
Creol: A Formal Model of
Distributed Concurrent Objects

Einar Broch Johnsen

Dept. of Informatics, University of Oslo

Email: einarj@ifi.uio.no

KeY symposium, Nomborn in Eisenbachtal, June 14 2007

Einar Broch Johnsen (Univ. of Oslo) Creol 14.06.2007 1 / 22



Overview

Creol at a glance

I an executable OO modelling language

I formally de�ned semantics in rewriting logic

I targets open distributed systems

I abstracts from the particular properties of
the (object) scheduling and of the (network) environment

I the language design should support veri�cation

Historical Note

I started as Norw. project Creol at UiO by Johnsen and Owe in 2004

I developed into an EU project Credo in 2006:
W. Yi (Uppsala), C. Baier (Dresden), W-P de Roever (Kiel),
B. Aicherning (Graz/Macao), F. de Boer (CWI) + industries

I Norw. project Connect 2006: active interfaces to connect objects
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Introduction

Open Distributed Systems

I Consider systems of communicating software units

I Distribution: geographically spread components
I Networks may be asynchronous and unstable

I Components are unstable
I Availability may vary over time

I Evolution: systems change at runtime
I New requirements / bug �xes
I Changing environments
I Mars Rovers reprogrammed 11 times

since landing on Mars!

I ODS dominate critical infrastructure in society:
bank systems, air tra�c control, e-government, etc.

I ODS: complex, error prone, and poorly understood

Network

I Creol / Credo project goal:

Formal object-oriented framework to model and reason about ODS
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Introduction

Object orientation: Remote Method Calls

reply

call

o1 o2

evaluate

RMI / RPC method call model

I Control threads follow call stack

I Derived from sequential setting

I Hides / ignores distribution!

I Tightly synchronized!

Creol :

I Show / exploit distribution!

I Asynchronous method calls
I more e�cient in distributed environments
I triggers of concurrent activity

I Special cases:
I Synchronized communication:

the caller decides to wait for the reply
I Sequential computation:

only synchronized computation
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Creol: A Concurrent Object Model

Creol: A Concurrent Object Model

I Objects are concurrent, encapsulating a processor

I Object variables are typed by interfaces

I No assumptions about the (network) environment

I Execution in objects should be �exible
I Adapt to delays in the environment
I Implicit scheduling between internal processes inside an object
I High-level program �exibility w.r.t. the environment:

no need for explicit signaling or thread declarations
I Process control by suspension points
I Combines active and passive/reactive behavior

I Method invocations: synchronous or asynchronous

I Dynamic reprogramming: Class de�nitions may evolve at runtime
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Creol: A Concurrent Object Model

Interfaces as types

I Object variables (pointers) are typed by interfaces

(other variables are typed by data types)

I Mutual dependency: An interface may require a cointerface
I Explicit keyword caller
I Supports callbacks to the caller through the cointerface
I Protocol-like behaviour

I Supports strong typing: no �method not understood� errors

I All object interaction is controlled by interfaces
I No explicit hiding needed at the class level
I Interfaces provide aspect-oriented speci�cations
I A class may implement a number of interfaces
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Creol: A Concurrent Object Model Example

Example: Authorization Policies (1)

Let interface Auth o�er methods grant, revoke, auth, and delay.

interface Auth

begin
with Any // cointerface
op grant(in x:Agent) // grant authorization to agent x
op revoke(in x:Agent) // revoke authorization from agent x
op auth(in x:Agent) // check that agent x is authorized
op delay // delay until no agent is authorized

end
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Creol: A Concurrent Object Model Example

Internal Processes in Concurrent Objects

I Process: code + local variable bindings (method activation)

I Object: state + active process + suspended processes

I Suspension by means of await statements: await guard

I Guards are combinations of:
- wait ∈ Guard (explicit release)
- l? ∈ Guard, where l : Label
- φ ∈ Guard, where φ : Local state → Bool

I Inner guards are allowed: . . . ; await g ; . . .

I If g evaluates to false the active process is suspended,
with its local variable bindings

I If no process is active, any suspended process may be
activated if its guard evaluates to true.

I Inner guards enable interleaving of active and reactive code

I Remark: No need for signaling / noti�cation / pulse
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Distributed Communication in Creol

Object Communication in Creol

I Objects communicate through method invocations only

I Methods organized in classes, seen externally via interfaces

I Di�erent ways to invoke a method m

I Decided by caller � not at method declaration

I Asynchronous invocation: l !o.m(In)

I Passive waiting for method result: await l?

I Active waiting for method result: l?(Out)

I Guarded invocation: l !o.m(In); . . . ; await l?; l?(Out)
I Label free abbreviations for standard patterns:

I o.m(In;Out) = l !o.m(In); l?(Out) � synchronous call
I await o.m(In;Out) = l !o.m(In); await l?; l?(Out)
I !o.m(In) � no reply needed

I Internal calls: m(In;Out), l !m(In), !m(In)
Internal calls may also be asynchronous/guarded
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Distributed Communication in Creol

Some Remarks

Asynch. mtd. calls useful to combine OO + distribution:

I Synchronous calls de�ned by asynchronous calls

I Extends the notion of future variables [Yonezawa86, . . . ]:

l !m(In); . . . ; l?(Out)
l !m(In); . . . ; await l?; . . . ; l?(Out)

I Provides the e�ciency of message passing

I All inter-object communication by method calls,
no need for separate concept of message

