
Creol: A Formal Model of
Distributed Concurrent Objects

Einar Broch Johnsen

Dept. of Informatics, University of Oslo

Email: einarj@ifi.uio.no

KeY symposium, Nomborn in Eisenbachtal, June 14 2007

Einar Broch Johnsen (Univ. of Oslo) Creol 14.06.2007 1 / 22

Overview

Creol at a glance

I an executable OO modelling language

I formally de�ned semantics in rewriting logic

I targets open distributed systems

I abstracts from the particular properties of
the (object) scheduling and of the (network) environment

I the language design should support veri�cation

Historical Note

I started as Norw. project Creol at UiO by Johnsen and Owe in 2004

I developed into an EU project Credo in 2006:
W. Yi (Uppsala), C. Baier (Dresden), W-P de Roever (Kiel),
B. Aicherning (Graz/Macao), F. de Boer (CWI) + industries

I Norw. project Connect 2006: active interfaces to connect objects

Einar Broch Johnsen (Univ. of Oslo) Creol 14.06.2007 2 / 22

Introduction

Open Distributed Systems

I Consider systems of communicating software units

I Distribution: geographically spread components
I Networks may be asynchronous and unstable

I Components are unstable
I Availability may vary over time

I Evolution: systems change at runtime
I New requirements / bug �xes
I Changing environments
I Mars Rovers reprogrammed 11 times

since landing on Mars!

I ODS dominate critical infrastructure in society:
bank systems, air tra�c control, e-government, etc.

I ODS: complex, error prone, and poorly understood

Network

I Creol / Credo project goal:

Formal object-oriented framework to model and reason about ODS

Einar Broch Johnsen (Univ. of Oslo) Creol 14.06.2007 3 / 22

Introduction

Object orientation: Remote Method Calls

reply

call

o1 o2

evaluate

RMI / RPC method call model

I Control threads follow call stack

I Derived from sequential setting

I Hides / ignores distribution!

I Tightly synchronized!

Creol :

I Show / exploit distribution!

I Asynchronous method calls
I more e�cient in distributed environments
I triggers of concurrent activity

I Special cases:
I Synchronized communication:

the caller decides to wait for the reply
I Sequential computation:

only synchronized computation

Einar Broch Johnsen (Univ. of Oslo) Creol 14.06.2007 4 / 22

Creol: A Concurrent Object Model

Creol: A Concurrent Object Model

I Objects are concurrent, encapsulating a processor

I Object variables are typed by interfaces

I No assumptions about the (network) environment

I Execution in objects should be �exible
I Adapt to delays in the environment
I Implicit scheduling between internal processes inside an object
I High-level program �exibility w.r.t. the environment:

no need for explicit signaling or thread declarations
I Process control by suspension points
I Combines active and passive/reactive behavior

I Method invocations: synchronous or asynchronous

I Dynamic reprogramming: Class de�nitions may evolve at runtime

Einar Broch Johnsen (Univ. of Oslo) Creol 14.06.2007 5 / 22

Creol: A Concurrent Object Model

Interfaces as types

I Object variables (pointers) are typed by interfaces

(other variables are typed by data types)

I Mutual dependency: An interface may require a cointerface
I Explicit keyword caller
I Supports callbacks to the caller through the cointerface
I Protocol-like behaviour

I Supports strong typing: no �method not understood� errors

I All object interaction is controlled by interfaces
I No explicit hiding needed at the class level
I Interfaces provide aspect-oriented speci�cations
I A class may implement a number of interfaces

Einar Broch Johnsen (Univ. of Oslo) Creol 14.06.2007 6 / 22

Creol: A Concurrent Object Model Example

Example: Authorization Policies (1)

Let interface Auth o�er methods grant, revoke, auth, and delay.

interface Auth

begin
with Any // cointerface
op grant(in x:Agent) // grant authorization to agent x
op revoke(in x:Agent) // revoke authorization from agent x
op auth(in x:Agent) // check that agent x is authorized
op delay // delay until no agent is authorized

end

Einar Broch Johnsen (Univ. of Oslo) Creol 14.06.2007 7 / 22

Creol: A Concurrent Object Model Example

Internal Processes in Concurrent Objects

I Process: code + local variable bindings (method activation)

I Object: state + active process + suspended processes

I Suspension by means of await statements: await guard

I Guards are combinations of:
- wait ∈ Guard (explicit release)
- l? ∈ Guard, where l : Label
- φ ∈ Guard, where φ : Local state → Bool

I Inner guards are allowed: . . . ; await g ; . . .

I If g evaluates to false the active process is suspended,
with its local variable bindings

I If no process is active, any suspended process may be
activated if its guard evaluates to true.

I Inner guards enable interleaving of active and reactive code

I Remark: No need for signaling / noti�cation / pulse

Einar Broch Johnsen (Univ. of Oslo) Creol 14.06.2007 8 / 22

Distributed Communication in Creol

Object Communication in Creol

I Objects communicate through method invocations only

I Methods organized in classes, seen externally via interfaces

I Di�erent ways to invoke a method m

I Decided by caller � not at method declaration

I Asynchronous invocation: l !o.m(In)

I Passive waiting for method result: await l?

