
Verifying Library Code for
Concurrent Access

Bernhard Beckert
Vladimir Klebanov
vladimir@uni-koblenz.de

June 15, 2007

Verification of Concurrent Java ➥ ➠ ➡➠ ✇ ■ ? ✖

vladimir@uni-koblenz.de

What?

Verifying concurrent Java programs

In KeY

Verification of Concurrent Java ➥ ➠ ➡➠ ✇ ■ ? ✖

Calculus Properties

Full reasoning about data

Beyond just safety or race detection

No abstractions

Verification of Concurrent Java ➥ ➠ ➡➠ ✇ ■ ? ✖

java.lang.StringBuffer

private char value [];

private int count;

public synchronized StringBuffer

append(char c) {

int newcount = count + 1;

if (newcount > value.length)

expandCapacity(newcount);

value[count ++] = c;

return this;

}

Verification of Concurrent Java ➥ ➠ ➡➠ ✇ ■ ? ✖

Verify That. . .

strb.<lockcount> = 0∧¬strb = null∧strb.count = 0 →

∀n. n > 0 →

〈{n}
strb.append(c);

{0}〉strb.count = n∧

∀k. 0 ≤ k < n → strb.value[k] = c(p1(k + 1))

Verification of Concurrent Java ➥ ➠ ➡➠ ✇ ■ ? ✖

Three-Step Programme

➊ Unfold

➋ Prove atomicity invariant

➌ Symbolic execution + induction

Verification of Concurrent Java ➥ ➠ ➡➠ ✇ ■ ? ✖

Statistics

■ Proof steps: 14622

■ Branches: 238 (3 relevant)

■ Interactions: 2

■ Runtime: ∼1 minute

■ Result:

Verification of Concurrent Java ➥ ➠ ➡➠ ✇ ■ ? ✖

Statistics

■ Proof steps: 14622

■ Branches: 238 (3 relevant)

■ Interactions: 2

■ Runtime: ∼1 minute

■ Result: conjecture false

Verification of Concurrent Java ➥ ➠ ➡➠ ✇ ■ ? ✖

Concurrency Verification Problems

■ Number of threads
➥ symmetry reduction (this work)

■ Number of interference points
➥ exploit locking, data confinement

■ Java Memory Model
➥ ?

Verification of Concurrent Java ➥ ➠ ➡➠ ✇ ■ ? ✖

Alas. . .

No thread identities in programs

No dynamic thread creation (but unbounded
concurrency)

Only atomic loops

Verification of Concurrent Java ➥ ➠ ➡➠ ✇ ■ ? ✖

Symbolic Execution (Sequential)

IN:
Assertion about program

OUT:
FOL over Z

Verification of Concurrent Java ➥ ➠ ➡➠ ✇ ■ ? ✖

Concurrent Programs

Verification of Concurrent Java ➥ ➠ ➡➠ ✇ ■ ? ✖

Concurrent Programs

Verification of Concurrent Java ➥ ➠ ➡➠ ✇ ■ ? ✖

Concurrent Programs

Verification of Concurrent Java ➥ ➠ ➡➠ ✇ ■ ? ✖

Enter the Scheduler

p(n)
. . .

p(2)
p(1)

Verification of Concurrent Java ➥ ➠ ➡➠ ✇ ■ ? ✖

Enter the Scheduler

$(p(1)) + $(p(2)) + . . . + $(p(n))

Verification of Concurrent Java ➥ ➠ ➡➠ ✇ ■ ? ✖

Concurrent Symbolic Execution

IN:
Assertion about program

OUT:
FOL over Z with

scheduler function

Verification of Concurrent Java ➥ ➠ ➡➠ ✇ ■ ? ✖

Concurrent Symbolic Execution

OUT:
FOL over Z with

scheduler function

n∑
i=1

$(i) =
n∑

i=1

$(p(i))

Verification of Concurrent Java ➥ ➠ ➡➠ ✇ ■ ? ✖

So What Does It Mean?

step

=⇒ P (r, c) = pos

path(pos, p) =⇒ 〈[S∗(pos)]〉〈[r |π { ppos :n−1} S { ppos+1:k+1}
ω]〉φ

¬path(pos, p) =⇒ 〈[r |π { ppos :n−1} S { ppos+1:k+1}
ω]〉φ

=⇒ 〈[r |π { ppos :n} S { ppos+1:k}
ω| {z }

= p

]〉φ

and where pos is the position of S in p

Verification of Concurrent Java ➥ ➠ ➡➠ ✇ ■ ? ✖

So What Does It Mean?

Proofs have fewer cases than programs inputs

Good scheduler formalization takes you far

Verification of Concurrent Java ➥ ➠ ➡➠ ✇ ■ ? ✖

Next Proof

Blocking concurrent queue

Verification of Concurrent Java ➥ ➠ ➡➠ ✇ ■ ? ✖

Next Proof

q.<lockcount> = 0 ∧ ¬q = null ∧ q.list.size = 0 →

∀n. n > 0 → 〈{n}
q.put(in);

{0}
||
{n}

out=q.get();
{0}〉

∀k. 1 ≤ k ≤ n → out(pr(k)) = in(pa(k))

Verification of Concurrent Java ➥ ➠ ➡➠ ✇ ■ ? ✖

Conclusion

First deductive proof
of full functional correctness

of production Java code
in concurrent setting.

Verification of Concurrent Java ➥ ➠ ➡➠ ✇ ■ ? ✖

Thanks

Questions?

Verification of Concurrent Java ➥ ➠ ➡➠ ✇ ■ ? ✖

TOC

■ What? ❖

■ Calculus Properties ❖

■ java.lang.StringBuffer ❖

■ Verify That. . . ❖

■ Three-Step Programme ❖

■ Statistics ❖

■ Concurrency Verification Problems ❖

■ Alas. . . ❖

■ Symbolic Execution (Sequential) ❖

■ Concurrent Programs ❖

■ Concurrent Programs ❖

■ Concurrent Programs ❖

■ Enter the Scheduler ❖

■ Enter the Scheduler ❖

■ Concurrent Symbolic Execution ❖

■ Concurrent Symbolic Execution ❖

■ So What Does It Mean? ❖

■ So What Does It Mean? ❖

■ Next Proof ❖

■ Next Proof ❖

■ Conclusion ❖

■ Thanks ❖

Verification of Concurrent Java ➥ ➠ ➡➠ ✇ ■ ? ✖

