White-box Testing by Combining
Deduction-based Specification Extraction and
Black-box Testing

Bernhard Beckert, Christoph Gladisch

www.key-project.org

6th KeY Symposium 2007

Nomborn, Germany
June 14, 2007

Two Kinds of Specifications

Requirement Specificaiton

Full Specifictaion

Two Kinds of Specifications

Requirement Specificaiton

o Given by the user

Full Specifictaion

Two Kinds of Specifications

Requirement Specificaiton

o Given by the user

@ Role: To be tested or verified

Full Specifictaion

Two Kinds of Specifications

Requirement Specificaiton

o Given by the user

@ Role: To be tested or verified

Full Specifictaion

Two Kinds of Specifications

Requirement Specificaiton

o Given by the user

@ Role: To be tested or verified

Full Specifictaion

@ Must comply with the IUT (Impl. Under Test)

Two Kinds of Specifications

Requirement Specificaiton

o Given by the user

@ Role: To be tested or verified

Full Specifictaion

@ Must comply with the IUT (Impl. Under Test)

@ Reflects the structure of the program

Two Kinds of Specifications

Requirement Specificaiton

o Given by the user

@ Role: To be tested or verified

Full Specifictaion

@ Must comply with the IUT (Impl. Under Test)

@ Reflects the structure of the program

@ Can be extracted automatically

Tool Chain

Black-box

Requirement Specification— Testing Tool

Tool Chain

Requirement Specification}_>§}—> ';B'Ieasi:(r;gqlz(ool

| (Extracted) Full Specification

(KeY) Specification Extraction

A

Source code

Tool Chain

Requirement Specification}_>§}—> ';B'Ieasi:(r;gqlz(ool

| (Extracted) Full Specification |

White-bo
Testing

S

(KeY) Specification Extraction

1 J

Source code

@ Using of existing Black-box Testing Tools for White-box
testing

@ Separation of concerns - Modularity

@ Combination of Coverage Criteria

«O>r «Fr <

it

v

a
i
v

nae

Benefits

@ Using of existing Black-box Testing Tools for White-box
testing

Benefits

@ Using of existing Black-box Testing Tools for White-box
testing

@ Separation of concerns - Modularity

Benefits

@ Using of existing Black-box Testing Tools for White-box
testing

@ Separation of concerns - Modularity

@ Combination of Coverage Criteria

The KeYSystem

Program Variable = non-rigid Function Symbol

(prog.var.) a = a (logic const.)

The KeYSystem

Program Variable = non-rigid Function Symbol

(prog.var.) a = a (logic const.)
0.a = a(o)

The KeYSystem

Program Variable = non-rigid Function Symbol

(prog.var.) a = a (logic const.)
0.a = a(o)

Modal Operators

[p]®

The KeYSystem

Program Variable = non-rigid Function Symbol

(prog.var.) a = a (logic const.)
0.a = a(o)

Modal Operators

[p]® (p)¢

The KeYSystem

Program Variable = non-rigid Function Symbol

(prog.var.) a = a (logic const.)
0.a = a(o)

Modal Operators

[p]® (p)¢ {a:=b}¢

The KeYSystem

Program Variable = non-rigid Function Symbol

a (logic const.)

a(o)
Modal Operators

[Pl (p)¢ {a:=b}o
(o.a = t;u.b = s)p ~ {a(o):=t| b)) :=5}¢

(prog.var.) a
0.a

The KeYSystem

Program Variable = non-rigid Function Symbol

(prog.var.) a a (logic const.)
0.a a(o)

Modal Operators

[Pl (p)¢ {a:=b}o
(o.a = t;u.b = s)p ~ {a(o):=t| b)) :=5}¢

{for x; fx == g} ~ {fn:=gull--||fo :=go}d

The KeYSystem

Program Variable = non-rigid Function Symbol

(prog.var.) a = a (logic const.)
0.a = a(o)

Modal Operators

[Pl (p)¢ {a:=b}o
(o.a = t;u.b = s)p ~ {a(o):=t| b)) :=5}¢

{for x; fx == g} ~ {fn:=gull--||fo :=go}d

Sequent Calculus Rules

[c=true = (p)¢p, A I, c = false = (q)¢, A
= (if (c){p}else{q}..)p, A

Example IUT

public class AbsDiff{
public static int d;
/*@ public normal_behavior
@ requires true;

