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Two Kinds of Specifications

Requirement Specificaiton

o Given by the user

@ Role: To be tested or verified

Full Specifictaion

@ Must comply with the IUT (Impl. Under Test)

@ Reflects the structure of the program

@ Can be extracted automatically
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@ Using of existing Black-box Testing Tools for White-box
testing

@ Separation of concerns - Modularity

@ Combination of Coverage Criteria
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The KeYSystem

Program Variable = non-rigid Function Symbol

(prog.var.) a = a (logic const.)
0.a = a(o)

Modal Operators

[Pl (p)¢ {a:=b}o
(o.a = t;u.b = s)p ~ {a(o):=t| b)) :=5}¢

{for x; fx == g} ~ {fn:=gull--||fo :=go}d

Sequent Calculus Rules

[ c=true = (p)¢p, A I, c = false = (q)¢, A
= (if (c){p}else{q}..)p, A




Example IUT

public class AbsDiff{
public static int d;
/*@ public normal_behavior
@ requires true;

@ ensures d==x-y || d==y-x;
@ ensures d>=x-y && d>=y-x;
Qx/

public static void diff(int x, int y){
if (x<y) d=y;
else d=x;
if (d<=y)d=d-x;
else d=d-y;
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Specification Extraction (Structural properties)

*

x<y,y<y x<y, x>y
= {d:=y-x}A = {d:=y-=x}A (B3) (Bs)
. x > y =
x <y={d:=y}if ...]A {d :=x}[if ... ]A

= [if (x<y)d=y;else d=x; if(d<=y)...]A

Bl: req x<y && y<=y emns d=\old(y-x); also
B3: req x>=y && x<=y emns d=\old(x-y); also
B4: req x>=y && x>y ens d=\old(x-y);



Example IUT

public class AbsDiff{
public static int d;

/*@ public normal_behavior
& requires true;

@ ensures d==x-y || d==y-x;
@ ensures d>=x-y && d>=y-x;
Qx/

public static void diff(int x, int

}
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Example IUT

/*@ public normal_behavior

@ requires true;

@ ensures d==x-y || d==y-x;
@ ensures d>=x-y && d>=y-x;
@ also

@ requires y < Xx;

@ ensures d == \old(x - y);
@ also

@ requires y == X;

@ ensures d == \0ld(0);

@ also

@ requires y > Xx;

@ ensures d == \old(y - x);

@x/



Example IUT

/*@ public normal_behavior
@ requires y < x && true;

@ ensures d == \old(x - y)

@ && (d==x-y || d==y-x) && d>=x-y && d>=y-x;
@ also

@ requires y == x && true;

@ ensures d == \old(0)

@ && (d==x-y || d==y-x) && d>=x-y && d>=y-x;
@ also

@ requires y > x && true;

@ ensures d == \old(y - x)

@ && (d==x-y || d==y-x) && d>=x-y && d>=y-x;
x/
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Using the extracted Post Condition

@ Requirement Specification

requires true;

ensures (d==x-y || d==y-x) && d>=x-y && d>=y-x

&& d!=MAX_INT;
@ With Full Specification

requires true && y < x;

ensures (d==x-y || d==y-x) && d>=x-y && d>=y-x

&% d'=MAX_INT && d == \old(x - y);
also



Loops

while (k<n) {

if (j=7) {
J = 05
line = new Line(line);
}
line.buf [jl=alk];
k++; j++;



Loops (Unfolding)

if (k<n)
{if(3=7){. . };if(j>711k>n)..;
line.buf [jl=alk]l; k++; j++;
if (k<n)
{if (j=7){..};if(j>7||k>n)..;
line.buf [jl=alk]l; k++; j++;

while (k<n){...}
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KeY’s Contract Rule

Pre, {for x; f(x) := f*<(x)} Post
= {for x; f(x) := f(x)}Post
(p) Postc, Pre = (p)Post
Pre, Prec — (p)Postc = (p)Post
Prec — (p)Postc = Pre — (p)Post

Contract
where {forx.f(x) := f*¥(x)} abbrev.
{for X071. . X07n0.f()(X071, . 7X07f70) = fOSk(XoJ, e 7X()mo)}

{for xm1....Xm.np-fn(Xm.1, - s Xm nm) = fnsqk(xml, ey Xmonm) }
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Explicit Structural Coverage
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Pre, {for x; f(x) := *<(x)} Post
= {for x; f(x) = F*(x)}
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Explicit Structural Coverage
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Loops (Invariants)

while (k<n) {

if (j=7) {
J = 0;
line = new Line(line);
}
line.buf [jl=alk];
k++; j++;
}
Invariant:

0<k<nAO<j<nAj<T
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Implementation
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Requirement Specification from a Reference
Implementation

Other Implementation
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@ Enrich existing Requirement Specification with Program
Structure

@ Use Black-box Testing tool for White-box testing
@ Tools that use Symbolic Execution can be extended

@ An Importer and Exporter for a Specification language has to
be implemented
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White-box Testing by Combining Deduction-based
Specification Extraction and Black-box Testing
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