
An Improved Rule for While Loops in
Deductive Program Verification

Bernhard Beckert, Steffen Schlager, and Peter H. Schmitt

June 9, 2005

An Improved Invariant Rule June 9, 2005 1 / 22

Traditional Invariant Rule

Γ `

U

Inv Inv, ε ` [α]Inv Inv, ¬ε ` ϕ

Γ `

U

[while ε do α od]ϕ

1. Inv (some DL formula) holds at the beginning

2. Inv is indeed an invariant

3. Inv entails postcondition

4. version with updates

An Improved Invariant Rule June 9, 2005 2 / 22

Traditional Invariant Rule

Γ `

U

Inv

Inv, ε ` [α]Inv Inv, ¬ε ` ϕ

Γ `

U

[while ε do α od]ϕ

1. Inv (some DL formula) holds at the beginning

2. Inv is indeed an invariant

3. Inv entails postcondition

4. version with updates

An Improved Invariant Rule June 9, 2005 2 / 22

Traditional Invariant Rule

Γ `

U

Inv Inv, ε ` [α]Inv

Inv, ¬ε ` ϕ

Γ `

U

[while ε do α od]ϕ

1. Inv (some DL formula) holds at the beginning

2. Inv is indeed an invariant

3. Inv entails postcondition

4. version with updates

An Improved Invariant Rule June 9, 2005 2 / 22

Traditional Invariant Rule

Γ `

U

Inv Inv, ε ` [α]Inv Inv, ¬ε ` ϕ

Γ `

U

[while ε do α od]ϕ

1. Inv (some DL formula) holds at the beginning

2. Inv is indeed an invariant

3. Inv entails postcondition

4. version with updates

An Improved Invariant Rule June 9, 2005 2 / 22

Traditional Invariant Rule

Γ ` U Inv Inv, ε ` [α]Inv Inv, ¬ε ` ϕ

Γ ` U [while ε do α od]ϕ

1. Inv (some DL formula) holds at the beginning

2. Inv is indeed an invariant

3. Inv entails postcondition

4. version with updates

An Improved Invariant Rule June 9, 2005 2 / 22

Traditional Invariant Rule

Γ ` U Inv Inv, ε ` [α]Inv Inv, ¬ε ` ϕ

Γ ` U [while ε do α od]ϕ

1. Inv (some DL formula) holds at the beginning

2. Inv is indeed an invariant

3. Inv entails postcondition

4. version with updates2
0
0
5
-0

6
-0

6

An Improved Invariant Rule

Traditional Invariant Rule

Usually we also have a ∆ there which we omit here. Can be negated and
put into Γ.

Problems

Actual rule in KeY more involved due to

I taclet language (local, non-destructive)

find (==> [while(#e) #s] post) replacewith ...

Γ ` U Inv Γ, U Inv, Uε ` U [α]Inv Γ, U Inv, U¬ε ` Uϕ

Γ ` U [while ε do α od]ϕ

I Java programming language (abrupt termination)
I break, (continue)
I exceptions
I return

An Improved Invariant Rule June 9, 2005 4 / 22

Problems

Actual rule in KeY more involved due to

I taclet language (local, non-destructive)

find (==> [while(#e) #s] post) replacewith ...

Γ ` U Inv Γ, U Inv, Uε ` U [α]Inv Γ, U Inv, U¬ε ` Uϕ

Γ ` U [while ε do α od]ϕ

I Java programming language (abrupt termination)
I break, (continue)
I exceptions
I return

An Improved Invariant Rule June 9, 2005 4 / 22

Problems

Actual rule in KeY more involved due to

I taclet language (local, non-destructive)

find (==> [while(#e) #s] post) replacewith ...

Γ ` U Inv Γ, U Inv, Uε ` U [α]Inv Γ, U Inv, U¬ε ` Uϕ

Γ ` U [while ε do α od]ϕ

I Java programming language (abrupt termination)
I break, (continue)
I exceptions
I return

An Improved Invariant Rule June 9, 2005 4 / 22

Problems

Actual rule in KeY more involved due to

I taclet language (local, non-destructive)

find (==> [while(#e) #s] post) replacewith ...

