
Formal Verification of Memory Performance
Contracts

Christian Engel

Universität Karlsruhe (TH)

6th International KeY Symposium

Verification of Performance Contracts 14.06.2007 1 / 16

Outline

Motivation

Realtime Java

JML WCMU Specifications

Java DL and Memory Usage

Demo

Verification of Performance Contracts 14.06.2007 2 / 16

Motivation

Is formal verification of performance constraints really necessary?

No

Usually bad performance is not an issue of software correctness.

But . . .

Real-time applications have to meet certain performance constraints,
otherwise they are erroneous.

Verification of Performance Contracts 14.06.2007 3 / 16

Motivation

Is formal verification of performance constraints really necessary?

No

Usually bad performance is not an issue of software correctness.

But . . .

Real-time applications have to meet certain performance constraints,
otherwise they are erroneous.

Verification of Performance Contracts 14.06.2007 3 / 16

Motivation

Is formal verification of performance constraints really necessary?

No

Usually bad performance is not an issue of software correctness.

But . . .

Real-time applications have to meet certain performance constraints,
otherwise they are erroneous.

Verification of Performance Contracts 14.06.2007 3 / 16

Motivation

Is formal verification of performance constraints really necessary?

No

Usually bad performance is not an issue of software correctness.

But . . .

Real-time applications have to meet certain performance constraints,
otherwise they are erroneous.

Verification of Performance Contracts 14.06.2007 3 / 16

RTSJ – The Real-Time Specification for Java

One obstacle for writting real-time Java applications: Garbage Collection

New Types of Heap Memory . . .

I Immortal Memory

I Scoped Memory

I Both are not subject to garbage collection

. . . and Threads

I Realtime Thread

I No-Heap Realtime Thread

Verification of Performance Contracts 14.06.2007 4 / 16

RTSJ – The Real-Time Specification for Java

One obstacle for writting real-time Java applications: Garbage Collection

New Types of Heap Memory . . .

I Immortal Memory

I Scoped Memory

I Both are not subject to garbage collection

. . . and Threads

I Realtime Thread

I No-Heap Realtime Thread

Verification of Performance Contracts 14.06.2007 4 / 16

RTSJ – The Real-Time Specification for Java

One obstacle for writting real-time Java applications: Garbage Collection

New Types of Heap Memory . . .

I Immortal Memory

I Scoped Memory

I Both are not subject to garbage collection

. . . and Threads

I Realtime Thread

I No-Heap Realtime Thread

Verification of Performance Contracts 14.06.2007 4 / 16

RTSJ – The Real-Time Specification for Java

One obstacle for writting real-time Java applications: Garbage Collection

New Types of Heap Memory . . .

I Immortal Memory

I Scoped Memory

I Both are not subject to garbage collection

. . . and Threads

I Realtime Thread

I No-Heap Realtime Thread

Verification of Performance Contracts 14.06.2007 4 / 16

RTSJ – The Real-Time Specification for Java

One obstacle for writting real-time Java applications: Garbage Collection

New Types of Heap Memory . . .

I Immortal Memory

I Scoped Memory

I Both are not subject to garbage collection

. . . and Threads

I Realtime Thread

I No-Heap Realtime Thread

Verification of Performance Contracts 14.06.2007 4 / 16

RTSJ – The Real-Time Specification for Java

One obstacle for writting real-time Java applications: Garbage Collection

New Types of Heap Memory . . .

I Immortal Memory

I Scoped Memory

I Both are not subject to garbage collection

. . . and Threads

I Realtime Thread

I No-Heap Realtime Thread

Verification of Performance Contracts 14.06.2007 4 / 16

RTSJ – The Real-Time Specification for Java

One obstacle for writting real-time Java applications: Garbage Collection

New Types of Heap Memory . . .