I Any method may be called synchronously or asynchronously

I Cointerfaces: mutual dep. / callback / availability restriction

I Inheritance will be as usual for OO:

may inherit/rede�ne methods in subclasses

Einar Broch Johnsen (Univ. of Oslo) Creol 14.06.2007 10 / 22



Creol: Basic Language Constructs

Creol Language Constructs

Syntactic categories. De�nitions.
l in Label

g in Guard

p in MtdCall

S in ComList

s in Com

x in VarList

e in ExprList

m in Mtd

o in ObjExpr

φ in BoolExpr

g ::= wait | φ | l? | g1 ∧ g2
p ::= o.m |m
S ::= s | s; S
s ::= skip | (S) | S1�S2 | S1|||S2
| x := e | x := new classname(e)
| if φ then S1 else S2 �
| !p(e) | l !p(e) | l?(x) | p(e; x)
| await g | await l?(x) | await p(e; x)
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Creol: Basic Language Constructs Example

Example: Combining Authorization Policies (2)

Let classes SAuth and MAuth de�ne two authorization strategies
implementing Auth.

class SAuth implements Auth

begin var gr : Agent = null
with Any

op grant(in x:Agent) == delay; gr := x
op revoke(in x:Agent) == if gr = x then gr := null �
op auth(in x:Agent) == await (gr = x)
op delay == await (gr = null)

end
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Creol: Basic Language Constructs Example

Let classes SAuth and MAuth de�ne two authorization strategies
implementing Auth.

class MAuth implements Auth

begin var gr : Set[Agent] = ∅
with Any

op grant(in x:Agent) == gr := gr ∪ {x}
op revoke(in x:Agent) == gr := gr \ {x}
op auth(in x:Agent) == await (x ∈ gr)
op delay == await (gr = ∅)

end
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Reasoning about Creol Objects

Reasoning about Creol Objects

I Observation: All object interaction is by means of method calls

I Let us consider a local execution in an object

Init p1    p2 p1    p3 p2 p3I I I I I I I

I Basic idea for the proof theory

Objects as maintainers of local invariants i

I Standard proof rules

I Rule for await
i ∧ g ⇒ q

{i} await g {q}
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Reasoning about Creol Objects

I For method calls, we must rely on the interface
(the class of an object is not statically known)

I Annotate interfaces with pre/postconditions on methods

I For more precise characterizations, we may rely on the
local history of observable communication

I the soundness and completeness of the proof system for partial
correctness may be shown by

I an encoding into a standard sequential language (e.g., Apt)
I extended with a nondeterministic assignment operator

I The completeness is here relative to a su�ciently strong local invariant
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Dynamic Class Upgrades

Dynamic Classes in Creol

I Dynamic classes: modular OO upgrade
mechanism

I Asynchronous upgrades propagate
through the dist. system

I Modify class de�nitions at runtime

I Class upgrade a�ects:
I All future instances of the class

and its subclasses
I All existing instances of the class

and its subclasses

D

Network

A
B

C E
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Dynamic Class Upgrades

Example of a Class Upgrade: The Good Bank Customer (1)

class BankAccount implements Account �� Version 1

begin var bal : Int = 0
with Any

op deposit (in sum : Nat) == bal := bal+sum
op transfer (in sum : Nat, acc : Account) ==
await bal ≥ sum ; bal := bal−sum; acc.deposit(sum)

end
upgrade class BankAccount
begin var overdraft : Nat = 0
with Any

op transfer (in sum : Nat, acc : Account) ==
await bal ≥ (sum−overdraft); bal := bal−sum;
acc.deposit(sum)

with Banker

op overdraft_open (in max : Nat) == overdraft := max
end
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Dynamic Class Upgrades

Example of a Class Upgrade: The Good Bank Customer (2)

class BankAccount implements Account �� Version 2

begin var bal : Int = 0, overdraft : Nat = 0
with Any

op deposit (in sum : Nat) == bal := bal+sum
op transfer (in sum : Nat, acc : Account) ==
await bal ≥ (sum−overdraft); bal := bal−sum;
acc.deposit(sum)

with Banker

op overdraft_open (in max : Nat) == overdraft := max
end
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Dynamic Class Upgrades

A Dynamic Class Mechanism

General case: Modify a class in a class hierarchy
Type correctness: Method binding
should still succeed!

I Attributes may be added
(no restrictions)

I Methods may be added
(no restrictions)

I Methods may be rede�ned
(subtyping discipline)

I Superclasses may be added

I Formal class parameters
may not be modi�ed

Theorem. Dynamic class extensions are type-safe in Creol's type system!
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Summing Up

Present and Future Work

I Operational semantics in rewriting logic

I Maude interpreter

I Type system

I Dependent upgrades

I Distributed interpreter running on JVM

I Reasoning support

I Parametrization, packages, components, . . .

I Testing / Validation / Lightweight veri�cation

I Web services / XML

Most papers available from

http://www.ifi.uio.no/~creol
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Summing Up
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Multiple inheritance, method binding.

E. B. Johnsen, O. Owe. Inheritance in the Presence of Asynchronous Method Calls.
Proc. HICSS-38. IEEE, 2005.

E. B. Johnsen, O. Owe. A Dynamic Binding Strategy for Multiple Inheritance and

Asynchronously Communicating Objects. Proc. FMCO'04. LNCS 3657, pp. 274�295.
Springer 2005.

Typing, static analysis.
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Summing Up

Dynamic class upgrades.
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