Γ ` U Inv Γ, U Inv, Uε ` U [α]Inv Γ, U Inv, U¬ε ` Uϕ

Γ ` U [while ε do α od]ϕ

I Java programming language (abrupt termination)
I break, (continue)
I exceptions
I return

An Improved Invariant Rule June 9, 2005 4 / 22

Problems with Taclets

I context Γ,U cannot be thrown away

I not sound to use context information in the 2nd and 3rd premiss

Example

x
.
= 0 ` Inv

x
.
= 0, Inv, x ≤ 5 ` [x = x + 1]Inv

x
.
= 0, Inv, ¬x ≤ 5 ` x

.
= 0

x
.
= 0 6` [while x ≤ 5 do x = x + 1; od]x

.
= 0

With Inv ≡ true all premisses are valid but the conlusion is not.

An Improved Invariant Rule June 9, 2005 5 / 22

Problems with Taclets

I context Γ,U cannot be thrown away

I not sound to use context information in the 2nd and 3rd premiss

Example

x
.
= 0 ` Inv

x
.
= 0, Inv, x ≤ 5 ` [x = x + 1]Inv

x
.
= 0, Inv, ¬x ≤ 5 ` x

.
= 0

x
.
= 0 6` [while x ≤ 5 do x = x + 1; od]x

.
= 0

With Inv ≡ true all premisses are valid but the conlusion is not.

An Improved Invariant Rule June 9, 2005 5 / 22

Problems with Taclets

I context Γ,U cannot be thrown away

I not sound to use context information in the 2nd and 3rd premiss

Example

x
.
= 0 ` Inv

x
.
= 0, Inv, x ≤ 5 ` [x = x + 1]Inv

x
.
= 0, Inv, ¬x ≤ 5 ` x

.
= 0

x
.
= 0 6` [while x ≤ 5 do x = x + 1; od]x

.
= 0

With Inv ≡ true all premisses are valid but the conlusion is not.

An Improved Invariant Rule June 9, 2005 5 / 22

Solution to the Taclet Problem

Anonymous update V that assigns fixed, unknown values to all locations.

Γ ` U Inv

Γ, UVInv, UVε ` UV[α]Inv

Γ, UVInv, UV¬ε ` UVϕ

Γ ` U [while ε do α od]ϕ

Can be written as taclet!

An Improved Invariant Rule June 9, 2005 6 / 22

Solution to the Taclet Problem

Anonymous update V that assigns fixed, unknown values to all locations.

Γ ` U Inv

Γ, UVInv, UVε ` UV[α]Inv

Γ, UVInv, UV¬ε ` UVϕ

Γ ` U [while ε do α od]ϕ

Can be written as taclet!

An Improved Invariant Rule June 9, 2005 6 / 22

Solution to the Taclet Problem—Example

Example

x
.
= 0 ` Inv

x
.
= 0, {x := c}Inv, {x := c}x ≤ 5 ` {x := c}[x = x + 1]Inv

x
.
= 0, {x := c}Inv, `

x
.
= 0 6` [while x ≤ 5 do x = x + 1; od]x

.
= 0

Depending on Inv at least one of the three premisses does not hold!

An Improved Invariant Rule June 9, 2005 7 / 22

Solution to the Taclet Problem—Example

Example

x
.
= 0 ` Inv

x
.
= 0, {x := c}Inv, {x := c}x ≤ 5 ` {x := c}[x = x + 1]Inv

x
.
= 0, {x := c}Inv, {x := c}¬x ≤ 5 ` {x := c}x .

= 0

x
.
= 0 6` [while x ≤ 5 do x = x + 1; od]x

.
= 0

Depending on Inv at least one of the three premisses does not hold!

An Improved Invariant Rule June 9, 2005 7 / 22

Solution to the Taclet Problem—Example

Example

x
.
= 0 ` Inv

x
.
= 0, {x := c}Inv, {x := c}x ≤ 5 ` {x := c}[x = x + 1]Inv

x
.
= 0, {x := c}Inv, ¬c ≤ 5 ` c

.
= 0

x
.
= 0 6` [while x ≤ 5 do x = x + 1; od]x

.
= 0

Depending on Inv at least one of the three premisses does not hold!

