KeY Symposium 2007

PR o T

Concern-specific Specification and
Verification to Improve Software
Quality and Security

Frank Piessens

[This talk will survey joint work with numerous others including: Bart
Jacobs, Jan Smans, Lieven Desmet, Dries Vanoverberghe, Wolfram
Schulte, Rustan Leino, Wouter Joosen, Pierre Verbaeten]

Overview

« Background: goal and overview of our research

+ Research sample 1: Verification of data
dependencies in web applications

+ Research sample 2: Verification of absence of
concurrency-related bugs

+ [If time] Research sample 3: Verification of stack-
inspection based sandboxing

+ Conclusion

KeY Symposium 2007

Mission statement of our research
team
* Improving software quality and security by
providing high assurance techniques for dealing
with implementation-level vulnerabilities and
bugs
« TECHNOLOGIES:

« Static verification: classic Hoare-logic based program
verification tuned for specific concerns such as:
sandboxing, concurrency, data dependencies

* Run time verification: program monitoring and run time
verification of compliance with security policies

Helicopter overview of our research

on static verification

— Research on verification technology
« Starting point is the Spec# - ESC/Java line of verifiers
+ Contributions:
— Sound verification of concurrent programs
— Better support for specifying and verifying frame conditions
— Better support for data abstraction in specifications
- Research on applications
* Motto: Verification as an improved type system
+ Contributions:
- Verifying absence of race conditions and deadlocks

- Verifying absence of broken data dependencies
- Verifying absence of Security Exceptions

KeY Symposium 2007

Overview

Background: goal and overview of our research

Research sample 1: Verification of data
dependencies in web applications

Research sample 2: Verification of absence of
concurrency-related bugs

[If time] Research sample 3: Verification of stack-
inspection based sandboxing

Conclusion

Dealing with broken data

dependencies in web applications

Web applications
- Process sequences of user requests
+ Interactive, non-deterministic applications
- Maintain server-side state to support the notion of sessions
- Maintaining the consistency of that state is hard in the
presence of:
+ Naive users using back-buttons, bookmarking intermediate URL's, ...
+ Malicious users messing with URL’s
— Forceful browsing
The solution discussed is part of the PhD Thesis of
Lieven Desmet
— http://www.cs.kuleuven.be/~lieven/PhD/

— Joint work with Wouter Joosen, Pierre Verbaeten

KeY Symposium 2007

Duke’s BookStore application

+ E-commerce site bundled with the J2EE 1.4 tutorial
+ Reactive client/server interaction

Client

Server

protocol

/bookdetails

/bookshowcart

Shared data interactions

+ Session repository with 3 data items:
+ messages (ResourceBundle)

« cart (ShoppingCart)
+ currency (Currency)

BookDetailsServlet:

CashlierServlet:

ResourceBundle messages (read)

Curreney currency (cond. def. read/write)

ResourceBundle messages (read)
ShoppingCart cart (def. read/write)

Currency currency (def. read/write)

BookStoreServlet :

ResourceBundle messages (def. Tead/write) |

CatalogServlet:

ResourceBundle messages (read)

ReceiptServlet:

ShoppingCart cart (def. read/write)

ResourceBundle messages (read)
ShoppingCart cart (def. read/write)

Currency currency (def. read/write)

ShowCartServlet:

OrderFilter:

ResourceBundle messages (read)

ShoppingCart cart (read)
Curreney currency (read)

ShoppingCart cart (def. read/write)

+ read
+ def. read/write
+ cond. def. read/write

Currency currency (cond. def. read /write)

KeY Symposium 2007

|dentified problems

BookDetailsServlet: CashierServlet:
ResourceBundle messages (read) <= ResourceBundle messages (read) <=
Currency currency (cond. def. read/write) ShoppingCart cart (def. read/write) <=
Currency currency (def. read/write)
| BookStoreServlet : |
| ResourceBundle messages (def. read/write) _— CatalogServlet:
ResourceBundle messages (read) <=
ReceiptServlet: ShoppingCart cart (def. read/write) 4—
ResourceBundle messages (read) <+ Currency currency (def. read/write)
ShoppingCart cart (def. read/write) 4—7
ShowCartServlet:
OrderFilter: ResourceBundle messages (read) i—
ShoppingCart cart (read) <— ShoppingCart cart (def. read/write)
Clurrency currency (read) Clurrency currency (cond. def. read/w&:)

