
Specifying the Java Collections Framework in
JavaDL

cand. inform. Denis Lohner

Institut für Theoretische Informatik - Universität Karlsruhe

6th KeY Symposium, 2007

Betreuer: Dipl.Inform. R. Bubel
verantw. Betreuer: Prof. Dr. P. H. Schmitt

Motivation Specification Interfaces Using specs Method contract rule Conclusion Appendix

Outline

1 Motivation

2 Specification by example

3 Interface specification

4 Using specifications

5 A ”new” method contract rule

6 Demo

7 Conclusion

Denis Lohner Specifying the JCF 2/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion Appendix

Outline

1 Motivation

2 Specification by example

3 Interface specification

4 Using specifications

5 A ”new” method contract rule

6 Demo

7 Conclusion

Denis Lohner Specifying the JCF 2/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion Appendix

Outline

1 Motivation

2 Specification by example

3 Interface specification

4 Using specifications

5 A ”new” method contract rule

6 Demo

7 Conclusion

Denis Lohner Specifying the JCF 2/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion Appendix

Outline

1 Motivation

2 Specification by example

3 Interface specification

4 Using specifications

5 A ”new” method contract rule

6 Demo

7 Conclusion

Denis Lohner Specifying the JCF 2/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion Appendix

Outline

1 Motivation

2 Specification by example

3 Interface specification

4 Using specifications

5 A ”new” method contract rule

6 Demo

7 Conclusion

Denis Lohner Specifying the JCF 2/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion Appendix

Outline

1 Motivation

2 Specification by example

3 Interface specification

4 Using specifications

5 A ”new” method contract rule

6 Demo

7 Conclusion

Denis Lohner Specifying the JCF 2/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion Appendix

Outline

1 Motivation

2 Specification by example

3 Interface specification

4 Using specifications

5 A ”new” method contract rule

6 Demo

7 Conclusion

Denis Lohner Specifying the JCF 2/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion Appendix

Motivation

Problem

1 No sources of the JDK library available in KeY
⇒ symbolical execution of library calls fail

2 For native methods sources not even exist

Why specifying the Java Collections Framework?

JCF used in many projects

Case study

Denis Lohner Specifying the JCF 3/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion Appendix

Motivation

Problem

1 No sources of the JDK library available in KeY
⇒ symbolical execution of library calls fail

2 For native methods sources not even exist

Why specifying the Java Collections Framework?

JCF used in many projects

Case study

Denis Lohner Specifying the JCF 3/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion Appendix

Motivation

Problem

1 No sources of the JDK library available in KeY
⇒ symbolical execution of library calls fail

2 For native methods sources not even exist

Why specifying the Java Collections Framework?

JCF used in many projects

Case study

Denis Lohner Specifying the JCF 3/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion Appendix

Motivation

Problem

1 No sources of the JDK library available in KeY
⇒ symbolical execution of library calls fail

2 For native methods sources not even exist

Why specifying the Java Collections Framework?

JCF used in many projects

Case study

Denis Lohner Specifying the JCF 3/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion Appendix

Motivation

Problem

1 No sources of the JDK library available in KeY
⇒ symbolical execution of library calls fail

2 For native methods sources not even exist

Why specifying the Java Collections Framework?

JCF used in many projects

Case study

Denis Lohner Specifying the JCF 3/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion AppendixNormal Case Exceptional Case General Concept

Specification by example
Normal case

Example Method

SomeLibrary.copy(java.lang.Object[] src, java.lang.Object[] dest)

Precondition

src != null & src.<created> = TRUE &

dest != null & dest.<created> = TRUE &

src.length = dest.length &

\forall int i; ((0 <= i & i < src.length) ->

arrayStoreValid(dest, src[i]))

Postcondition

\forall int i; ((0 <= i & i < src.length) -> dest[i] = src[i])

Modifies

dest[0 .. src.length]

Denis Lohner Specifying the JCF 4/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion AppendixNormal Case Exceptional Case General Concept

Specification by example
Normal case

Example Method

SomeLibrary.copy(java.lang.Object[] src, java.lang.Object[] dest)

Precondition

src != null & src.<created> = TRUE &

dest != null & dest.<created> = TRUE &

src.length = dest.length &

\forall int i; ((0 <= i & i < src.length) ->

arrayStoreValid(dest, src[i]))