An Improved Invariant Rule June 9, 2005 7 / 22

Solution to the Taclet Problem—Example

Example

x
.
= 0 ` Inv

x
.
= 0, {x := c}Inv, {x := c}x ≤ 5 ` {x := c}[x = x + 1]Inv

x
.
= 0, {x := c}Inv, ¬c ≤ 5 ` c

.
= 0

x
.
= 0 6` [while x ≤ 5 do x = x + 1; od]x

.
= 0

Depending on Inv at least one of the three premisses does not hold!

2
0
0
5
-0

6
-0

6

An Improved Invariant Rule

Solution to the Taclet Problem—Example

In fact we do not enumerate all locations and assign unknown values to

them. Rather, we really use a special update. The update simplifier

knows how to handle this special update, i.e. everything to the left of the

special update must not be used for update simplification. This, in facts,

is similar to throwing away the context—but can be expressed as a taclet.

Problem of Abrupt Termination

I Traditional rule does not consider abrupt termination

I KeY calculus does not distinguish non-termination and abrupt
termination

Example

Γ ` U Inv Inv, exp `
≡true︷ ︸︸ ︷

[...break;...]Inv Inv, ¬exp ` ϕ

Γ ` U [while (exp) {...break;...}]ϕ

2nd premiss trivially valid in case of abrupt termination!

An Improved Invariant Rule June 9, 2005 8 / 22

Problem of Abrupt Termination

I Traditional rule does not consider abrupt termination

I KeY calculus does not distinguish non-termination and abrupt
termination

Example

Γ ` U Inv Inv, exp `
≡true︷ ︸︸ ︷

[...break;...]Inv Inv, ¬exp ` ϕ

Γ ` U [while (exp) {...break;...}]ϕ

2nd premiss trivially valid in case of abrupt termination!

An Improved Invariant Rule June 9, 2005 8 / 22

Problem of Abrupt Termination

I Traditional rule does not consider abrupt termination

I KeY calculus does not distinguish non-termination and abrupt
termination

Example

Γ ` U Inv Inv, exp `
≡true︷ ︸︸ ︷

[...break;...]Inv Inv, ¬exp ` ϕ

Γ ` U [while (exp) {...break;...}]ϕ

2nd premiss trivially valid in case of abrupt termination!

An Improved Invariant Rule June 9, 2005 8 / 22

Solution to Abrupt Termination Problem

I Program transformation of the loop that allows us to distinguish
abrupt and non-termination!

I Program transformation of the loop body such that

I transformed loop body cannot terminate abruptly

I reasons for abrupt termination of the original loop body are
memorised such that abrupt termination can be simulated later on

An Improved Invariant Rule June 9, 2005 9 / 22

Solution to Abrupt Termination Problem

I Program transformation of the loop that allows us to distinguish
abrupt and non-termination!

I Program transformation of the loop body such that

I transformed loop body cannot terminate abruptly

I reasons for abrupt termination of the original loop body are
memorised such that abrupt termination can be simulated later on

An Improved Invariant Rule June 9, 2005 9 / 22

Solution to Abrupt Termination Problem

I Program transformation of the loop that allows us to distinguish
abrupt and non-termination!

I Program transformation of the loop body such that

I transformed loop body cannot terminate abruptly

I reasons for abrupt termination of the original loop body are
memorised such that abrupt termination can be simulated later on

An Improved Invariant Rule June 9, 2005 9 / 22

Solution to Abrupt Termination Problem

I Program transformation of the loop that allows us to distinguish
abrupt and non-termination!

I Program transformation of the loop body such that

I transformed loop body cannot terminate abruptly

I reasons for abrupt termination of the original loop body are
memorised such that abrupt termination can be simulated later on

An Improved Invariant Rule June 9, 2005 9 / 22

Solution to Abrupt Termination Problem

I Program transformation of the loop that allows us to distinguish
abrupt and non-termination!