I Immortal Memory

I Scoped Memory

I Both are not subject to garbage collection

. . . and Threads

I Realtime Thread

I No-Heap Realtime Thread

Verification of Performance Contracts 14.06.2007 4 / 16

JML Performance Specifications

Worst Case Execution Time (WCET)

I duration clause: part of the method contract

I \duration function: \duration(o.m())

Worst Case Memory Usage (WCMU)

I working_space clause:
I part of the method contract
I specifies the WCMU of a method

I \working_space function: \working_space(o.m())
I \space function: \space(new int[3])

Verification of Performance Contracts 14.06.2007 5 / 16

JML Performance Specifications

Worst Case Execution Time (WCET)

I duration clause: part of the method contract

I \duration function: \duration(o.m())

Worst Case Memory Usage (WCMU)

I working_space clause:
I part of the method contract
I specifies the WCMU of a method

I \working_space function: \working_space(o.m())
I \space function: \space(new int[3])

Verification of Performance Contracts 14.06.2007 5 / 16

JML Performance Specifications

Worst Case Execution Time (WCET)

I duration clause: part of the method contract

I \duration function: \duration(o.m())

Worst Case Memory Usage (WCMU)

I working_space clause:
I part of the method contract
I specifies the WCMU of a method

I \working_space function: \working_space(o.m())
I \space function: \space(new int[3])

Verification of Performance Contracts 14.06.2007 5 / 16

JML Performance Specifications

Worst Case Execution Time (WCET)

I duration clause: part of the method contract

I \duration function: \duration(o.m())

Worst Case Memory Usage (WCMU)

I working_space clause:
I part of the method contract
I specifies the WCMU of a method

I \working_space function: \working_space(o.m())
I \space function: \space(new int[3])

Verification of Performance Contracts 14.06.2007 5 / 16

JML Performance Specifications

Worst Case Execution Time (WCET)

I duration clause: part of the method contract

I \duration function: \duration(o.m())

Worst Case Memory Usage (WCMU)

I working_space clause:
I part of the method contract
I specifies the WCMU of a method

I \working_space function: \working_space(o.m())

I \space function: \space(new int[3])

Verification of Performance Contracts 14.06.2007 5 / 16

JML Performance Specifications

Worst Case Execution Time (WCET)

I duration clause: part of the method contract

I \duration function: \duration(o.m())

Worst Case Memory Usage (WCMU)

I working_space clause:
I part of the method contract
I specifies the WCMU of a method

I \working_space function: \working_space(o.m())
I \space function: \space(new int[3])

Verification of Performance Contracts 14.06.2007 5 / 16

Shortcomings of JML Memory Specs

This specification can be incorrect:

JAVA + JML

static SomeClass instance;

/*@ working_space \working_space(clear()) +
@ \working_space(getInstance()); @*/
public SomeClass freshInstance(){

clear();
return getInstance();

}

JAVA + JML

I working_space clauses are evaluated in the post state.

I no access to intermediate program states in \working_space
expressions

Verification of Performance Contracts 14.06.2007 6 / 16

Shortcomings of JML Memory Specs

This specification can be incorrect:

JAVA + JML

static SomeClass instance;

/*@ working_space \working_space(clear()) +
@ \working_space(getInstance()); @*/
public SomeClass freshInstance(){

clear();
return getInstance();

}

JAVA + JML

I working_space clauses are evaluated in the post state.

I no access to intermediate program states in \working_space
expressions

Verification of Performance Contracts 14.06.2007 6 / 16

Shortcomings of JML Memory Specs

This specification can be incorrect:

JAVA + JML

static SomeClass instance;

public static clear(){ instance = null; }

public static getInstance(){
if(instance==null) instance = new SomeClass();
return instance;

}

JAVA + JML

I working_space clauses are evaluated in the post state.

I no access to intermediate program states in \working_space
expressions

Verification of Performance Contracts 14.06.2007 6 / 16

Shortcomings of JML Memory Specs

This specification can be incorrect:

JAVA + JML

static SomeClass instance;

/*@ working_space \working_space(clear()) +
@ \working_space(getInstance()); @*/
public SomeClass freshInstance(){

clear();
return getInstance();

}

JAVA + JML

I working_space clauses are evaluated in the post state.