Postcondition

\forall int i; ((0 <= i & i < src.length) -> dest[i] = src[i])

Modifies

dest[0 .. src.length]

Denis Lohner Specifying the JCF 4/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion AppendixNormal Case Exceptional Case General Concept

Specification by example
Normal case

Example Method

SomeLibrary.copy(java.lang.Object[] src, java.lang.Object[] dest)

Precondition

src != null & src.<created> = TRUE &

dest != null & dest.<created> = TRUE &

src.length = dest.length &

\forall int i; ((0 <= i & i < src.length) ->

arrayStoreValid(dest, src[i]))

Postcondition

\forall int i; ((0 <= i & i < src.length) -> dest[i] = src[i])

Modifies

dest[0 .. src.length]

Denis Lohner Specifying the JCF 4/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion AppendixNormal Case Exceptional Case General Concept

Specification by example
Normal case

Example Method

SomeLibrary.copy(java.lang.Object[] src, java.lang.Object[] dest)

Precondition

src != null & src.<created> = TRUE &

dest != null & dest.<created> = TRUE &

src.length = dest.length &

\forall int i; ((0 <= i & i < src.length) ->

arrayStoreValid(dest, src[i]))

Postcondition

\forall int i; ((0 <= i & i < src.length) -> dest[i] = src[i])

Modifies

dest[0 .. src.length]

Denis Lohner Specifying the JCF 4/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion AppendixNormal Case Exceptional Case General Concept

Specification by example
Normal case

Example Method

SomeLibrary.copy(java.lang.Object[] src, java.lang.Object[] dest)

Precondition

src != null & src.<created> = TRUE &

dest != null & dest.<created> = TRUE &

src.length = dest.length &

\forall int i; ((0 <= i & i < src.length) ->

arrayStoreValid(dest, src[i]))

Postcondition

\forall int i; ((0 <= i & i < src.length) -> dest[i] = src[i])

Modifies

dest[0 .. src.length]

Denis Lohner Specifying the JCF 4/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion AppendixNormal Case Exceptional Case General Concept

Specification by example
Normal case

Example Method

SomeLibrary.copy(java.lang.Object[] src, java.lang.Object[] dest)

Precondition

src != null & src.<created> = TRUE &

dest != null & dest.<created> = TRUE &

src.length = dest.length &

\forall int i; ((0 <= i & i < src.length) ->

arrayStoreValid(dest, src[i]))

Postcondition

\forall int i; ((0 <= i & i < src.length) -> dest[i] = src[i])

Modifies

dest[0 .. src.length]

Denis Lohner Specifying the JCF 4/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion AppendixNormal Case Exceptional Case General Concept

Specification by example
Normal case

Example Method

SomeLibrary.copy(java.lang.Object[] src, java.lang.Object[] dest)

Precondition

src != null & src.<created> = TRUE &

dest != null & dest.<created> = TRUE &

src.length = dest.length &

\forall int i; ((0 <= i & i < src.length) ->

arrayStoreValid(dest, src[i]))

Postcondition

\forall int i; ((0 <= i & i < src.length) -> dest[i] = src[i])

Modifies

dest[0 .. src.length]

Denis Lohner Specifying the JCF 4/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion AppendixNormal Case Exceptional Case General Concept

Specification by example
Exceptional case

Precondition

src.length = dest.length &

\forall int i; ((0 <= i & i < src.length) ->

arrayStoreValid(dest, src[i]))

Postcondition

exc = null ->

\forall int i; ((0 <= i & i < src.length) -> dest[i] = src[i])

&

exc != null ->

(

NullPointerException::instance(exc) = TRUE &

(src != null & dest != null) ->

(NullPointerException::instance(exc) = FALSE) &

NullPointerException::instance(exc) = TRUE ->

(dest = null | \forall int i; dest[i] = dest[i]@pre)

)

Denis Lohner Specifying the JCF 5/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion AppendixNormal Case Exceptional Case General Concept

Specification by example
Exceptional case

Precondition

src.length = dest.length &

\forall int i; ((0 <= i & i < src.length) ->

arrayStoreValid(dest, src[i]))

Postcondition

exc = null ->

\forall int i; ((0 <= i & i < src.length) -> dest[i] = src[i])

&

exc != null ->

(

NullPointerException::instance(exc) = TRUE &

(src != null & dest != null) ->

(NullPointerException::instance(exc) = FALSE) &

NullPointerException::instance(exc) = TRUE ->

(dest = null | \forall int i; dest[i] = dest[i]@pre)

)

Denis Lohner Specifying the JCF 5/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion AppendixNormal Case Exceptional Case General Concept

Specification by example
Exceptional case

Precondition

src.length = dest.length &

\forall int i; ((0 <= i & i < src.length) ->

arrayStoreValid(dest, src[i]))

Postcondition

exc = null ->

\forall int i; ((0 <= i & i < src.length) -> dest[i] = src[i])

&

exc != null ->

(

NullPointerException::instance(exc) = TRUE &

(src != null & dest != null) ->

(NullPointerException::instance(exc) = FALSE) &

NullPointerException::instance(exc) = TRUE ->

(dest = null | \forall int i; dest[i] = dest[i]@pre)

)

Denis Lohner Specifying the JCF 5/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion AppendixNormal Case Exceptional Case General Concept

Specification by example
Exceptional case

Precondition

src.length = dest.length &

\forall int i; ((0 <= i & i < src.length) ->

arrayStoreValid(dest, src[i]))

Postcondition

exc = null ->

\forall int i; ((0 <= i & i < src.length) -> dest[i] = src[i])

&

exc != null ->

(

NullPointerException::instance(exc) = TRUE &

(src != null & dest != null) ->

(NullPointerException::instance(exc) = FALSE) &

NullPointerException::instance(exc) = TRUE ->

(dest = null | \forall int i; dest[i] = dest[i]@pre)

)

Denis Lohner Specifying the JCF 5/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion AppendixNormal Case Exceptional Case General Concept

Specification by example
Exceptional case

Precondition

src.length = dest.length &

\forall int i; ((0 <= i & i < src.length) ->

arrayStoreValid(dest, src[i]))

Postcondition

exc = null ->

\forall int i; ((0 <= i & i < src.length) -> dest[i] = src[i])

&

exc != null ->

(

NullPointerException::instance(exc) = TRUE &

(src != null & dest != null) ->

(NullPointerException::instance(exc) = FALSE) &

NullPointerException::instance(exc) = TRUE ->

(dest = null | \forall int i; dest[i] = dest[i]@pre)

)

Denis Lohner Specifying the JCF 5/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion AppendixNormal Case Exceptional Case General Concept

Specification by example
Exceptional case

Precondition

src.length = dest.length &

\forall int i; ((0 <= i & i < src.length) ->

arrayStoreValid(dest, src[i]))

Postcondition

exc = null ->

\forall int i; ((0 <= i & i < src.length) -> dest[i] = src[i])

&

exc != null ->

(

NullPointerException::instance(exc) = TRUE &

(src != null & dest != null) ->

(NullPointerException::instance(exc) = FALSE) &

NullPointerException::instance(exc) = TRUE ->

(dest = null | \forall int i; dest[i] = dest[i]@pre)

)

Denis Lohner Specifying the JCF 5/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion AppendixNormal Case Exceptional Case General Concept

General Concept for specifying methods

Precondition

Nearly all the time ”true”

Postcondition

Let φN be the postcondition for normal behaviour
Let ψExci (1 ≤ i ≤ n, n ∈ N) be the condition where the exception Exci is
thrown
Let φExci be the postcondition that holds after Exci has been thrown
Then the postcondition should look like this:

(exc = null -> φN) &

exc != null ->

(

(
W

i Exci::instance(exc) = TRUE) &V
i(!ψExci -> Exci::instance(exc) = FALSE) &V
i(Exci::instance(exc) = TRUE -> φExci)

)

Denis Lohner Specifying the JCF 6/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion AppendixNormal Case Exceptional Case General Concept

General Concept for specifying methods

Precondition

Nearly all the time ”true”

Postcondition

Let φN be the postcondition for normal behaviour
Let ψExci (1 ≤ i ≤ n, n ∈ N) be the condition where the exception Exci is
thrown
Let φExci be the postcondition that holds after Exci has been thrown
Then the postcondition should look like this:

(exc = null -> φN) &

exc != null ->

(

(
W

i Exci::instance(exc) = TRUE) &V
i(!ψExci -> Exci::instance(exc) = FALSE) &V
i(Exci::instance(exc) = TRUE -> φExci)

)

Denis Lohner Specifying the JCF 6/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion AppendixNormal Case Exceptional Case General Concept

General Concept for specifying methods

Precondition

Nearly all the time ”true”

Postcondition

Let φN be the postcondition for normal behaviour
Let ψExci (1 ≤ i ≤ n, n ∈ N) be the condition where the exception Exci is
thrown
Let φExci be the postcondition that holds after Exci has been thrown
Then the postcondition should look like this:

(exc = null -> φN) &

exc != null ->

(

(
W

i Exci::instance(exc) = TRUE) &V
i(!ψExci -> Exci::instance(exc) = FALSE) &V
i(Exci::instance(exc) = TRUE -> φExci)

)

Denis Lohner Specifying the JCF 6/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion AppendixNormal Case Exceptional Case General Concept

General Concept for specifying methods

Precondition

Nearly all the time ”true”

Postcondition

Let φN be the postcondition for normal behaviour
Let ψExci (1 ≤ i ≤ n, n ∈ N) be the condition where the exception Exci is
thrown
Let φExci be the postcondition that holds after Exci has been thrown
Then the postcondition should look like this:

(exc = null -> φN) &

exc != null ->

(

(
W

i Exci::instance(exc) = TRUE) &V
i(!ψExci -> Exci::instance(exc) = FALSE) &V
i(Exci::instance(exc) = TRUE -> φExci)

)

Denis Lohner Specifying the JCF 6/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion AppendixNormal Case Exceptional Case General Concept

General Concept for specifying methods

Precondition

Nearly all the time ”true”

Postcondition

Let φN be the postcondition for normal behaviour
Let ψExci (1 ≤ i ≤ n, n ∈ N) be the condition where the exception Exci is
thrown
Let φExci be the postcondition that holds after Exci has been thrown
Then the postcondition should look like this:

(exc = null -> φN) &

exc != null ->

(

(
W

i Exci::instance(exc) = TRUE) &V
i(!ψExci -> Exci::instance(exc) = FALSE) &V
i(Exci::instance(exc) = TRUE -> φExci)

)

Denis Lohner Specifying the JCF 6/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion AppendixNormal Case Exceptional Case General Concept

General Concept for specifying methods

Precondition

Nearly all the time ”true”

Postcondition

Let φN be the postcondition for normal behaviour
Let ψExci (1 ≤ i ≤ n, n ∈ N) be the condition where the exception Exci is
thrown
Let φExci be the postcondition that holds after Exci has been thrown
Then the postcondition should look like this:

(exc = null -> φN) &

exc != null ->

(

(
W

i Exci::instance(exc) = TRUE) &V
i(!ψExci -> Exci::instance(exc) = FALSE) &V
i(Exci::instance(exc) = TRUE -> φExci)

)

Denis Lohner Specifying the JCF 6/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion AppendixNormal Case Exceptional Case General Concept

General Concept for specifying methods

Precondition

Nearly all the time ”true”

Postcondition

Let φN be the postcondition for normal behaviour
Let ψExci (1 ≤ i ≤ n, n ∈ N) be the condition where the exception Exci is
thrown
Let φExci be the postcondition that holds after Exci has been thrown
Then the postcondition should look like this:

(exc = null -> φN) &

exc != null ->

(

(
W

i Exci::instance(exc) = TRUE) &V
i(!ψExci -> Exci::instance(exc) = FALSE) &V
i(Exci::instance(exc) = TRUE -> φExci)

)

Denis Lohner Specifying the JCF 6/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion AppendixNormal Case Exceptional Case General Concept

General Concept for specifying methods

Precondition

Nearly all the time ”true”

Postcondition

Let φN be the postcondition for normal behaviour
Let ψExci (1 ≤ i ≤ n, n ∈ N) be the condition where the exception Exci is
thrown
Let φExci be the postcondition that holds after Exci has been thrown
Then the postcondition should look like this:

(exc = null -> φN) &

exc != null ->

(

(
W

i Exci::instance(exc) = TRUE) &V
i(!ψExci -> Exci::instance(exc) = FALSE) &V
i(Exci::instance(exc) = TRUE -> φExci)