I Program transformation of the loop body such that

I transformed loop body cannot terminate abruptly

I reasons for abrupt termination of the original loop body are
memorised such that abrupt termination can be simulated later on

2
0
0
5
-0

6
-0

6

An Improved Invariant Rule

Solution to Abrupt Termination Problem

Instead of such a transformation one could also introduce new modalities
to distinguish abstract and non-termination. But this has 2 major
drawbacks:

• Less efficient since the calculus would have to execute the loop body twice:
first within a normal box and second within the new modality

• lots of new calculus rule required for the additional modalities

An Example

while (i<100) {
if (i==3)

continue;
j=j/i ;
i++;

}

boolean cont=false;
boolean exc=false;
java . lang .Throwable theExc;
try {

body: {
if (i<100) {

if (i==3) {
cont=true;
break body;

}
j=j/i ;
i++;

}
}

} catch (java . lang .Throwable e) {
exc=true;
theExc=e;

}

An Improved Invariant Rule June 9, 2005 11 / 22

An Example

while (i<100) {
if (i==3)

continue;
j=j/i ;
i++;

}

boolean cont=false;
boolean exc=false;
java . lang .Throwable theExc;
try {

body: {
if (i<100) {

if (i==3) {
cont=true;
break body;

}
j=j/i ;
i++;

}
}

} catch (java . lang .Throwable e) {
exc=true;
theExc=e;

}

An Improved Invariant Rule June 9, 2005 11 / 22

Rule Respecting Abrupt Termination

Still simplified rule

Γ ` U Inv

Inv, exp ` [α′]((¬exc → Inv) ∧ (exc → [π throw theExc; ω]ϕ))

Inv, ¬exp ` [π ω]ϕ

Γ ` U [π while(exp) { α } ω]ϕ

An Improved Invariant Rule June 9, 2005 12 / 22

Rule Respecting Abrupt Termination

Still simplified rule

Γ ` U Inv

Inv, exp ` [α′]((¬exc → Inv) ∧ (exc → [π throw theExc; ω]ϕ))

Inv, ¬exp ` [π ω]ϕ

Γ ` U [π while(exp) { α } ω]ϕ

2
0
0
5
-0

6
-0

6

An Improved Invariant Rule

Rule Respecting Abrupt Termination

We omit the anonymous updates and consider exceptions as the only

source for abrupt terminations.

Improved Invariant Rule—Motivation

Example

int getMin(int [] a) {
int m=a[0];
int i=1;
while (i<a.length) {

if (a[i]<m)
m=a[i];

i++;
}
return m;

}

I postcondition:

ϕmin = (∀x)(0 ≤ x < a.length → m ≤ a[x])

I additional part

ϕinv = (∀x)(0 ≤ x < a.length → a[x] = a′[x])

I requires precodition ϕinv

ϕinv → [getMin(a)](ϕmin ∧ ϕinv)

An Improved Invariant Rule June 9, 2005 14 / 22

Improved Invariant Rule—Motivation

Example

int getMin(int [] a) {
int m=a[0];
int i=1;
while (i<a.length) {

if (a[i]<m)
m=a[i];

i++;
}
return m;

}

I postcondition:

ϕmin = (∀x)(0 ≤ x < a.length → m ≤ a[x])

I additional part

ϕinv = (∀x)(0 ≤ x < a.length → a[x] = a′[x])

I requires precodition ϕinv

ϕinv → [getMin(a)](ϕmin ∧ ϕinv)

An Improved Invariant Rule June 9, 2005 14 / 22

Improved Invariant Rule—Motivation

Example

int getMin(int [] a) {
int m=a[0];
int i=1;
while (i<a.length) {

if (a[i]<m)
m=a[i];

i++;
}
return m;

}

I postcondition:

ϕmin = (∀x)(0 ≤ x < a.length → m ≤ a[x])

I additional part

ϕinv = (∀x)(0 ≤ x < a.length → a[x] = a′[x])