I no access to intermediate program states in \working_space
expressions

Verification of Performance Contracts 14.06.2007 6 / 16

Shortcomings of JML Memory Specs

This specification can be incorrect:

JAVA + JML

static SomeClass instance;

/*@ working_space \working_space(clear()) +
@ \working_space(getInstance()); @*/
public SomeClass freshInstance(){

clear(); // instance == null

return getInstance();
}

JAVA + JML

I working_space clauses are evaluated in the post state.

I no access to intermediate program states in \working_space
expressions

Verification of Performance Contracts 14.06.2007 6 / 16

Shortcomings of JML Memory Specs

This specification can be incorrect:

JAVA + JML

static SomeClass instance;

/*@ working_space \working_space(clear()) +
@ \working_space(getInstance()); @*/
public SomeClass freshInstance(){

clear(); // instance == null

return getInstance(); // instance != null

}

JAVA + JML

I working_space clauses are evaluated in the post state.

I no access to intermediate program states in \working_space
expressions

Verification of Performance Contracts 14.06.2007 6 / 16

working_space in KeYJML

Alternative Approach

State in which the target method is executed is specified within
\working_space expressions: \working_space(method, cond)

\working_space(method, cond) is a rigid expression.

JAVA + JML

static SomeClass instance;

/*@ working_space \working_space(clear(), true) +
@ \working_space(getInstance(), instance==null);@*/
public SomeClass freshInstance(){

clear();
return getInstance();

}

JAVA + JML

Verification of Performance Contracts 14.06.2007 7 / 16

working_space in KeYJML

Alternative Approach

State in which the target method is executed is specified within
\working_space expressions: \working_space(method, cond)
\working_space(method, cond) is a rigid expression.

JAVA + JML

static SomeClass instance;

/*@ working_space \working_space(clear(), true) +
@ \working_space(getInstance(), instance==null);@*/
public SomeClass freshInstance(){

clear();
return getInstance();

}

JAVA + JML

Verification of Performance Contracts 14.06.2007 7 / 16

working_space in KeYJML

Alternative Approach

State in which the target method is executed is specified within
\working_space expressions: \working_space(method, cond)
\working_space(method, cond) is a rigid expression.

JAVA + JML

static SomeClass instance;

/*@ working_space \working_space(clear(), true) +
@ \working_space(getInstance(), instance==null);@*/
public SomeClass freshInstance(){

clear();
return getInstance();

}

JAVA + JML

Verification of Performance Contracts 14.06.2007 7 / 16

Loop Specs in KeYJML

/*@ requires a!=null;
@ working_space a.length*\space(new Object()) +
@ \working_space(new ArrayStoreException(), true);
@*/
public void initArr(Object[] a){

int i=0;
/*@ loop_invariant i>=0;

@ assignable a[*];
@ decreasing a.length-i;
@ working_space_single_iteration \space(new Object());
@*/

while(i<a.length){
a[i++] = new Object();

}
}

Verification of Performance Contracts 14.06.2007 8 / 16

Proof Obligations

JAVA + JML

/*@ public normal_behavior
@ requires PRE;
@ working_space S;
@*/
public void doSth(){ ...

JAVA + JML

Idea

Use a program variable to log the memory allocation of Java programs.

PRE → {hold := h}〈doSth();〉h ≤ hold + S

Verification of Performance Contracts 14.06.2007 9 / 16

Proof Obligations

JAVA + JML

/*@ public normal_behavior
@ requires PRE;
@ working_space S;
@*/
public void doSth(){ ...

JAVA + JML

Idea

Use a program variable to log the memory allocation of Java programs.

