Handling Integer Arithmetic in KeY

Philipp Rümmer
Chalmers University of Technology, Gothenburg philipp@chalmers.se

14th June 2007

Context, Outline

This is about methods for ground problems in integer arithmetic built into KeY:

- Simplification heuristics
- Linear arithmetic
- Nonlinear polynomial arithmetic

Short history:

- Development started in the end of 2005
\Rightarrow Support for induction proofs
- Before that: Simplify and ICS to handle arithmetic (+ purely interactive reasoning)
- Everything is implemented and on main branch
"A Sequent Calculus for Integer Arithmetic with
Counterexample Generation," Verify 2007

Wish List for Integer Arithmetic Support

Integrate automated and interactive proving:

- Readable (history of) proof goals
- Terminating automated methods (that don't cause splitting)

Construct counterexamples for invalid formulas:

- Important e.g. for induction/invariant proofs

Efficiently handle different integer semantics for Java:

- Idealised, mathematical integers
- Machine integers (modulo arithmetic)
- Mathematical integers + overflow checks

Nontrivial programs + specifications:

- (Nonlinear) arithmetic, bitwise operations, quantifiers

Support for metavariables:

- Quantifier handling, model construction, disproving

Not Really Solvable ...

- External theorem provers?
- Computer algebra systems?
- