
Fully Verified JAVA CARD API Reference
Implementation

Wojciech Mostowski
woj@cs.ru.nl

Radboud University Nijmegen

Background & Motivation

I Full specification and implementation for the verification of
JAVA CARD applets

I reasoning on the level of interfaces very efficient (in 99.9% of
the cases). . .

I . . . but not always possible/feasible: strong invariants and
transaction mechanism

I full functional verification of contrived applets that prevent
fault injections on the source code level

I Builds on top of earlier work: Sun Reference Implementation,
Daniel’s OCL work, Nijmegen gang’s JML work

I Impl. + Spec. → Verification → extra confidence

I Covers the whole of the latest API used in practice (2.2.1)

I Exercise for KeY – performance & JAVA CARD compliance

I Study of the specs to identify hot spots

In This Talk

I Implementation structure

I Implementation coverage

I The choice of the specification language

I JAVA CARD native interface in KeY

I Examples

I Experience & Discussion

Implementation Structure

JAVA CARD API implementation: JAVA + Native Code

Native code:

I Smart card operating system

I JAVA CARD simulator interface, e.g. JCWDE

I JAVA CARD formal model, in KeY set of axiomatic rules → full
symbolic execution of the API code

JAVA CARD Features

I Applets

I APDUs

I AID registry

I PIN objects

I transactions

I Object sharing across firewall

I Remote Method Invocation (RMI)

I Cryptographic keys and ciphers

I Utilities

What Is Not Covered?

I Low-level APDU communication – not necessary

I Cipher logic – tedious to implement and specify, but possible
(possible future work)

I RMI dispatching – on the edge of dynamic class loading,
hence not possible to verify, yet not necessary

I Smart card memory consumption – verification possible for
transient memory, for persistent memory need extra support
from KeY

What Is Covered?

I Cryptographic routines – (almost) everything except the
actual ciphering

I Lightweight AID registry

I Inter applet object sharing across the firewall

I Transaction mechanism (obviously)

I PIN objects, applets, utilities, etc.
I Applet firewall:

I firewall checks on two levels: JVM and API
I the API checks included in the implementation, but

transparent during verification
I JVM checks require an extension of the JAVA CARD execution

model

I Official documentation followed closely

The Specification Language

I OCL. . .

I JML – suitable, but currently lack of sufficient control over
the generated POs, wait for the JML front-end rewrite to
complete

I JAVA CARD DL – more tedious than JML, but:
I full control
I possible to take specification shortcuts, improve on verification

performance
I surprisingly almost no applicable technical limits (but few

small bugs that needed fixing)
I an almost exact JML “would-be”

JAVA CARD Native Interface
Dedicated KeY specific class, KeYJCSystem:

public static native byte jvmIsTransient(Object theObj);

public static native byte[] jvmMakeTransientByteArray(

short length, byte event);

public static native void jvmBeginTransaction();

KeYJCSystem: native methods and the card “operating system”

Dedicated logic rules:

\< transType = KeYJCSystem.jvmIsTransient(obj); ...\>...

→ {transType := obj.<transient>}\< ... \> ...

The actual API implementation:

public class JCSystem {

public static byte isTransient(Object theObj){

if(theObj == null) return NOT A TRANSIENT OBJECT;

return KeYJCSystem.jvmIsTransient(theObj); }}

Example 1 – AID.partialEquals, Implementation

public final boolean partialEquals(byte[] bArray,

short offset, byte length) throws SecurityException,

ArrayIndexOutOfBoundsException {

if (bArray == null) return false; // resp. documentation

if(length > theAID.length) return false; // resp. documentation

// Firewall check:

if (KeYJCSystem.jvmGetContext(KeYJCSystem.jvmGetOwner(bArray))

!= KeYJCSystem.jvmGetContext(

KeYJCSystem.jvmGetOwner(KeYJCSystem.previousActiveObject))

&& KeYJCSystem.jvmGetPrivs(bArray) != KeYJCSystem.P GLOBAL ARRAY)

throw KeYJCSystem.se; // System owned singleton instance

// Actual comparison:

return Util.arrayCompare(bArray, offset,

theAID, (short)0, length)==0;