I requires precodition ϕinv

ϕinv → [getMin(a)](ϕmin ∧ ϕinv)

An Improved Invariant Rule June 9, 2005 14 / 22

Improved Invariant Rule—Motivation

Example

int getMin(int [] a) {
int m=a[0];
int i=1;
while (i<a.length) {

if (a[i]<m)
m=a[i];

i++;
}
return m;

}

I postcondition:

ϕmin = (∀x)(0 ≤ x < a.length → m ≤ a[x])

I additional part

ϕinv = (∀x)(0 ≤ x < a.length → a[x] = a′[x])

I requires precodition ϕinv

ϕinv → [getMin(a)](ϕmin ∧ ϕinv)

An Improved Invariant Rule June 9, 2005 14 / 22

Improved Invariant Rule—Motivation

Example

int getMin(int [] a) {
int m=a[0];
int i=1;
while (i<a.length) {

if (a[i]<m)
m=a[i];

i++;
}
return m;

}

I obvious loop invariant

Inv = 0 ≤ i ≤ a.length ∧

(∀x)(0 ≤ x < i → m ≤ a[x])

∧

ϕinv

I Inv not strong enough

Inv, ¬i < a.length 6` ϕmin ∧ ϕinv

An Improved Invariant Rule June 9, 2005 16 / 22

Improved Invariant Rule—Motivation

Example

int getMin(int [] a) {
int m=a[0];
int i=1;
while (i<a.length) {

if (a[i]<m)
m=a[i];

i++;
}
return m;

}

I obvious loop invariant

Inv = 0 ≤ i ≤ a.length ∧

(∀x)(0 ≤ x < i → m ≤ a[x])

∧

ϕinv

I Inv not strong enough

Inv, ¬i < a.length 6` ϕmin ∧ ϕinv

An Improved Invariant Rule June 9, 2005 16 / 22

Improved Invariant Rule—Motivation

Example

int getMin(int [] a) {
int m=a[0];
int i=1;
while (i<a.length) {

if (a[i]<m)
m=a[i];

i++;
}
return m;

}

I not so obvious loop invariant

Inv = 0 ≤ i ≤ a.length ∧

(∀x)(0 ≤ x < i → m ≤ a[x]) ∧

ϕinv

I Inv not strong enough

Inv, ¬i < a.length 6` ϕmin ∧ ϕinv

An Improved Invariant Rule June 9, 2005 16 / 22

Improved Invariant Rule—Motivation

A “right” invariant in general must express

I what the loop does

I what the loop does not (change)

Reason: Rule throws away context completely

Ideas:

I keeping context information about locations that are not changed
within the loop is sound

I use a more precise anonymous update that only wipes out locations
that may change

I using modifier sets (assignable clauses in JML context) to precisely
specify what the loop may change

An Improved Invariant Rule June 9, 2005 17 / 22

Improved Invariant Rule—Motivation

A “right” invariant in general must express

I what the loop does

I what the loop does not (change)

Reason: Rule throws away context completely

Ideas:

I keeping context information about locations that are not changed
within the loop is sound

I use a more precise anonymous update that only wipes out locations
that may change

I using modifier sets (assignable clauses in JML context) to precisely
specify what the loop may change

An Improved Invariant Rule June 9, 2005 17 / 22

Improved Invariant Rule—Motivation

A “right” invariant in general must express

I what the loop does

I what the loop does not (change)

Reason: Rule throws away context completely

Ideas:

I keeping context information about locations that are not changed
within the loop is sound

I use a more precise anonymous update that only wipes out locations
that may change

I using modifier sets (assignable clauses in JML context) to precisely
specify what the loop may change

An Improved Invariant Rule June 9, 2005 17 / 22

Improved Invariant Rule—Motivation

A “right” invariant in general must express

I what the loop does

I what the loop does not (change)
Reason: Rule throws away context completely

Ideas:

I keeping context information about locations that are not changed
within the loop is sound

I use a more precise anonymous update that only wipes out locations
that may change

I using modifier sets (assignable clauses in JML context) to precisely
specify what the loop may change