)

Denis Lohner Specifying the JCF 6/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion AppendixModel functions Problems

Interface specification
Model functions

Problem

Method behaviour is described by attribute changes
But:
Interfaces don’t contain any attributes

Solution

Introduce some function symbols for storing necessary information
(”model functions”)
E.g. \nonRigid[Location] int size(java.util.List) for remembering
a Lists actual size

Denis Lohner Specifying the JCF 7/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion AppendixModel functions Problems

Interface specification
Model functions

Problem

Method behaviour is described by attribute changes
But:
Interfaces don’t contain any attributes

Solution

Introduce some function symbols for storing necessary information
(”model functions”)
E.g. \nonRigid[Location] int size(java.util.List) for remembering
a Lists actual size

Denis Lohner Specifying the JCF 7/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion AppendixModel functions Problems

Interface specification
Example

Method to be specified

s = myList.size()@java.util.List;

with s @−− jint and myList @− java.util.List

Precondition

true

Postcondition

\if (size(myList) <= java.lang.Integer.MAX VALUE)

\then (s = size(myList))

\else (s = java.lang.Integer.MAX VALUE)

Modifies
s

Denis Lohner Specifying the JCF 8/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion AppendixModel functions Problems

Interface specification
Example

Method to be specified

s = myList.size()@java.util.List;

with s @−− jint and myList @− java.util.List

Precondition

true

Postcondition

\if (size(myList) <= java.lang.Integer.MAX VALUE)

\then (s = size(myList))

\else (s = java.lang.Integer.MAX VALUE)

Modifies
s

Denis Lohner Specifying the JCF 8/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion AppendixModel functions Problems

Interface specification
Example

Method to be specified

s = myList.size()@java.util.List;

with s @−− jint and myList @− java.util.List

Precondition

true

Postcondition

\if (size(myList) <= java.lang.Integer.MAX VALUE)

\then (s = size(myList))

\else (s = java.lang.Integer.MAX VALUE)

Modifies
s

Denis Lohner Specifying the JCF 8/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion AppendixModel functions Problems

Interface specification
Example

Method to be specified

s = myList.size()@java.util.List;

with s @−− jint and myList @− java.util.List

Precondition

true

Postcondition

\if (size(myList) <= java.lang.Integer.MAX VALUE)

\then (s = size(myList))

\else (s = java.lang.Integer.MAX VALUE)

Modifies
s

Denis Lohner Specifying the JCF 8/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion AppendixModel functions Problems

Interface specification
Problems with model functions

Introducing model methods yields to two additional problems.

1 How to initialize a model function?

Answer

Write a method contract for the <init> function of the appropriate class

2 Symbolical execution <-> use of method contracts

Solution

Never use both for the same object in one proof
and assure correctness by

Proof obligation inserts new non rigid predicate

check in preconditions of contracts for it

Denis Lohner Specifying the JCF 9/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion AppendixModel functions Problems

Interface specification
Problems with model functions

Introducing model methods yields to two additional problems.

1 How to initialize a model function?

Answer

Write a method contract for the <init> function of the appropriate class

2 Symbolical execution <-> use of method contracts

Solution

Never use both for the same object in one proof
and assure correctness by

Proof obligation inserts new non rigid predicate

check in preconditions of contracts for it

Denis Lohner Specifying the JCF 9/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion AppendixModel functions Problems

Interface specification
Problems with model functions

Introducing model methods yields to two additional problems.

1 How to initialize a model function?

Answer

Write a method contract for the <init> function of the appropriate class

2 Symbolical execution <-> use of method contracts

Solution

Never use both for the same object in one proof
and assure correctness by

Proof obligation inserts new non rigid predicate

check in preconditions of contracts for it

Denis Lohner Specifying the JCF 9/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion AppendixModel functions Problems

Interface specification
Problems with model functions

Introducing model methods yields to two additional problems.

1 How to initialize a model function?

Answer

Write a method contract for the <init> function of the appropriate class

2 Symbolical execution <-> use of method contracts

Solution

Never use both for the same object in one proof
and assure correctness by

Proof obligation inserts new non rigid predicate

check in preconditions of contracts for it

Denis Lohner Specifying the JCF 9/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion AppendixModel functions Problems

Interface specification
Problems with model functions

Introducing model methods yields to two additional problems.

1 How to initialize a model function?

Answer

Write a method contract for the <init> function of the appropriate class

2 Symbolical execution <-> use of method contracts

Solution

Never use both for the same object in one proof
and assure correctness by

Proof obligation inserts new non rigid predicate

check in preconditions of contracts for it

Denis Lohner Specifying the JCF 9/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion AppendixModel functions Problems

Interface specification
Problems with model functions

Introducing model methods yields to two additional problems.

1 How to initialize a model function?

Answer

Write a method contract for the <init> function of the appropriate class

2 Symbolical execution <-> use of method contracts

Solution

Never use both for the same object in one proof
and assure correctness by

Proof obligation inserts new non rigid predicate

check in preconditions of contracts for it

Denis Lohner Specifying the JCF 9/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion AppendixBehavioral subtyping Problems

Using specification
Libraries

Loading of contracts

The Library mechanism of KeY is used to load the contracts, i.e. the
specifications are stored in KeY-files

Application of Contracts

Applying contracts within a proof is done via the MethodContractRule

Denis Lohner Specifying the JCF 10/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion AppendixBehavioral subtyping Problems

Using specification
Libraries

Loading of contracts

The Library mechanism of KeY is used to load the contracts, i.e. the
specifications are stored in KeY-files

Application of Contracts

Applying contracts within a proof is done via the MethodContractRule

Denis Lohner Specifying the JCF 10/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion AppendixBehavioral subtyping Problems

Using specifications

Let S, T be types with S v T
Let obj @−− S

Method call vs. method body statement

Method call

obj.m(params)

will be expanded to

Method body statement

obj.m(params)@T

where T specifies where to find the implementation of m(params)

Denis Lohner Specifying the JCF 11/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion AppendixBehavioral subtyping Problems

Using specifications

Let S, T be types with S v T
Let obj @−− S

Method call vs. method body statement

Method call

obj.m(params)

will be expanded to

Method body statement

obj.m(params)@T

where T specifies where to find the implementation of m(params)

Denis Lohner Specifying the JCF 11/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion AppendixBehavioral subtyping Problems

Using specifications

Let S, T be types with S v T
Let obj @−− S

Method call vs. method body statement

Method call

obj.m(params)

will be expanded to

Method body statement

obj.m(params)@T

where T specifies where to find the implementation of m(params)

Denis Lohner Specifying the JCF 11/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion AppendixBehavioral subtyping Problems

Using specifications
Behavioral subtyping

Let S, T be types with S v T
Let obj.m(params)@T be a method body statement with obj @−− S

Which contracts are available?

Contracts written for Method m(params) in type T or a supertype

Which contracts should be available?

Contracts written for Method m(params) in type S or a supertype

Denis Lohner Specifying the JCF 12/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion AppendixBehavioral subtyping Problems

Using specifications
Behavioral subtyping

Let S, T be types with S v T
Let obj.m(params)@T be a method body statement with obj @−− S

Which contracts are available?

Contracts written for Method m(params) in type T or a supertype

Which contracts should be available?

Contracts written for Method m(params) in type S or a supertype

Denis Lohner Specifying the JCF 12/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion AppendixBehavioral subtyping Problems

Using specifications
Behavioral subtyping

Let S, T be types with S v T
Let obj.m(params)@T be a method body statement with obj @−− S

Which contracts are available?

Contracts written for Method m(params) in type T or a supertype

Which contracts should be available?

Contracts written for Method m(params) in type S or a supertype

Denis Lohner Specifying the JCF 12/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion AppendixBehavioral subtyping Problems

Using specifications
Behavioral subtyping

Let S, T be types with S v T
Let obj.m(params)@T be a method body statement with obj @−− S

Which contracts are available?

Contracts written for Method m(params) in type T or a supertype

Which contracts should be available?

Contracts written for Method m(params) in type S or a supertype

Denis Lohner Specifying the JCF 12/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion AppendixBehavioral subtyping Problems

Using specifications
Problems

MethodContractRule available only on method body statement
⇒ Possible huge proof split up (e.g. java.util.List has many
subtypes), hence same proof has to be done n times

Solution

Adapt MethodContractRule to use method call

Used specifications must be proven

Solution

Need possibility to give feedback which contracts can not be proven
(native methods)

Denis Lohner Specifying the JCF 13/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion AppendixBehavioral subtyping Problems

Using specifications
Problems

MethodContractRule available only on method body statement
⇒ Possible huge proof split up (e.g. java.util.List has many
subtypes), hence same proof has to be done n times

Solution

Adapt MethodContractRule to use method call

Used specifications must be proven

Solution

Need possibility to give feedback which contracts can not be proven
(native methods)

Denis Lohner Specifying the JCF 13/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion AppendixBehavioral subtyping Problems

Using specifications
Problems

MethodContractRule available only on method body statement
⇒ Possible huge proof split up (e.g. java.util.List has many
subtypes), hence same proof has to be done n times

Solution

Adapt MethodContractRule to use method call

Used specifications must be proven

Solution

Need possibility to give feedback which contracts can not be proven
(native methods)

Denis Lohner Specifying the JCF 13/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion Appendix

A ”new” method contract rule

Remember from creating specifications

Let φN be the postcondition for normal behaviour
Let ψExci (1 ≤ i ≤ n, n ∈ N) be the condition where the exception Exci is
thrown
Let φExci be the postcondition that holds after Exci has been thrown

Let Exc1 to Exck(1 ≤ k ≤ n) be caught by a program

Denis Lohner Specifying the JCF 14/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion Appendix

A ”new” method contract rule

Remember from creating specifications

Let φN be the postcondition for normal behaviour
Let ψExci (1 ≤ i ≤ n, n ∈ N) be the condition where the exception Exci is
thrown
Let φExci be the postcondition that holds after Exci has been thrown

Let Exc1 to Exck(1 ≤ k ≤ n) be caught by a program

Denis Lohner Specifying the JCF 14/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion Appendix

A ”new” method contract rule

Remember from creating specifications

Let φN be the postcondition for normal behaviour
Let ψExci (1 ≤ i ≤ n, n ∈ N) be the condition where the exception Exci is
thrown
Let φExci be the postcondition that holds after Exci has been thrown

Let Exc1 to Exck(1 ≤ k ≤ n) be caught by a program

Denis Lohner Specifying the JCF 14/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion Appendix

A ”new” method contract rule

Remember from creating specifications

Let φN be the postcondition for normal behaviour
Let ψExci (1 ≤ i ≤ n, n ∈ N) be the condition where the exception Exci is
thrown
Let φExci be the postcondition that holds after Exci has been thrown

Let Exc1 to Exck(1 ≤ k ≤ n) be caught by a program

Denis Lohner Specifying the JCF 14/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion Appendix

A ”new” method contract rule

Then the contract that should be applied is

PreconditionV
k<i≤n !ψExci

Postcondition

(exc = null -> φN) &

exc != null ->

(

(
W

1≤i≤k Exci::instance(exc) = TRUE) &V
1≤i≤k(!ψExci -> Exci::instance(exc) = FALSE) &V
1≤i≤k(Exci::instance(exc) = TRUE -> φExci)

)

Denis Lohner Specifying the JCF 15/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion Appendix

A ”new” method contract rule

Then the contract that should be applied is

PreconditionV
k<i≤n !ψExci

Postcondition

(exc = null -> φN) &

exc != null ->

(

(
W

1≤i≤k Exci::instance(exc) = TRUE) &V
1≤i≤k(!ψExci -> Exci::instance(exc) = FALSE) &V
1≤i≤k(Exci::instance(exc) = TRUE -> φExci)

)

Denis Lohner Specifying the JCF 15/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion Appendix

A ”new” method contract rule

Then the contract that should be applied is

PreconditionV
k<i≤n !ψExci

Postcondition

(exc = null -> φN) &

exc != null ->

(

(
W

1≤i≤k Exci::instance(exc) = TRUE) &V
1≤i≤k(!ψExci -> Exci::instance(exc) = FALSE) &V
1≤i≤k(Exci::instance(exc) = TRUE -> φExci)

)

Denis Lohner Specifying the JCF 15/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion Appendix