+ BookStoreServlet is not executed first:

+ NullPointerException on retrieval of ‘messages’ data item

+ OrderFilter/ReceiptServlet are executed before cart and

currency are stored to the repository
+ NullPointerException on retrieval of ‘cart’ and ‘currency’ data items

Desired composition property

* No broken data dependencies on the shared

repository

— A shared data item is only read after being written on
the shared repository

— For each read interaction, the data item present on

the shared repository is of the type cted by the
read operation %

KeY Symposium 2007

Solution

* Our approach uses static and dynamic
verification to guarantee that the no broken data
dependencies property holds in a given, reactive
composition

* 3 steps:

— ldentify interactions
— Statically verify composition property
— Enforce underlying assumptions at run time

Solution overview
- Input artifact

I:l Generated artifact
Application

implementation \
Checking J

Application ' specification — '
specification implementation

compliance

Deployment . Application-specific J
information protocol —>

verification
Intended client/ /

server protocol \

Online web .
traffic

Run-time
protocol
enforcement

KeY Symposium 2007

Application

implementation \

Application '
specification

Checking
specification —
implementation
compliance

Component contracts specify interactions with
the shared repository:

//spec: reads {ResourceBundle messages, Nullable<ShoppingCart>cart,
Nullable<Cutrency> currency} from session;

//spec: wtites {catt == null => ShoppingCatt cart} on session;

//spec: possible wtites {curtency == null => Cutrency curtency} on session;

Application
specification

Application-specific
protocol
verification

Deployment '
information

Intended client/
server protocol

+ Simulate all possible client-server interactions that
comply to the intended client/server protocol

+ Use static verification to formally guarantee that the no
broken data dependency property is not violated

KeY Symposium 2007

Jbookcatalog
Joookcashier

Ibookstore
okstore
Tbookdetails
S bookshowcart
/banner

PROTOCOL := /bookstore + SERVLET A + RECEIPT

RECEIPT := (SERVLET B + SERVLET + /ordetfilter + /bookreceipt) | nil
SERVLET := SERVLET A | SERVLET B

SERVLET A := /bookstore | /bookdetails | /bookshowcart | /banner | nil
SERVLET B := /bookcatalog | /bookcashier

Intended client/

server protocol \

Online web .
traffic

Run-time
protocol
enforcement

+ Limit traffic to the intended client/server protocol

+ Typical use of a Web Application Firewall (WAF) in
protecting against forceful browsing

KeY Symposium 2007

Experimental results

* Annotation overhead:
* At most 4 lines per component

+ Verification performance:
« Static verification took at most 4 minutes per component

* Run-time overhead:

— Experiment:
- sequence of 1000 visitors
— on average 6 requests per session
— 2% of the users applied forceful browsing

— Measured run-time overhead of 1.3%

Conclusion

* High assurance guarantees
— With minimal formal specification
- Using existing verification tools
- In a reasonable amount of time

* Proposed solution
— Applicable to real-life applications

— Scalable to larger applications (if the complexity of the
individual components and the protocol remains equivalent)

Bridging the Gap Between Web Application Firewalls and Web

Applications.
L. Desmet, F. Piessens, W. Joosen, and P. Verbaeten (FMSE 2006)

KeY Symposium 2007

Overview

Background: goal and overview of our research

Research sample 1: Verification of data
dependencies in web applications

Research sample 2: Verification of absence of
concurrency-related bugs

[If time] Research sample 3: Verification of stack-
inspection based sandboxing

Conclusion

Dealing with concurrency-related

bugs in Java/C# applications
Multithreaded programs in Java or C# are hard to get
right
— Data races: two threads accessing the same memory location
at the same time, and at least one of the accesses is a write
- Race conditions on composite data structures
— Deadlocks
Moreover, testing for concurrency bugs is hard
- Because of the non-deterministic nature of these bugs
The solution discussed here is part of the PhD Thesis
of Bart Jacobs
— http://www.cs.kuleuven.be/~bartj/thesis.html

— Joint work with Wolfram Schulte, Rustan Leino, Jan Smans

10

KeY Symposium 2007

Data races

* In Java/C# it is not sound to reason sequentially
about sequential code
— Due to data races

class Account { int balance; } lock (act) {
Account act = ...; b0 = act.balance;
int b0 = act.balance; act.balance += 50;
act.balance += 50; b1 = act.balance;
int b1 = act.balance;)
b1 == b0 + 50? Not necessarily! b1 == b0 + 507 Not
necessarily!