An Improved Invariant Rule June 9, 2005 17 / 22

Improved Invariant Rule—Motivation

A “right” invariant in general must express

I what the loop does

I what the loop does not (change)
Reason: Rule throws away context completely

Ideas:

I keeping context information about locations that are not changed
within the loop is sound

I use a more precise anonymous update that only wipes out locations
that may change

I using modifier sets (assignable clauses in JML context) to precisely
specify what the loop may change

An Improved Invariant Rule June 9, 2005 17 / 22

Improved Invariant Rule—Motivation

A “right” invariant in general must express

I what the loop does

I what the loop does not (change)
Reason: Rule throws away context completely

Ideas:

I keeping context information about locations that are not changed
within the loop is sound

I use a more precise anonymous update that only wipes out locations
that may change

I using modifier sets (assignable clauses in JML context) to precisely
specify what the loop may change

An Improved Invariant Rule June 9, 2005 17 / 22

Improved Invariant Rule—Motivation

A “right” invariant in general must express

I what the loop does

I what the loop does not (change)
Reason: Rule throws away context completely

Ideas:

I keeping context information about locations that are not changed
within the loop is sound

I use a more precise anonymous update that only wipes out locations
that may change

I using modifier sets (assignable clauses in JML context) to precisely
specify what the loop may change

An Improved Invariant Rule June 9, 2005 17 / 22

Improved Invariant Rule—Motivation

A “right” invariant in general must express

I what the loop does

I what the loop does not (change)
Reason: Rule throws away context completely

Ideas:

I keeping context information about locations that are not changed
within the loop is sound

I use a more precise anonymous update that only wipes out locations
that may change

I using modifier sets (assignable clauses in JML context) to precisely
specify what the loop may change

An Improved Invariant Rule June 9, 2005 17 / 22

Improved Invariant Rule—Motivation

A “right” invariant in general must express

I what the loop does

I what the loop does not (change)
Reason: Rule throws away context completely

Ideas:

I keeping context information about locations that are not changed
within the loop is sound

I use a more precise anonymous update that only wipes out locations
that may change

I using modifier sets (assignable clauses in JML context) to precisely
specify what the loop may change2

0
0
5
-0

6
-0

6

An Improved Invariant Rule

Improved Invariant Rule—Motivation

A modifier set for methods has the following semantics:
After execution of the method, every location in the modifier set has the
same value as in the beginning.
Analogously the same holds for loops.

In particular this means that the value of a location within the execution

of the method, resp. loop body, can differ from the value in the

beginning and end.

Improved Invariant Rule

Let Mod = {loc1, loc2, . . . , locn} be a modifier set for the loop, i.e. a set
of locations that the loop possibly may change.

The update VMod is defined as

VMod = {loc1 := c1, loc2 := c2, . . . , locn := c2}

where ci are fresh constants.

Γ ` U Inv

Γ, UVModInv, UVModε ` UVMod[α]Inv

Γ, UVModInv, UVMod¬ε ` UVModϕ

Γ ` U [while ε do α od]ϕ

An Improved Invariant Rule June 9, 2005 18 / 22

Improved Invariant Rule

Let Mod = {loc1, loc2, . . . , locn} be a modifier set for the loop, i.e. a set
of locations that the loop possibly may change.

The update VMod is defined as

VMod = {loc1 := c1, loc2 := c2, . . . , locn := c2}

where ci are fresh constants.

Γ ` U Inv

Γ, UVModInv, UVModε ` UVMod[α]Inv

Γ, UVModInv, UVMod¬ε ` UVModϕ

Γ ` U [while ε do α od]ϕ

An Improved Invariant Rule June 9, 2005 18 / 22

Improved Invariant Rule

Let Mod = {loc1, loc2, . . . , locn} be a modifier set for the loop, i.e. a set
of locations that the loop possibly may change.

The update VMod is defined as

VMod = {loc1 := c1, loc2 := c2, . . . , locn := c2}

where ci are fresh constants.