@ ensures d==x-y || d==y-x;
@ ensures d>=x-y && d>=y-x;
Qx/

public static void diff(int x, int y){
if (x<y) d=y;
else d=x;
if (d<=y)d=d-x;
else d=d-y;

Specification Extraction (Structural properties)

= [if (x<y)d=y;else d=x; if(d<=y)...]A

Specification Extraction (Structural properties)

X>2y=
x <y={d:=y}if ...]A {d:=x}[if ...]A

= [if (x<y)d=y;else d=x; if(d<=y)...]A

Specification Extraction (Structural properties)

*

x<y,y<y x<y, x>y
= {d:=y-x}A = {d:=y-=x}A (B3) (Bs)
XZY:>
x <y={d:=y}if ...]A {d :=x}[if ...]A

= [if (x<y)d=y;else d=x; if(d<=y)...]A

Specification Extraction (Structural properties)

*

x<y,y<y x<y, x>y
= {d:=y-x}A = {d:=y-=x}A (B3) (Bs)
. x > y =
x <y={d:=y}if ...]A {d :=x}[if ...]A

= [if (x<y)d=y;else d=x; if(d<=y)...]A

Bl: req x<y && y<=y emns d=\old(y-x); also
B3: req x>=y && x<=y emns d=\old(x-y); also
B4: req x>=y && x>y ens d=\old(x-y);

Example IUT

public class AbsDiff{
public static int d;

/*@ public normal_behavior
& requires true;

@ ensures d==x-y || d==y-x;
@ ensures d>=x-y && d>=y-x;
Qx/

public static void diff(int x, int

}

y){

Example IUT

/*@ public normal_behavior

@ requires true;

@ ensures d==x-y || d==y-x;
@ ensures d>=x-y && d>=y-x;
@ also

@ requires y < Xx;

@ ensures d == \old(x - y);
@ also

@ requires y == X;

@ ensures d == \0ld(0);

@ also

@ requires y > Xx;

@ ensures d == \old(y - x);

@x/

Example IUT

/*@ public normal_behavior
@ requires y < x && true;

@ ensures d == \old(x - y)

@ && (d==x-y || d==y-x) && d>=x-y && d>=y-x;
@ also

@ requires y == x && true;

@ ensures d == \old(0)

@ && (d==x-y || d==y-x) && d>=x-y && d>=y-x;
@ also

@ requires y > x && true;

@ ensures d == \old(y - x)

@ && (d==x-y || d==y-x) && d>=x-y && d>=y-x;
x/

Using the extracted Post Condition

Using the extracted Post Condition

@ Requirement Specification
requires true;
ensures (d==x-y || d==y-x) && d>=x-y && d>=y-x
&& d!=MAX_INT;

Using the extracted Post Condition

@ Requirement Specification

requires true;

ensures (d==x-y || d==y-x) && d>=x-y && d>=y-x

&& d!=MAX_INT;
@ With Full Specification

requires true && y < x;

ensures (d==x-y || d==y-x) && d>=x-y && d>=y-x

&% d'=MAX_INT && d == \old(x - y);
also

Loops

while (k<n) {

if (j=7) {
J = 05
line = new Line(line);
}
line.buf [jl=alk];
k++; j++;

Loops (Unfolding)

if (k<n)
{if(3=7){. . };if(j>711k>n)..;
line.buf [jl=alk]l; k++; j++;
if (k<n)
{if (j=7){..};if(j>7||k>n)..;
line.buf [jl=alk]l; k++; j++;

while (k<n){...}

Contracts Program Replacements

Inputp—>‘ A | Sub | B ‘I Outputp

| —

Contracts Program Replacements

| Sub

Contracts Program Replacements

Inputg 5] Sub | Outputsy,

Inputp—=»> - Outputp

Contracts Program Replacements

Inputp—» : Inputg,p OutputSu?I Outputp

Contracts Program Replacements

Pre

Method

. Post

Contracts Program Replacements

Pre Method . Post

Inv Loop Ynv

Contracts Program Replacements

Inputp—»