}

Example 1 – AID.partialEquals, Specification

\programVariables {AID aidInst; boolean result;

byte[] bArray; short offset; byte length; }

(bArray != null -> length >= 0 & offset >= 0 &

offset + length <= bArray.length)

& {\subst AID aid; aidInst}(\includeFile "AID inv.key";)

-> \<{

result = aidInst.partialEquals(bArray, offset, length)@AID;

}\> (

(bArray = null | length > aidInst. theAID.length -> result = FALSE)

& (bArray != null & length <= aidInst. theAID.length ->

(result = TRUE <-> \forall int i; (i >= 0 & i < length ->

aidInst. theAID[i] = bArray[offset+i])))

& {\subst AID aid; aidInst}(\includeFile "AID inv.key";))

\modifies {}

Example 2 – TransactionException.throwIt
Implementation:

public static void throwIt(short reason)

throws TransactionException {

instance.setReason(reason);

throw instance;

}

Specification:

(\includeFile "TransactionException static inv.key";)

& {\subst TransactionException exc; TransactionException. instance}

(\includeFile "TransactionException inv.key";)

-> \<{#catchAll(TransactionException t) {

TransactionException.throwIt(reason)@TransactionException;

}}\>

(t = TransactionException. instance & t. reason[0] = reason

& (\includeFile "TransactionException static inv.key";)

& {\subst TransactionException exc; TransactionException. instance}

(\includeFile "TransactionException inv.key";))

\modifies {TransactionException. instance. reason[0] }

Verification

Figures:

I 60 classes, 205K JAVA code, 395K KeY specifications

I all methods with code verified

Interaction:

I 10 loops, 2 far from obvious (invariant depends on a logic
variable created during the proof)

I otherwise practically automatic (but see next), no Simplify!

I verification purely contract based (no method in-lining) – the
only way to go. . .

Total effort:

I over 2 man-months

A Loop

Removing an object from a table:

All non-null services[i] different

& s != null ->
\<{ int i = 0;

while (i<maxServices) {
if(services[i] == s) break; i++ }

if(i != maxServices) services[i] = null;
}\> \forall int i; (i>=0 & i < maxServices

-> services[i] != s)

What are:

I variant

I useful invariant

A Loop – Solution

Two cases
The object that we look for exists in the table or not:

\exists int i; (i>=0 & i<maxServices & services[i] = s)

1. Object s is not there

Variant: maxServices - i
Invariant:

i>=0 & i<=maxServices &
(i < maxServices -> services[i] != s)

2. Object s is there

Variant: i 0 - i
Invariant: i>=0 & i<=i 0

A Loop – Solution

Two cases
The object that we look for exists in the table or not:

\exists int i; (i>=0 & i<maxServices & services[i] = s)

1. Object s is not there

Variant: maxServices - i
Invariant:

i>=0 & i<=maxServices &
(i < maxServices -> services[i] != s)

2. Object s is there

Variant: i 0 - i
Invariant: i>=0 & i<=i 0

The Goods,The Bads, and the Surprises

Good – KeY can do it

Surprise – KeY has hidden functionality:

I it is possible to write JAVA CARD DL contracts for method
constructors, despite a reported bug, just write a contract for
the <init>() method

I it is possible to use an “at pre” array access operator (JML
fails here!) – one non-rigid function solves the problem in
JAVA CARD DL (Quote from Richard: “Nice trick”)

Bad – one bug in the contract application mechanism that makes
life difficult, now fixed for DL contracts. . .

The Goods,The Bads, and the Surprises

Bad – performance!!!
I propositional splitting rules (orLeft, impLeft) make the

proofs grow out of reasonable limits – simply switching them
off can reduce the proof size by a factor of 100 if not more,
down sides:

I occasional manual interaction to split the proof (when it is
really needed) is required

I with the splitting rules switched off the quantifier instantiation
heuristics do not work (well)

I large specifications + large implementations choke KeY –
large amount of references in the implementation cause lots of
update splits, together with large terms KeY dies

I if-cascades for method binding not always a good idea

I the last method verified only last Monday

Good – quantifier instantiation heuristics work well, but. . .