Γ ` U Inv

Γ, UVModInv, UVModε ` UVMod[α]Inv

Γ, UVModInv, UVMod¬ε ` UVModϕ

Γ ` U [while ε do α od]ϕ

An Improved Invariant Rule June 9, 2005 18 / 22

Improved Invariant Rule—Demo

Time for a Demo

An Improved Invariant Rule June 9, 2005 19 / 22

Advantages: New Invariant Rule & Modifier Sets

I Seperate aspects of

I which locations change (modifier set)
I how they change (loop invariant)

I (Optional) modifier set allow to state change information in a
compact way

I enumerate locations that may change instead of
I enumerate what does not change

I Make proof process more efficient

An Improved Invariant Rule June 9, 2005 20 / 22

Advantages: New Invariant Rule & Modifier Sets

I Seperate aspects of
I which locations change (modifier set)

I how they change (loop invariant)

I (Optional) modifier set allow to state change information in a
compact way

I enumerate locations that may change instead of
I enumerate what does not change

I Make proof process more efficient

An Improved Invariant Rule June 9, 2005 20 / 22

Advantages: New Invariant Rule & Modifier Sets

I Seperate aspects of
I which locations change (modifier set)
I how they change (loop invariant)

I (Optional) modifier set allow to state change information in a
compact way

I enumerate locations that may change instead of
I enumerate what does not change

I Make proof process more efficient

An Improved Invariant Rule June 9, 2005 20 / 22

Advantages: New Invariant Rule & Modifier Sets

I Seperate aspects of
I which locations change (modifier set)
I how they change (loop invariant)

I (Optional) modifier set allow to state change information in a
compact way

I enumerate locations that may change instead of
I enumerate what does not change

I Make proof process more efficient

An Improved Invariant Rule June 9, 2005 20 / 22

Advantages: New Invariant Rule & Modifier Sets

I Seperate aspects of
I which locations change (modifier set)
I how they change (loop invariant)

I (Optional) modifier set allow to state change information in a
compact way

I enumerate locations that may change instead of

I enumerate what does not change

I Make proof process more efficient

An Improved Invariant Rule June 9, 2005 20 / 22

Advantages: New Invariant Rule & Modifier Sets

I Seperate aspects of
I which locations change (modifier set)
I how they change (loop invariant)

I (Optional) modifier set allow to state change information in a
compact way

I enumerate locations that may change instead of
I enumerate what does not change

I Make proof process more efficient

An Improved Invariant Rule June 9, 2005 20 / 22

Advantages: New Invariant Rule & Modifier Sets

I Seperate aspects of
I which locations change (modifier set)
I how they change (loop invariant)

I (Optional) modifier set allow to state change information in a
compact way

I enumerate locations that may change instead of
I enumerate what does not change

I Make proof process more efficient

An Improved Invariant Rule June 9, 2005 20 / 22

Conclusions

I improved invariant rule

I proved soundness of improved rule (without abrupt termination)
I implemented improved rule for JavaDL
I extended JML with an assignable clause for loops
I used quantified updates to talk about an unknown number of

locations

void resetArray (int [] a) {
int i=0;
while (i<a.length)

a[i++]=0;
}

solution (based on Philipp’s proposal):

modifier set Mod = {0 ≤ x < a.length ? a[x], i}

anon. update VMod = {0 ≤ x < a.length ? a[x] := ca[x], i := ci}

An Improved Invariant Rule June 9, 2005 22 / 22

Conclusions

I improved invariant rule
I proved soundness of improved rule (without abrupt termination)

I implemented improved rule for JavaDL
I extended JML with an assignable clause for loops
I used quantified updates to talk about an unknown number of

locations

void resetArray (int [] a) {
int i=0;
while (i<a.length)

a[i++]=0;
}

solution (based on Philipp’s proposal):

modifier set Mod = {0 ≤ x < a.length ? a[x], i}

anon. update VMod = {0 ≤ x < a.length ? a[x] := ca[x], i := ci}

An Improved Invariant Rule June 9, 2005 22 / 22

Conclusions

I improved invariant rule
I proved soundness of improved rule (without abrupt termination)
I implemented improved rule for JavaDL