Sub

Outputp

Traditional Contract Rule

Prec — (p)Postc = Pre — (p)Post

Contract

Traditional Contract Rule

Prec — (p)Postc, Pre = (p)Post

Prec — (p)Postc = Pre — (p)Post

Contract

Traditional Contract Rule

Pre = Prec,

Prec — (p)Postc, Pre = (p)Post

Prec — (p)Postc = Pre — (p)Post

Contract

Traditional Contract Rule

Pre = Prec, (p) Postc, Pre => (p) Post

Prec — (p)Postc, Pre = (p)Post

Prec — (p)Postc = Pre — (p)Post

Contract

Traditional Contract Rule

Postc = Post

Pre = Prec, (p) Postc, Pre = (p) Post

Prec — (p)Postc, Pre = (p)Post

Prec — (p)Postc = Pre — (p)Post

Contract

Traditional Contract Rule

Postc = Post
(p) Postc, Pre = (p) Post

Prec — (p)Postc, Pre = (p)Post

Prec — (p)Postc = Pre — (p)Post

Contract

KeY’s Contract Rule

Pre, {for x; f(x) := f*<(x)} Post
= {for x; f(x) := fK(x)} Post

(p) Postc, Pre = (p) Post

Pre, Prec — (p)Postc = (p)Post

Prec — (p)Postc = Pre — (p)Post

Contract

KeY’s Contract Rule

Pre, {for x; f(x) := f*<(x)} Post
= {for x; f(x) := f(x)}Post
(p) Postc, Pre = (p)Post
Pre, Prec — (p)Postc = (p)Post
Prec — (p)Postc = Pre — (p)Post

Contract
where {forx.f(x) := f*¥(x)} abbrev.
{for X071. . X07n0.f()(X071, . 7X07f70) = fOSk(XoJ, e 7X()mo)}

{for xm1....Xm.np-fn(Xm.1, - s Xm nm) = fnsqk(xml, ey Xmonm) }

Explicit Structural Coverage

Inputp—»

Pre
= {for x; f(x) := f(x)} Post

LIA 1 N\ JJ\ N N A

- Outputp

Explicit Structural Coverage

Inputp—>» \/\/C
A

Sub B

—

P

Pre, {for x; f(x) := *<(x)} Post
= {for x; f(x) = F*(x)}

LIA 1 N\ JJ\ N N A

Outputp

Explicit Structural Coverage

Inputp—»

Vs

u

—

P

Pre, {for x; f(x) := f*<(x)} Post
= {for x; f(x) := f(x)} Post

|: Outputp
|

Loops (Invariants)

while (k<n) {

if (j=7) {
J = 0;
line = new Line(line);
+
line.buf [jl=alk];
k++; j++;

Loops (Invariants)

while (k<n) {

if (j=7) {
J = 0;
line = new Line(line);
}
line.buf [jl=alk];
k++; j++;
}
Invariant:

0<k<nAO<j<nAj<T

Requirement Specification from a Reference
Implementation

Requirement Specification
= Full Specification

A

(KeY) Specification Extraction

A

Reference Implementation

Requirement Specification from a Reference
Implementation

Other Implementation

Y

Requirement Specification Black-box
= Full Specification —| Testing Tool

A

(KeY) Specification Extraction

Reference Implementation

@ Enrich existing Requirement Specification with Program
Structure

@ Use Black-box Testing tool for White-box testing
@ Tools that use Symbolic Execution can be extended

@ An Importer and Exporter for a Specification language has to
be implemented

«O>r «Fr <

it
i
!
S

o
?

Conclusion

@ Enrich existing Requirement Specification with Program
Structure

Conclusion

@ Enrich existing Requirement Specification with Program
Structure

@ Use Black-box Testing tool for White-box testing

Conclusion

@ Enrich existing Requirement Specification with Program
Structure

@ Use Black-box Testing tool for White-box testing
@ Tools that use Symbolic Execution can be extended

Conclusion

@ Enrich existing Requirement Specification with Program
Structure

@ Use Black-box Testing tool for White-box testing
@ Tools that use Symbolic Execution can be extended

@ An Importer and Exporter for a Specification language has to
be implemented

White-box Testing by Combining Deduction-based
Specification Extraction and Black-box Testing

Requirement SpecificationH(%}—) _;B_Zi::gqlz(ool

| (Extracted) Full Specification |

(KeY) Specification Extraction

g

A J

Source code

White-bo

Testing

	The General Approach
	Special Issues