I Active waiting for method result: l?(Out)

I Guarded invocation: l !o.m(In); . . . ; await l?; l?(Out)
I Label free abbreviations for standard patterns:

I o.m(In;Out) = l !o.m(In); l?(Out) � synchronous call
I await o.m(In;Out) = l !o.m(In); await l?; l?(Out)
I !o.m(In) � no reply needed

I Internal calls: m(In;Out), l !m(In), !m(In)
Internal calls may also be asynchronous/guarded

Einar Broch Johnsen (Univ. of Oslo) Creol 14.06.2007 9 / 22

Distributed Communication in Creol

Some Remarks

Asynch. mtd. calls useful to combine OO + distribution:

I Synchronous calls de�ned by asynchronous calls

I Extends the notion of future variables [Yonezawa86, . . .]:

l !m(In); . . . ; l?(Out)
l !m(In); . . . ; await l?; . . . ; l?(Out)

I Provides the e�ciency of message passing

I All inter-object communication by method calls,
no need for separate concept of message

I Any method may be called synchronously or asynchronously

I Cointerfaces: mutual dep. / callback / availability restriction

I Inheritance will be as usual for OO:

may inherit/rede�ne methods in subclasses

Einar Broch Johnsen (Univ. of Oslo) Creol 14.06.2007 10 / 22

Creol: Basic Language Constructs

Creol Language Constructs

Syntactic categories. De�nitions.
l in Label

g in Guard

p in MtdCall

S in ComList

s in Com

x in VarList

e in ExprList

m in Mtd

o in ObjExpr

φ in BoolExpr

g ::= wait | φ | l? | g1 ∧ g2
p ::= o.m |m
S ::= s | s; S
s ::= skip | (S) | S1�S2 | S1|||S2
| x := e | x := new classname(e)
| if φ then S1 else S2 �
| !p(e) | l !p(e) | l?(x) | p(e; x)
| await g | await l?(x) | await p(e; x)

Einar Broch Johnsen (Univ. of Oslo) Creol 14.06.2007 11 / 22

Creol: Basic Language Constructs Example

Example: Combining Authorization Policies (2)

Let classes SAuth and MAuth de�ne two authorization strategies
implementing Auth.

class SAuth implements Auth

begin var gr : Agent = null
with Any

op grant(in x:Agent) == delay; gr := x
op revoke(in x:Agent) == if gr = x then gr := null �
op auth(in x:Agent) == await (gr = x)
op delay == await (gr = null)

end

Einar Broch Johnsen (Univ. of Oslo) Creol 14.06.2007 12 / 22

Creol: Basic Language Constructs Example

Let classes SAuth and MAuth de�ne two authorization strategies
implementing Auth.

class MAuth implements Auth

begin var gr : Set[Agent] = ∅
with Any

op grant(in x:Agent) == gr := gr ∪ {x}
op revoke(in x:Agent) == gr := gr \ {x}
op auth(in x:Agent) == await (x ∈ gr)
op delay == await (gr = ∅)

end

Einar Broch Johnsen (Univ. of Oslo) Creol 14.06.2007 13 / 22

Reasoning about Creol Objects

Reasoning about Creol Objects

I Observation: All object interaction is by means of method calls

I Let us consider a local execution in an object

Init p1 p2 p1 p3 p2 p3I I I I I I I

I Basic idea for the proof theory

Objects as maintainers of local invariants i

I Standard proof rules

I Rule for await
i ∧ g ⇒ q

{i} await g {q}

Einar Broch Johnsen (Univ. of Oslo) Creol 14.06.2007 14 / 22

Reasoning about Creol Objects

I For method calls, we must rely on the interface
(the class of an object is not statically known)

I Annotate interfaces with pre/postconditions on methods

I For more precise characterizations, we may rely on the
local history of observable communication

I the soundness and completeness of the proof system for partial
correctness may be shown by

I an encoding into a standard sequential language (e.g., Apt)
I extended with a nondeterministic assignment operator

I The completeness is here relative to a su�ciently strong local invariant

Einar Broch Johnsen (Univ. of Oslo) Creol 14.06.2007 15 / 22

Dynamic Class Upgrades

Dynamic Classes in Creol

I Dynamic classes: modular OO upgrade
mechanism

I Asynchronous upgrades propagate
through the dist. system

I Modify class de�nitions at runtime

I Class upgrade a�ects:
I All future instances of the class

and its subclasses
I All existing instances of the class

and its subclasses

D

Network

A
B

C E

Einar Broch Johnsen (Univ. of Oslo) Creol 14.06.2007 16 / 22

Dynamic Class Upgrades

Example of a Class Upgrade: The Good Bank Customer (1)

