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What?

Verifying concurrent Java programs

In KeY
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Calculus Properties

Full reasoning about data

Beyond just safety or race detection

No abstractions
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java.lang.StringBuffer

private char valuel[];
private 1nt count;

public synchronized StringBuffer
append (char c) {
int newcount = count + 1;
if (newcount > value.length)
expandCapacity(newcount) ;
value [count++] = c;
return this;
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Verify That...

strb.<lockcount> = OA—strb = nullAstrb.count = 0 —
Yn.n >0 —

nstrb a end(c) ;{O} strb.count = nA
pPp

Vk.0 < k <n — strb.valuelk] = c(pi1(k + 1))
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Three-Step Programme

[1 Unfold
[1 Prove atomicity invariant

[1 Symbolic execution + induction
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Statistics

Proof steps: 14622

Branches: 238 (3 relevant)

Interactions: 2

Runtime: ~1 minute

Result:
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Statistics

Proof steps: 14622

Branches: 238 (3 relevant)

Interactions: 2

Runtime: ~1 minute

Result: conjecture false
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Concurrency Verification Problems

= Number of threads
[1 symmetry reduction (this work)

= Number of interference points
[1 exploit locking, data confinement

= Java Memory Model
[]?
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Alas...

No thread identities in programs

No dynamic thread creation (but unbounded
concurrency)

Only atomic loops
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Symbolic Execution (Sequential)

IN:
Assertion about program

OUT:
FOL over Z
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Concurrent Programs
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Concurrent Programs
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Concurrent Programs
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Enter the Scheduler
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Enter the Scheduler

S(p(1) + 5(p(2)) + ... + $(p(n))
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Concurrent Symbolic Execution

IN:
Assertion about program

OUT:
FOL over Z with
scheduler function
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Concurrent Symbolic Execution

OUT:
FOL over Z with
scheduler function

SUs0) =3 $(p())
1=1 1=1
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So What Does It Mean?

= P(r,c) = pos
path(pos’p) — <[S*(p05)]> <[7~| T {pposin—l} S{pp03+1:k:+1} w]>¢
—path(pos, p) = @r|w {prosin =1} glppos bt} g

step
= (r] w {pposind glPpostrh} g

\ J

=D

and where pos is the position of S in p
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So What Does It Mean?

Proofs have fewer cases than programs inputs

Good scheduler formalization takes you far
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Next Proof

Blocking concurrent queue
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Next Proof

q.<lockcount> = 0 A =q = null A q.list.size =0 —

Vn.n >0 —
Vk.1 < k <n — out(p,(k)) = in(py(k))

q.put(in out=q.get(
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Conclusion

First deductive proof
of full functional correctness
of production Java code
in concurrent setting.
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Thanks

Questions?
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