Verifying Library Code for
Concurrent Access

Bernhard Beckert
Vladimir Klebanov
vliadimir@uni-koblenz.de

June 15, 2007

KQY Verification of Concurrent Java 0Oo0o0o0owm?0d


vladimir@uni-koblenz.de

What?

Verifying concurrent Java programs

In KeY

5% 000 O



Calculus Properties

Full reasoning about data

Beyond just safety or race detection

No abstractions

5% 000 O



java.lang.StringBuffer

private char valuel[];
private 1nt count;

public synchronized StringBuffer
append (char c) {
int newcount = count + 1;
if (newcount > value.length)
expandCapacity(newcount) ;
value [count++] = c;
return this;

5% 000 O



Verify That...

strb.<lockcount> = OA—strb = nullAstrb.count = 0 —
Yn.n >0 —

nstrb a end(c) ;{O} strb.count = nA
pPp

Vk.0 < k <n — strb.valuelk] = c(pi1(k + 1))

5% 000 O



Three-Step Programme

[1 Unfold
[1 Prove atomicity invariant

[1 Symbolic execution + induction

5% 000 O



Statistics

Proof steps: 14622

Branches: 238 (3 relevant)

Interactions: 2

Runtime: ~1 minute

Result:

5% 000 O



Statistics

Proof steps: 14622

Branches: 238 (3 relevant)

Interactions: 2

Runtime: ~1 minute

Result: conjecture false

5% 000 O



Concurrency Verification Problems

= Number of threads
[1 symmetry reduction (this work)

= Number of interference points
[1 exploit locking, data confinement

= Java Memory Model
[]?

KgY

Ooo0oogoao



Alas...

No thread identities in programs

No dynamic thread creation (but unbounded
concurrency)

Only atomic loops

kg 000 O



Symbolic Execution (Sequential)

IN:
Assertion about program

OUT:
FOL over Z

Kg” Verification of Concurrent Java o o0ooo0oows?d



Concurrent Programs

KgY

i

Verification of Concurrent Java

ooo0oo0oom?d



Concurrent Programs

KQY Verification of Concurrent Java 0Oo0o0o0owm?0d



Concurrent Programs

KQY Verification of Concurrent Java 0Oo0o0o0owm?0d



Enter the Scheduler

KR Verification of Concurrent Java 0000O0Mm



Enter the Scheduler

S(p(1) + 5(p(2)) + ... + $(p(n))

KR Verification of Concurrent Java 0Oo00o0o0o0m?



Concurrent Symbolic Execution

IN:
Assertion about program

OUT:
FOL over Z with
scheduler function

Kg” Verification of Concurrent Java

o o0oo0oo0ooOm?d



Concurrent Symbolic Execution

OUT:
FOL over Z with
scheduler function

SUs0) =3 $(p())
1=1 1=1

Kg” Verification of Concurrent Java

0o000O0m



So What Does It Mean?

= P(r,c) = pos
path(pos’p) — <[S*(p05)]> <[7~| T {pposin—l} S{pp03+1:k:+1} w]>¢
—path(pos, p) = @r|w {prosin =1} glppos bt} g

step
= (r] w {pposind glPpostrh} g

\ J

=D

and where pos is the position of S in p

5% 000 O



So What Does It Mean?

Proofs have fewer cases than programs inputs

Good scheduler formalization takes you far

5% 000 O



Next Proof

Blocking concurrent queue

5% 000 O



Next Proof

q.<lockcount> = 0 A =q = null A q.list.size =0 —

Vn.n >0 —
Vk.1 < k <n — out(p,(k)) = in(py(k))

q.put(in out=q.get(

5% 000 O



Conclusion

First deductive proof
of full functional correctness
of production Java code
in concurrent setting.

KgY

Ooo0oogoao



Thanks

Questions?



TOC

4

What? [

Calculus Properties [
java.lang.StringBuffer [

Verify That... O

Three-Step Programme [J

Statistics U

Concurrency Verification Problems []
Alas... O

Symbolic Execution (Sequential) [J
Concurrent Programs [

Concurrent Programs [J

Verification of Concurrent Java

Concurrent Programs [

Enter the Scheduler [J

Enter the Scheduler [J
Concurrent Symbolic Execution [
Concurrent Symbolic Execution [
So What Does It Mean? [J

So What Does It Mean? [

Next Proof [

Next Proof []

Conclusion [J

Thanks [

o o0oo00o0om?0O