class BankAccount implements Account �� Version 1

begin var bal : Int = 0
with Any

op deposit (in sum : Nat) == bal := bal+sum
op transfer (in sum : Nat, acc : Account) ==
await bal ≥ sum ; bal := bal−sum; acc.deposit(sum)

end
upgrade class BankAccount
begin var overdraft : Nat = 0
with Any

op transfer (in sum : Nat, acc : Account) ==
await bal ≥ (sum−overdraft); bal := bal−sum;
acc.deposit(sum)

with Banker

op overdraft_open (in max : Nat) == overdraft := max
end

Einar Broch Johnsen (Univ. of Oslo) Creol 14.06.2007 17 / 22

Dynamic Class Upgrades

Example of a Class Upgrade: The Good Bank Customer (2)

class BankAccount implements Account �� Version 2

begin var bal : Int = 0, overdraft : Nat = 0
with Any

op deposit (in sum : Nat) == bal := bal+sum
op transfer (in sum : Nat, acc : Account) ==
await bal ≥ (sum−overdraft); bal := bal−sum;
acc.deposit(sum)

with Banker

op overdraft_open (in max : Nat) == overdraft := max
end

Einar Broch Johnsen (Univ. of Oslo) Creol 14.06.2007 18 / 22

Dynamic Class Upgrades

A Dynamic Class Mechanism

General case: Modify a class in a class hierarchy
Type correctness: Method binding
should still succeed!

I Attributes may be added
(no restrictions)

I Methods may be added
(no restrictions)

I Methods may be rede�ned
(subtyping discipline)

I Superclasses may be added

I Formal class parameters
may not be modi�ed

Theorem. Dynamic class extensions are type-safe in Creol's type system!

Einar Broch Johnsen (Univ. of Oslo) Creol 14.06.2007 19 / 22

Summing Up

Present and Future Work

I Operational semantics in rewriting logic

I Maude interpreter

I Type system

I Dependent upgrades

I Distributed interpreter running on JVM

I Reasoning support

I Parametrization, packages, components, . . .

I Testing / Validation / Lightweight veri�cation

I Web services / XML

Most papers available from

http://www.ifi.uio.no/~creol

Einar Broch Johnsen (Univ. of Oslo) Creol 14.06.2007 20 / 22

http://www.ifi.uio.no/~creol

Summing Up

Creol � Some Selected References

The communication model.

E. B. Johnsen, O. Owe. An Asynchronous Communication Model for Distributed

Concurrent Objects. Software and System Modeling 6(1): 39-58, 2007.

F. S. de Boer, D. Clarke, E. B. Johnsen. A Complete Guide to the Future.
Proc. ESOP'07. LNCS 4421, pp. 316�330. Springer 2007.

Multiple inheritance, method binding.

E. B. Johnsen, O. Owe. Inheritance in the Presence of Asynchronous Method Calls.
Proc. HICSS-38. IEEE, 2005.

E. B. Johnsen, O. Owe. A Dynamic Binding Strategy for Multiple Inheritance and

Asynchronously Communicating Objects. Proc. FMCO'04. LNCS 3657, pp. 274�295.
Springer 2005.

Typing, static analysis.

E. B. Johnsen, O. Owe, I. C. Yu. Creol: A Type-Safe Object-Oriented Model for

Distributed Concurrent Systems. Theoretical Computer Science 365: 23�66, 2006.

E. B. Johnsen, I. C. Yu. Backwards Type Analysis for Asynchronous Method Calls.

Submitted to journal, 2007.

Einar Broch Johnsen (Univ. of Oslo) Creol 14.06.2007 21 / 22

Summing Up

Dynamic class upgrades.

E. B. Johnsen, O. Owe, I. Simplot-Ryl. A Dynamic Class Construct for Asynchronous

Concurrent Objects. Proc. FMOODS'05. LNCS 3535, 15�30. Springer 2005.

I. C. Yu, E. B. Johnsen, O. Owe. Type-Safe Runtime Class Upgrades in Creol.
Proc. FMOODS'06. LNCS 4037, 202�217. Springer 2006.

Analysis.

J. Dovland, E. B. Johnsen, O. Owe. Veri�cation of Concurrent Objects with

Asynchronous Method Calls. Proc. SwSTE, 141�150. IEEE, 2005.

J. Dovland, E. B. Johnsen, O. Owe. Observable Behavior of Dynamic Systems:

Component Reasoning for Concurrent Objects. Proc. FInCo'07. To appear in ENTCS.

E. B. Johnsen, O. Owe, A. B. Torjusen. Validating Behavioral Component Interfaces in

Rewriting Logic. Fundamenta Informaticae 2007. To appear.

Einar Broch Johnsen (Univ. of Oslo) Creol 14.06.2007 22 / 22

	Overview
	Introduction
	Creol: A Concurrent Object Model
	Example

	Distributed Communication in Creol
	Creol: Basic Language Constructs
	Example

	Reasoning about Creol Objects
	Dynamic Class Upgrades
	Summing Up

