Formal Verification of Memory Performance
Contracts

Christian Engel

Universitat Karlsruhe (TH)

6th International KeY Symposium

Kﬁy Verification of Performance Contracts 14.06.2007

1/16

Outline

Motivation

Realtime Java

JML WCMU Specifications

Java DL and Memory Usage

Demo

Kﬁy Verification of Performance Contracts 14.06.2007 2/16

Motivation

Is formal verification of performance constraints really necessary? J

Kﬁy Verification of Performance Contracts 14.06.2007 3/16

Motivation

Is formal verification of performance constraints really necessary? J

o |

Kﬁy Verification of Performance Contracts 14.06.2007 3/16

Motivation

Is formal verification of performance constraints really necessary? J

No
Usually bad performance is not an issue of software correctness. J

Kﬁy Verification of Performance Contracts 14.06.2007 3/16

Motivation

Is formal verification of performance constraints really necessary? J

No
Usually bad performance is not an issue of software correctness.

But ...
Real-time applications have to meet certain performance constraints,

otherwise they are erroneous.
.

Kﬁy Verification of Performance Contracts 14.06.2007 3/16

RTSJ — The Real-Time Specification for Java

Kﬁy Verification of Performance Contracts 14.06.2007 4 /16

RTSJ — The Real-Time Specification for Java

One obstacle for writting real-time Java applications: Garbage CoIIectionJ

Kﬁy Verification of Performance Contracts 14.06.2007 4/16

RTSJ — The Real-Time Specification for Java

One obstacle for writting real-time Java applications: Garbage CollectionJ

New Types of Heap Memory ...

» Immortal Memory

Kﬁy Verification of Performance Contracts 14.06.2007 4/16

RTSJ — The Real-Time Specification for Java

One obstacle for writting real-time Java applications: Garbage CollectionJ

New Types of Heap Memory ...
» Immortal Memory

» Scoped Memory

Kﬁy Verification of Performance Contracts 14.06.2007 4/16

RTSJ — The Real-Time Specification for Java

One obstacle for writting real-time Java applications: Garbage CollectionJ

New Types of Heap Memory ...
» Immortal Memory
» Scoped Memory

» Both are not subject to garbage collection

Kﬁy Verification of Performance Contracts 14.06.2007 4/16

RTSJ — The Real-Time Specification for Java

One obstacle for writting real-time Java applications: Garbage CollectionJ

New Types of Heap Memory ...
» Immortal Memory
» Scoped Memory

» Both are not subject to garbage collection

...and Threads
» Realtime Thread

Kﬁy Verification of Performance Contracts 14.06.2007 4/16

RTSJ — The Real-Time Specification for Java

One obstacle for writting real-time Java applications: Garbage CollectionJ

New Types of Heap Memory ...
» Immortal Memory
» Scoped Memory

» Both are not subject to garbage collection

...and Threads
» Realtime Thread
» No-Heap Realtime Thread

Kﬁy Verification of Performance Contracts 14.06.2007 4/16

JML Performance Specifications

Worst Case Execution Time (WCET)

Kﬁy Verification of Performance Contracts 14.06.2007 5/ 16

JML Performance Specifications

Worst Case Execution Time (WCET)

» duration clause: part of the method contract

Kﬁy Verification of Performance Contracts 14.06.2007 5/ 16

JML Performance Specifications

Worst Case Execution Time (WCET)
» duration clause: part of the method contract

» \duration function: \duration(o.m())

Kﬁy Verification of Performance Contracts 14.06.2007

5/ 16

JML Performance Specifications

Worst Case Execution Time (WCET)
» duration clause: part of the method contract

» \duration function: \duration(o.m())

Worst Case Memory Usage (WCMU)

> working_space clause:

» part of the method contract
» specifies the WCMU of a method

Kﬁy Verification of Performance Contracts 14.06.2007 5/ 16

JML Performance Specifications

Worst Case Execution Time (WCET)
» duration clause: part of the method contract

» \duration function: \duration(o.m())

Worst Case Memory Usage (WCMU)

> working_space clause:

» part of the method contract
» specifies the WCMU of a method

» \working_space function: \working_space(o.m())