The Goods,The Bads, and the Surprises

Good – non-rigid function symbols are the best

Surprise – an obvious bug in collecting implementing classes of an
interface overlooked for a very long time

Surprise – “bad” programming can ease up verification!

Bad – specifications and modifies clauses for object creating
methods

Bad – other known issues and bugs, like treatment of queries (the
proposed solution is to use non-rigid function symbols – Philipp)

Details – Bad Programming

public class RSAPrivateCrtKeyImpl {

private byte[] p;

private byte[] q;

private byte[] dp;

private byte[] dq;

private byte[] pq;

}

against

public class RSAPrivateCrtKeyImpl {

private byte[] keyMaterial;

private short pOff, pLen;

private short qOff, qLen;

private short dpOff, dpLen;

private short dqOff, dqLen;

private short pqOff, pqLen;

}

Details – Bad Programming

public class RSAPrivateCrtKeyImpl {

private byte[] p;

private byte[] q;

private byte[] dp;

private byte[] dq;

private byte[] pq;

}

against

public class RSAPrivateCrtKeyImpl {

private byte[] keyMaterial;

// private short pOff, pLen;

// private short qOff, qLen;

// private short dpOff, dpLen;

// private short dqOff, dqLen;

// private short pqOff, pqLen;

private short size;

}

Details – Splitting Specifications

Precondition:

apduState = STATE1 | apduState = STATE2 | apduState = STATE3 ...

Possible to use a function symbol with suitable unfolding rule:

validAPDUState(apduState)

Why not e.g. wrap all invariants inside non-rigid functions: more
readable, smaller formulas, . . .

Obstacle: when done manually, the taclet mechanism stands in the
way a bit – not possible to use concrete attribute and class names
in taclets

Experimented here a bit – this can potentially help, but there are
downsides, e.g. no early closing of goals

Details – Type if-cascades

InterfaceType o= ...;

o.methodCall();

results in:

if(o instanceof Type1) {o.methodCall()@Type1;

}else if (o instanceof Type2) {o.methodCall()@Type2;

}else ...

All types are subtypes of some SuperType which is the only
implementor of methodCall

The same method body will be expanded, or the same contract
used, X times. This is a total waste! In the JAVA CARD API there
are 18 classes implementing the Key interface with one common
base class.

Moreover, what if I want to use a method contract for the
interface itself? Then the if-cascade is not necessary at all!

Details – Methods Creating Objects

public static byte[] makeTransientByteArray(...

In JML it is sufficient to say:

ensures \fresh(\result);

In DL however:

result != null & result.<created> = TRUE &

result.<transient> = ... &

\forall int i; (i>=0 & i<result.length -> result[i] = 0) &

result = jbyte[]::<get>(jbyte[]::<nextToCreate>@pre) &

jbyte[].<nextToCreate> = jbyte[]::<nextToCreate>@pre + 1

\modifies {

jbyte[].<nextToCreate>,

jbyte[]::<get>(jbyte[].<nextToCreate>).<created>,

jbyte[]::<get>(jbyte[].<nextToCreate>).<transient>,

jbyte[]::<get>(jbyte[].<nextToCreate>).length,

jbyte[]::<get>(jbyte[].<nextToCreate>)[*] }

Details – Methods Creating Objects

If the method allocates more than one object this gets out of
hand! Moreover, the user has to know in which order the objects
are created if they are of the same type.

Is there an easy way to reflect JML \fresh in JAVA CARD DL?

Details – Propositional Splitting
orLeft and impLeft (also andRight) can make things really bad:

This is with no splitting (?!) Multiply this by 100 (at least) and
you get the idea. . .

Would simply postponing the splitting do the trick, so that the
program is executed first on a single branch?

Details – Propositional Splitting
orLeft and impLeft (also andRight) can make things really bad:

This is with no splitting (?!) Multiply this by 100 (at least) and
you get the idea. . .

Would simply postponing the splitting do the trick, so that the
program is executed first on a single branch?

Future Work

I Recreate this in KeYJML once the new front-end is available

I Clean up and optimise the code

I Put it up on the web

I Implement the firewall formalisation and verify again (any one
interested?)

I Deal with JAVA CARD memory consumption

I Implement the cipher logic in an abstract way in terms of
non-rigid function symbols