PRE → {hold := h}〈doSth();〉h ≤ hold + S

Verification of Performance Contracts 14.06.2007 9 / 16

Object Creation Rule

Symbolic execution of constructors increases h by the heap space
consumed by the created object.

arrayCreation
Γ ⇒ {U ;h := h + spacearr (e, l1)}〈π ACω〉φ, ∆

Γ ⇒ {U}〈π v=new T[l1]);ω〉φ, ∆

objectCreation
Γ ⇒ {U ;h := h + spaceT}〈π OCω〉φ, ∆

Γ ⇒ {U}〈π v=new T(a1,...,an);ω〉φ, ∆

Verification of Performance Contracts 14.06.2007 10 / 16

Contract Rule

JAVA + JML

/*@ public normal_behavior
@ requires Pre;
@ ensures Post;
@ assignable Mod;
@ working_space S; @*/
public void m(){ ...

JAVA + JML

applyContract

Γ ⇒ {U}Pre, ∆
Γ ⇒ {U}(wsnr

m() = {V (Mod)}S →
{V (Mod)||h := h + wsnr

m()}(Post → 〈π ω〉φ)), ∆

Γ ⇒ {U}〈π m();ω〉φ, ∆

Verification of Performance Contracts 14.06.2007 11 / 16

How wsnr relates to \working_space

wsnr
m is a nonrigid constant denoting the WCMU of m in a certain set of

states S .

wsr
m,cond is the Java Card DL counterpart of the JML expression

\working_space(m, cond).

If cond holds in every state in S , {U}wsnr
m cannot exceed

\working_space(m, cond).

wsNonRigid

Γ ⇒ {U}cond , ∆
Γ, {U}wsnr

m ≤ wsr
m,cond ⇒ ∆

Γ ⇒ ∆

Verification of Performance Contracts 14.06.2007 12 / 16

How wsnr relates to \working_space

wsnr
m is a nonrigid constant denoting the WCMU of m in a certain set of

states S .

wsr
m,cond is the Java Card DL counterpart of the JML expression

\working_space(m, cond).

If cond holds in every state in S , {U}wsnr
m cannot exceed

\working_space(m, cond).

wsNonRigid

Γ ⇒ {U}cond , ∆
Γ, {U}wsnr

m ≤ wsr
m,cond ⇒ ∆

Γ ⇒ ∆

Verification of Performance Contracts 14.06.2007 12 / 16

How wsnr relates to \working_space

wsnr
m is a nonrigid constant denoting the WCMU of m in a certain set of

states S .

wsr
m,cond is the Java Card DL counterpart of the JML expression

\working_space(m, cond).

If cond holds in every state in S , {U}wsnr
m cannot exceed

\working_space(m, cond).

wsNonRigid

Γ ⇒ {U}cond , ∆
Γ, {U}wsnr

m ≤ wsr
m,cond ⇒ ∆

Γ ⇒ ∆

Verification of Performance Contracts 14.06.2007 12 / 16

How wsnr relates to \working_space

wsnr
m is a nonrigid constant denoting the WCMU of m in a certain set of

states S .

wsr
m,cond is the Java Card DL counterpart of the JML expression

\working_space(m, cond).

If cond holds in every state in S , {U}wsnr
m cannot exceed

\working_space(m, cond).

wsNonRigid

Γ ⇒ {U}cond , ∆
Γ, {U}wsnr

m ≤ wsr
m,cond ⇒ ∆

Γ ⇒ ∆

Verification of Performance Contracts 14.06.2007 12 / 16

Memory Usage Contract Rule

JAVA + JML

/*@ public behavior
@ requires Pre;
@ ensures Post;
@ working_space t;
@*/

public int m(){ ...

JAVA + JML

wsContract1

Γ ⇒ {∗ := ∗}(ϕ → Pre), ∆
Γ, {∗ := ∗}(Post ∧ wsr

m,ϕ = t) ⇒ ∆

Γ ⇒ ∆

Verification of Performance Contracts 14.06.2007 13 / 16

Demo

Demo

Verification of Performance Contracts 14.06.2007 14 / 16

Thank you for your Attention!

Verification of Performance Contracts 14.06.2007 15 / 16

Questions

Questions?

Verification of Performance Contracts 14.06.2007 16 / 16

	Motivation
	Realtime Java
	JML WCMU Specifications
	Java DL and Memory Usage
	Demo