Data races as vulnerabilities

void SomeSecureFunction() {
if(SomeDemandPasses()) {
fCallersOk = true; <«—7
DoOtherWork();
fCallersOk = false();

}

Caching a security check

}

void DoOtherWork() { Can give another thread access
if(fCallersOK) {
DoSomethingTrusted();
}
else {
DemandSomething();
DoSomethingTrusted();

}
} (Example from msdn library)

11

KeY Symposium 2007

Step 1: A programming model

+ Absence of data races is not a thread local
property, hence hard to verify directly
+ We define a programming model
— That ensures absence of data races (safe
approximation)

* Theorem: if each thread conforms with the programming
model, there are no data races

— That can be checked thread-locally

* The programming model is defined by defining a per-
thread access set, i.e. the set of objects the thread is
allowed to access

Step 1: A programming model

+ Attempt 1: a thread’s access set contains all
objects it has locked

— ® Cannot initialize newly created objects without
locking

— ® High locking overhead
— ® Prone to deadlocks

+ Many objects in Java programs are not intended
to be shared

12

KeY Symposium 2007

Step 1: A programming model

+ Attempt 2: distinguish between shared and thread-
local (unshared) objects

+ Programmer has to explicitly indicate what objects are
intended to be shared, with a share o operation

Object states
new share geally
= (ree T Tiooe)
unshared release

shared

Rules of the programming model

1. Threads can only r/w fields of objects in their access set

2. New objects are unshared and element of the creating
thread’s access set

3. A share o: (only allowed if current thread has access to o,
and o is unshared)
+ Removes o from the current thread’s access set
* Makes o shared

4. Entering a synchronized (0): (only allowed if o is shared)
+ Adds o to the current thread’s access set
5. Leaving the synchronized block
Removes o0 again
6. Starting a new thread with runnable object o:
Transfers o to the access set of the new thread

KeY Symposium 2007

Programming model: Example

class Counter {
int count;

1

class Session implements Runnable {
Counter counter;
public void run()

{

synchronized (counter) {
counter.count++;

Counter counter = new Counter();

Session session1 = new Session();
session1.counter = counter;

new Thread(session1).start();
Session session2 = new Session();
session2.counter = counter;

new Thread(session2).start();

Programming model: Example

class Counter {
int count;

1

class Session implements Runnable {
Counter counter;
public void run()

{

synchronized (counter) {
counter.count++;

Counter counter = new Counter();
share counter;

Session session1 = new Session();
session1.counter = counter;

new Thread(session1).start();
Session session2 = new Session();
session2.counter = counter;

new Thread(session2).start();

14

KeY Symposium 2007

Step 2:Modular Static Verification

+ Additional Annotations required:

— Method contracts
* requires/ensures o is accessible
* requires/ensures o is unshared/shared

— Field modifier: shared
* Verification approach:
— Verification condition generation
— Soundness proof in Bart Jacobs’ PhD thesis

Modular verification: example

class Counter { _)
int count; Counter counter = new Counter();

} share counter;

class Session implements Runnable {
Counter counter;
public void run()

session1.counter = counter;
new Thread(session1).start();

session2.counter = counter;
new Thread(session2).start();

{

synchronized (counter) {
counter.count++;

Session session1 = new Session();

Session session2 = new Session();

15

KeY Symposium 2007

Modular verification: example

class Counter {
int count;
}
class Session implements Runnable {
shared Counter counter;
public void run()
requires this accessible and this

Counter counter = new Counter();
share counter;

Session session1 = new Session();
session1.counter = counter;

new Thread(session1).start();
Session session2 = new Session();

unshared: session2.counter = counter;
{—L new Thread(session2).start();
synchronized (counter) {
counter.count++;
}
}