Kﬁy Verification of Performance Contracts 14.06.2007 5/ 16

JML Performance Specifications

Worst Case Execution Time (WCET)
» duration clause: part of the method contract

» \duration function: \duration(o.m())

Worst Case Memory Usage (WCMU)

> working_space clause:

» part of the method contract
» specifies the WCMU of a method

» \working_space function: \working_space(o.m())

» \space function: \space(new int[3])

Kﬁy Verification of Performance Contracts 14.06.2007 5/ 16

Shortcomings of JML Memory Specs

This specification can be incorrect:

— Java + JML

static SomeClass instance;

/*@ working_space \working_space(clear()) +
Q \working_space(getInstance()); @x/
public SomeClass freshInstance(){
clear();
return getInstance();

Java + JML —

Kﬁy Verification of Performance Contracts 14.06.2007 6 /16

Shortcomings of JML Memory Specs

This specification can be incorrect:

— Java + JML

static SomeClass instance;

/*@ working_space \working_space(clear()) +
Q \working_space(getInstance()); @x/
public SomeClass freshInstance(){
clear();
return getInstance();

Java + JML —

> working_space clauses are evaluated in the post state.
> no access to intermediate program states in \working_space
expressions

Kﬁy Verification of Performance Contracts 14.06.2007 6 /16

Shortcomings of JML Memory Specs

This specification can be incorrect:

— Java + JML

static SomeClass instance;

public static clear(){ instance = null; }

public static getInstance(){
if (instance==null) instance = new SomeClass();

return instance;

Java + JML —

> working_space clauses are evaluated in the post state.
> no access to intermediate program states in \working_space
expressions

Kﬁy Verification of Performance Contracts 14.06.2007 6 /16

Shortcomings of JML Memory Specs

This specification can be incorrect:

— Java + JML

static SomeClass instance;

/*@ working_space \working_space(clear()) +
Q \working_space(getInstance()); @x/
public SomeClass freshInstance(){
clear();
return getInstance();

Java + JML —

> working_space clauses are evaluated in the post state.
> no access to intermediate program states in \working_space
expressions

Kﬁy Verification of Performance Contracts 14.06.2007 6 /16

Shortcomings of JML Memory Specs

This specification can be incorrect:

— Java + JML

static SomeClass instance;

/*@ working_space \working_space(clear()) +

Q \working_space(getInstance()); @x/
public SomeClass freshInstance(){
clear(); // instance == null

return getInstance();

Java + JML —

> working_space clauses are evaluated in the post state.
> no access to intermediate program states in \working_space
expressions

Kﬁy Verification of Performance Contracts 14.06.2007 6 /16

Shortcomings of JML Memory Specs

This specification can be incorrect:

— Java + JML

static SomeClass instance;

/*@ working_space \working_space(clear()) +

@ \working_space (getInstance()); @x/
public SomeClass freshInstance(){
clear(); // instance == null
return getInstance(); // instance != null
}
Java + IML —

> working_space clauses are evaluated in the post state.
> no access to intermediate program states in \working_space
expressions

Kﬁy Verification of Performance Contracts 14.06.2007 6 /16

working_space in KeYJML

Alternative Approach

State in which the target method is executed is specified within
\working_space expressions: \working_space (method, cond)

Kﬁy Verification of Performance Contracts 14.06.2007 7/ 16

working_space in KeYJML

Alternative Approach

State in which the target method is executed is specified within
\working_space expressions: \working_space (method, cond)
\working_space (method, cond) is a rigid expression.

Kﬁy Verification of Performance Contracts 14.06.2007 7/ 16

working_space in KeYJML

Alternative Approach

State in which the target method is executed is specified within
\working_space expressions: \working_space (method, cond)
\working_space (method, cond) is a rigid expression.

— Java + JML

static SomeClass instance;

/*@ working_space \working_space(clear(), true) +

@ \working_space(getInstance(), instance==null) ;Q0x*/
public SomeClass freshInstance(){
clear();

return getInstance();

Java + JML —

Kﬁy Verification of Performance Contracts 14.06.2007 7/ 16

Loop Specs in KeYJML

/*@ requires a!=null;
@ working_space a.length*\space(new Object()) +
@ \working_space(mew ArrayStoreException(), true);
Qx/
public void initArr(Object[] a){
int i=0;
/*@ loop_invariant i>=0;
@ assignable a[x];
@ decreasing a.length-i;
@ working_space_single_iteration \space(new Object());
Qx*/
while(i<a.length){
ali++] = new Object();

}

Kﬁy Verification of Performance Contracts 14.06.2007 8/ 16

Proof Obligations

— Java + JML

/*@ public normal_behavior
@ requires PRE;
@ working_space S;
Qx/

public void doSth(){ ...