I extended JML with an assignable clause for loops
I used quantified updates to talk about an unknown number of

locations

void resetArray (int [] a) {
int i=0;
while (i<a.length)

a[i++]=0;
}

solution (based on Philipp’s proposal):

modifier set Mod = {0 ≤ x < a.length ? a[x], i}

anon. update VMod = {0 ≤ x < a.length ? a[x] := ca[x], i := ci}

An Improved Invariant Rule June 9, 2005 22 / 22

Conclusions

I improved invariant rule
I proved soundness of improved rule (without abrupt termination)
I implemented improved rule for JavaDL
I extended JML with an assignable clause for loops

I used quantified updates to talk about an unknown number of
locations

void resetArray (int [] a) {
int i=0;
while (i<a.length)

a[i++]=0;
}

solution (based on Philipp’s proposal):

modifier set Mod = {0 ≤ x < a.length ? a[x], i}

anon. update VMod = {0 ≤ x < a.length ? a[x] := ca[x], i := ci}

An Improved Invariant Rule June 9, 2005 22 / 22

Conclusions

I improved invariant rule
I proved soundness of improved rule (without abrupt termination)
I implemented improved rule for JavaDL
I extended JML with an assignable clause for loops
I used quantified updates to talk about an unknown number of

locations

void resetArray (int [] a) {
int i=0;
while (i<a.length)

a[i++]=0;
}

solution (based on Philipp’s proposal):

modifier set Mod = {0 ≤ x < a.length ? a[x], i}

anon. update VMod = {0 ≤ x < a.length ? a[x] := ca[x], i := ci}

An Improved Invariant Rule June 9, 2005 22 / 22

Conclusions

I improved invariant rule
I proved soundness of improved rule (without abrupt termination)
I implemented improved rule for JavaDL
I extended JML with an assignable clause for loops
I used quantified updates to talk about an unknown number of

locations

void resetArray (int [] a) {
int i=0;
while (i<a.length)

a[i++]=0;
}

solution (based on Philipp’s proposal):

modifier set Mod = {0 ≤ x < a.length ? a[x], i}

anon. update VMod = {0 ≤ x < a.length ? a[x] := ca[x], i := ci}

An Improved Invariant Rule June 9, 2005 22 / 22

Conclusions

I improved invariant rule
I proved soundness of improved rule (without abrupt termination)
I implemented improved rule for JavaDL
I extended JML with an assignable clause for loops
I used quantified updates to talk about an unknown number of

locations

void resetArray (int [] a) {
int i=0;
while (i<a.length)

a[i++]=0;
}

solution (based on Philipp’s proposal):

modifier set Mod = {0 ≤ x < a.length ? a[x], i}

anon. update VMod = {0 ≤ x < a.length ? a[x] := ca[x], i := ci}

An Improved Invariant Rule June 9, 2005 22 / 22

Conclusions

I improved invariant rule
I proved soundness of improved rule (without abrupt termination)
I implemented improved rule for JavaDL
I extended JML with an assignable clause for loops
I used quantified updates to talk about an unknown number of

locations

void resetArray (int [] a) {
int i=0;
while (i<a.length)

a[i++]=0;
}

solution (based on Philipp’s proposal):

modifier set Mod = {0 ≤ x < a.length ? a[x], i}

anon. update VMod = {0 ≤ x < a.length ? a[x] := ca[x], i := ci}

An Improved Invariant Rule June 9, 2005 22 / 22

Conclusions

I improved invariant rule
I proved soundness of improved rule (without abrupt termination)
I implemented improved rule for JavaDL
I extended JML with an assignable clause for loops
I used quantified updates to talk about an unknown number of

locations

void resetArray (int [] a) {
int i=0;
while (i<a.length)

a[i++]=0;
}

solution (based on Philipp’s proposal):

modifier set Mod = {0 ≤ x < a.length ? a[x], i}

anon. update VMod = {0 ≤ x < a.length ? a[x] := ca[x], i := ci}

An Improved Invariant Rule June 9, 2005 22 / 22