Verifying Concurrent Java Programs

* For the full approach, see Bart Jacobs’ PhD
thesis
- Data races
— Race conditions on composite data structures
— Deadlock avoidance
— Experience with a prototype verifier

Safe concurrency for aggregate objects with invariants '
B. Jacobs, K. R. M. Leino, F. Piessens, and W. Schulte (SEFM 2005)

A Statically Verifiable Programming Model for Concurrent Object-
Oriented Programs
B. Jacobs, J. Smans, F. Piessens, and W. Schulte (ICFEM 2006)

16

KeY Symposium 2007

Overview

+ Background: goal and overview of our research

+ Research sample 1: Verification of data
dependencies in web applications

+ Research sample 2: Verification of absence of
concurrency-related bugs

« [If time] Research sample 3: Verification of stack-
inspection based sandboxing

+ Conclusion

Stack inspection-related bugs

+ what is stack inspection?
— technology for safely executing untrusted code

* how?
- at load-time, each component is assigned a static permission
set

- at run-time, each thread maintains a dynamic permission set
« [of static permission sets of methods on the call stack

- before sensitive operation, check dynamic permission set
(Demand)

« if ok, no-op; otherwise, SecurityException

17

KeY Symposium 2007

Rule

o rule:

— invoke a sensitive operation (and the corresponding
Demand) only if sufficient permissions are present

Annotations and ghost state

* Threads have dynamic permission sets.

- t.Dynamic is a new ghost field per thread describing t's dynamic
permission set.

+ Components have static permission sets.

- static, is a ghost field per class, describing the static permissions
associated with that class.

+ Underspecify static permission sets using the Minimum
attributes.

18

KeY Symposium 2007

Translation to VC’s*

ve_sps(p.Demand(); s, Q) =

p € tid.Dynamic && ve(s, Q)

ve_sps(o.Method(); s, Q) =

vc(o.Method (tid.Dynamic); s, Q[...])

for every method body s in a class C:

ve_sps(s, Q) =

ve(s, Q[(tid.Dynamic N static.)/tid.Dynamic])

* essentially a Security-passing Style Transformation
(Dan S. Wallach)

An example

\MET Framework Class Library

Assembly.LoadFrom Method (String)

Loads an assembly given its file name or path.

Namespace: System Reflection
Assembly: mscorlib {in mscorlib.dll)

Syntax
Exceptions

Remarks

Example

MNET Framework Security

& FilelQPermission for reading a URI that begins with "file.//". Associated enureration;
FileIOPermissionAccess.Read

s WebPermission for reading a URI that does not beain with "file:/".

19

KeY Symposium 2007

Example (2)

class Assembly{

static Assembl url)

requires url.StartsWith(“file:”) ==>

tid.Dynamic.Contains (new FileIOPermission (url));
requires ! url.StartsWith(“file:”) ==>

tid.Dynamic.Contains (new WebPermission());

{
if (url.StartsWith(“file:”)) {
new FileIOPermission (url) .Demand();
//open and return the assembly
} else{
new WebPermission () .Demand();

//open and return the assembly

Conclusion: stack inspection-related bugs

« SecurityException freedom
— keep track of dynamic permission set
— Demand only if present

+ More flexible than competing type systems
— Path sensitive, permission parameters

« Butin general undecidable

Static Verification of Code Access Security Policy Compliance of
.NET Applications
Jan Smans, Bart Jacobs, Frank Piessens (JOT April 06)

Static Verification of Code Access Security Policy Compliance of
.NET Applications
Jan Smans, Bart Jacobs, Frank Piessens (.NET Technologies 05)

20

KeY Symposium 2007

Overview

+ Background: goal and overview of our research

+ Research sample 1: Verification of data
dependencies in web applications

+ Research sample 2: Verification of absence of
concurrency-related bugs

« [If time] Research sample 3: Verification of stack-
inspection based sandboxing

+ Conclusion

Conclusion

* “Formal methods will never have a significant
impact until they can be used by people that
don’t understand them.” — Tom Melham

« QOur approach:;
— Design concern-specific annotations
« Similar in flavor to type systems
— That translate to JML/Spec# specifications

* Hence more flexible than type systems where necessary
* Hence information exchange between concerns feasible

— And run an automatic verifier

21