Java + JML —

Kﬁy Verification of Performance Contracts 14.06.2007 9 /16

Proof Obligations

— Java + JML

/*@ public normal_behavior
@ requires PRE;
@ working_space S;
Qx/

public void doSth(){ ...

Java + JML —

Idea

Use a program variable to log the memory allocation of Java programs.

PRE — {hoig :=h}{(doSth QO ;)h < hyy + S

Kﬁy Verification of Performance Contracts 14.06.2007 9 /16

Object Creation Rule

Symbolic execution of constructors increases h by the heap space
consumed by the created object.

= {U;h:=h+ space® (e, 11)}(r ACw) ¢, A
= {U}(rv=new T[11]);w) ¢, A
= {U;h:=h+ spacer }(mOCw) ¢, A
= {U}(rv=new T(al,...,an);w)¢, A

arrayCreation

objectCreation

Kﬁy Verification of Performance Contracts 14.06.2007 10 / 16

Contract Rule

— Java + JML

/*@ public normal_behavior
@ requires Pre;
Q ensures Post;
@ assignable Mod;
@ working_space S; @x/
public void m(){ ...

Java + JML —
= {U}Pre, A
M= {U)(wslly = {V(Mod)}S —

{V(Mod)||lh :=h+ Ws,’;,’()}(Post — (Tw) $)), A

M= {U}mnO;w)ep, A

applyContract

Kﬁy Verification of Performance Contracts 14.06.2007 11/ 16

How ws” relates to \working_space
g_sp

ws)’ is a nonrigid constant denoting the WCMU of m in a certain set ofJ

states S.

Kﬁy Verification of Performance Contracts 14.06.2007 12 /16

How ws” relates to \working_space
g_sp

ws,’ is a nonrigid constant denoting the WCMU of m in a certain set of

states S.

'm,con

WS! cong 15 the JAVA CARD DL counterpart of the JML expression
\working_space (m, cond).

Kﬁy Verification of Performance Contracts 14.06.2007 12 /16

How ws” relates to \working_space
g_sp

ws,’ is a nonrigid constant denoting the WCMU of m in a certain set of

states S.

ws” is the JAVA CARD DL counterpart of the JML expression

'm,cond
\working_space (m, cond).

If cond holds in every state in S, {U}ws] cannot exceed
\working_space(m, cond).

Kﬁy Verification of Performance Contracts 14.06.2007 12 /16

How ws” relates to \working_space
g_sp

ws,’ is a nonrigid constant denoting the WCMU of m in a certain set of

states S.

ws” is the JAVA CARD DL counterpart of the JML expression

'm,cond
\working_space (m, cond).

If cond holds in every state in S, {U}ws] cannot exceed
\working_space(m, cond).

= {U}cond, A
F, {U}WS,’;{ < W5;77cond = A

= A

wsNonRigid

Kﬁy Verification of Performance Contracts 14.06.2007 12 /16

Memory Usage Contract Rule

— Java + JML

/*@ public behavior
@ requires Pre;
@ ensures Post;
@ working_space t;
ex/

public int mO{ ...

Java + JML —

= {x:=x}(p — Pre), A
I, {* := *}(Post A ws],

M= A

Mo =t)=A

wsContractl

Kﬁy Verification of Performance Contracts 14.06.2007 13 /16

Demo

Demo

Kﬁy Verification of Performance Contracts 14.06.2007 14 / 16

Thank you for your Attention!

Kﬁy Verification of Performance Contracts 14.06.2007 15/ 16

Questions

Questions?

Kﬁy Verification of Performance Contracts 14.06.2007 16 / 16

	Motivation
	Realtime Java
	JML WCMU Specifications
	Java DL and Memory Usage
	Demo

