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Microcalculus

■ Captures the execution semantics

■ Good things will happen
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Extending DL For Concurrency

➊ Concurrent modalities

➋ Causal tokens and places

➌ New implicit object fields
■ int <lockCount>;
■ int <waiting>;

➍ New rules

Deductive Verification of Concurrent Java ➥ ➠ ➡➠ ✇ ■ ? ✖



A Concurrent Diamond

An example:

〈{•}�t1; ‖ {••}�sta1;�{ }�sta2;�{ }�sta3;〉φ

may evolve to:

〈{•}�t1; ‖ { • }�sta1;�{•}�sta2;�{ }�sta3;〉φ

or to...
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Thread Attributes

■ Identity
● t.interrupt()
● t.join()

■ “Program counter”

■ Locks held

■ Working memory contents
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Synchronized Methods

doSomething

reqLock

lockAcq'ed

relLock

lockRel'ed

self.<lock>
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Synchronized Methods

doSomething

reqLock

lockAcq'ed

relLock

lockRel'ed

self.<lock>

if (<lockCount >==0) {

{self.<lock >}^ ;

}

<lockCount >++;
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Synchronized Methods

doSomething

reqLock

lockAcq'ed

relLock

lockRel'ed

self.<lock>

if (<lockCount >==0) {

{self.<lock >}^ ;

}

<lockCount >++;

if (<lockCount >==1) {

; ^{self.<lock >}

}

<lockCount >--;
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Waiting and Notification

public void wait() {

int l = lockCount ();

unlock(l);

<waiting >++;

{notif -thisref} ^ ;

<waiting >--;

lock(l);

}

public void notify () {

if (<waiting > > 0) {

; ^{notif -thisref}

}

// else do nothing

}

Deductive Verification of Concurrent Java ➥ ➠ ➡➠ ✇ ■ ? ✖



Example: Blocking Concurrent Queue

Property: “1 consumer thread, 1 producer thread;
whatever is put, is eventually retrieved”
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Example: Concurrent Queue

relLock

relLock

wait()
self.<waiting>

self.<lock>

put & notify()

wakeUp

removeElement

reqLock reqLock

reqLock
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Example: Concurrent Queue

relLock

relLock

wait()
self.<waiting>

self.<lock>

put & notify()

wakeUp

removeElement

reqLock reqLock

reqLock

〈{•}�q.put(x);‖ {•}�y=q.get();〉x = y
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Concurrent Queue In Context

〈{•}�q.put(x);‖ {•}�y=q.get();〉x = y

■ “Denial of service” possible?

■ Implementation correct for several consumers?

■ Livelock possible?
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Accomodating the Java Memory Model

Coming soon...
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Macrocalculus

■ Modularity

■ Design by Contract

■ Assumptions about the world

■ No bad things will happen
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A Quest for Modularity

Conventional specifications cannot serve as behavioral
abstraction in presence of concurrency.
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Contract Fulfillment Endangered

Internal interference

External interference
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Good News (At Last)

Developers think in terms of serializability

Concurrent execution ∼= serial execution

[Greenhouse et al.][Robby et al.]
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Serializability

...is achieved by

■ locking

■ data confinement
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State Protection (Locking) Specification

■ We have: The modifies clause (of a method)

■ We add: A reads clause

■ Sugar: Annotations to delineate/aggregate state regions
inside and across objects

■ Finally add:
● Mapping locks ↔ regions of state
● Locking policy (locks acquired or required)

Then method specifications can be used for verification.
(almost...)
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State Protection Example

/**@ lock BufLock is this protects Instance */

public class BoundedFIFO {

/** @aggregate [] into Instance

* @unshared */

Object [] buf;

/** @requiresLock BufLock

@pre ...

@post ... */

public void put(Object o) {...}

}

Deductive Verification of Concurrent Java ➥ ➠ ➡➠ ✇ ■ ? ✖



Data Confinement

Objects can be declared \thread_local. Thread-local objects
are not subject to interference.

How do we check this?
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Serializability

One basic flavor (stated as a meta-rule):

〈p1〉φ1 〈p2〉φ2 Φ1 . . . Φn

〈p1 ‖ p2〉φ1 ∧ φ2
par comp

[Vladimir Klebanov: A JMM-Faithful Non-Interference Calculus for Java.

FIDJI 2004 Workshop on Scientific Engineering of Distributed Java App’s.]
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To Be Done

Develop and implement further criteria of serializability.

Deductive Verification of Concurrent Java ➥ ➠ ➡➠ ✇ ■ ? ✖



Thank You!

Questions?
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