u] \vdash \Delta}{\Gamma, \forall x \varphi \vdash \Delta} \mathsf{L} \forall$$

$$\frac{\Gamma \vdash \exists x \varphi, \varphi[x/\boldsymbol{u}], \Delta}{\Gamma \vdash \exists x \varphi, \Delta} \mathsf{R} \exists$$

δ -rules

Skolem functions are introduced.

 $\frac{\Gamma \vdash \varphi[x/f(\vec{u})], \Delta}{\Gamma \vdash \forall x \varphi, \Delta} \mathsf{R} \forall$ $\frac{\Gamma, \varphi[x/f(\vec{u})] \vdash \Delta}{\Gamma \exists x \varphi \vdash \Delta} \mathsf{L} \exists$

Example

The two occurrences of u are independent.

Example

We change the order of rule application,

 $\frac{\mathbf{Pu} \vdash Pa}{\forall x P x \vdash Pa} \quad \frac{\mathbf{Pv} \vdash Pb}{\forall x P x \vdash Pb} \\ \forall x P x \vdash Pa \land Pb$

and two different variables can be introduced.

Example

With sharing of variables:

The two occurrences of u are independent.

Example - variable splitting

$$\frac{\mathbf{Pu}^1 \vdash \mathbf{Pa} \quad \mathbf{Pu}^2 \vdash \mathbf{Pb}}{\begin{array}{c} Pu \vdash \mathbf{Pa} \land \mathbf{Pb} \\ \forall x \mathbf{Px} \vdash \mathbf{Pa} \land \mathbf{Pb} \\ 1 & 2 \end{array}}$$

The occurrences are labeled differently.

Example - variable splitting

$$\frac{\mathbf{Pu}^{1} \vdash Pa}{(\forall x Px)^{1} \vdash Pa} \quad \frac{\mathbf{Pu}^{2} \vdash Pb}{(\forall x Px)^{2} \vdash Pb} \\ \frac{\forall x Px \vdash Pa \land Pb}{1 \quad 2}$$

The order does not matter.

β -rules and colored variables

 β -rules add *indices* to *splitting sets* – example:

 $\frac{(\forall x P x u)\{1, 3, 6, 7\} \vdash \varphi \quad (\forall x P x u)\{1, 3, 6, 8\} \vdash \psi}{(\forall x P x u)\{1, 3, 6\} \vdash \varphi \land \psi}$

Splitting sets are used to label variables, u^{1367} , u^{1368} , and unification can now be performed on the level of such *colored variables*.

Comparison to universal/local variables

$Pu^1 \vdash Pa, Qa$	$Pu^2 \vdash Pb, Qb$	$Qu^1 \vdash Pa, Qa$	$Qu^2 \vdash Pb, Qb$
$Pu^1 \vdash Pa \lor Qa$	$Pu^2 \vdash Pb \lor Qb$	$\overline{Qu^1} \vdash Pa \lor Qa$	$\overline{Qu^2} \vdash Pb \lor Qb$
$Pu \vdash (Pa \lor Qa) \land (Pb \lor Qb) \qquad \qquad Qu \vdash (Pa \lor Qa) \land (Pb \lor Qb)$			$(Pb \lor Qb)$
$Pu \lor Qu \vdash (Pa \lor Qa) \land (Pb \lor Qb)$			
$\forall x(Px \lor Qx) \vdash (Pa \lor Qa) \land (Pb \lor Qb)$			
	u	1 2	

Provability and Consistency

Challenges

A substitution is *admissible* if:

1) it solves all balancing equations (e.g. $u^1 pprox u^{14}$) and

2) an induced ordering on indices is irreflexive. (This ordering gives the "right" order in which to apply rules.)

A *proof* is a derivation together with an admissible substitution closing all the leaf sequents.