A ”new” method contract rule

Then the contract that should be applied is

PreconditionV
k<i≤n !ψExci

Postcondition

(exc = null -> φN) &

exc != null ->

(

(
W

1≤i≤k Exci::instance(exc) = TRUE) &V
1≤i≤k(!ψExci -> Exci::instance(exc) = FALSE) &V
1≤i≤k(Exci::instance(exc) = TRUE -> φExci)

)

Denis Lohner Specifying the JCF 15/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion Appendix

A ”new” method contract rule

Then the contract that should be applied is

PreconditionV
k<i≤n !ψExci

Postcondition

(exc = null -> φN) &

exc != null ->

(

(
W

1≤i≤k Exci::instance(exc) = TRUE) &V
1≤i≤k(!ψExci -> Exci::instance(exc) = FALSE) &V
1≤i≤k(Exci::instance(exc) = TRUE -> φExci)

)

Denis Lohner Specifying the JCF 15/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion Appendix

A ”new” method contract rule

Then the contract that should be applied is

PreconditionV
k<i≤n !ψExci

Postcondition

(exc = null -> φN) &

exc != null ->

(

(
W

1≤i≤k Exci::instance(exc) = TRUE) &V
1≤i≤k(!ψExci -> Exci::instance(exc) = FALSE) &V
1≤i≤k(Exci::instance(exc) = TRUE -> φExci)

)

Denis Lohner Specifying the JCF 15/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion Appendix

Demo

Demo

Proving the contract of a simple method
containsNullElements(java.util.List)

Denis Lohner Specifying the JCF 16/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion Appendix

Conclusion

Method contracts are capable of specifying library behaviour

For interfaces: use of model functions necessary

Need for thinking about the method contract rule

Denis Lohner Specifying the JCF 17/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion Appendix

Conclusion

Method contracts are capable of specifying library behaviour

For interfaces: use of model functions necessary

Need for thinking about the method contract rule

Denis Lohner Specifying the JCF 17/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion Appendix

Conclusion

Method contracts are capable of specifying library behaviour

For interfaces: use of model functions necessary

Need for thinking about the method contract rule

Denis Lohner Specifying the JCF 17/20

Tanks for your attention

Motivation Specification Interfaces Using specs Method contract rule Conclusion Appendix

Combining contracts

Assume 2 contracts given for one method
Let φ1 be the precondition of the first and φ2 the precondition of the
second
Let ψ1 be the postcondition of the first and ψ2 the postcondition of the
second
Let M1 be the modifier set of the first and M2 the modifier set of the
second

Then a valid contract for the method is

Precondition

φ1 | φ2

Postcondition

(φ1@pre -> ψ1) & (φ2@pre -> ψ2)

Modifies

M1 ∪M2

Denis Lohner Specifying the JCF 19/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion Appendix

Behavioral subtyping

AbstractCollection
{abstract}

+remove(o)

<<interface>>
Collection

+remove(o)

<<interface>>
List

+remove(o)

AbstractList
{abstract}

LinkedList ArrayList

implements

implements

Denis Lohner Specifying the JCF 20/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion Appendix

Behavioral subtyping

AbstractCollection
{abstract}

+remove(o)

<<interface>>
Collection

+remove(o)

<<interface>>
List

+remove(o)

AbstractList
{abstract}

LinkedList ArrayList

implements

implements

One occurence of
Object o will removed

Denis Lohner Specifying the JCF 20/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion Appendix

Behavioral subtyping

AbstractCollection
{abstract}

+remove(o)

<<interface>>
Collection

+remove(o)

<<interface>>
List

+remove(o)

AbstractList
{abstract}

LinkedList ArrayList

implements

implements

One occurence of
Object o will removed

First occurence of
Object o will removed

Denis Lohner Specifying the JCF 20/20

Motivation Specification Interfaces Using specs Method contract rule Conclusion Appendix

Behavioral subtyping

AbstractCollection
{abstract}

+remove(o)

<<interface>>
Collection

+remove(o)

<<interface>>
List

+remove(o)

AbstractList
{abstract}

LinkedList ArrayList

implements

implements

Denis Lohner Specifying the JCF 20/20

	Motivation
	Specification by example
	Normal Case
	Exceptional Case
	General Concept

	Interface specification
	Model functions
	Problems

	Using specifications
	Behavioral subtyping
	Problems

	A "new" method contract rule
	Demo
	Conclusion
	Appendix

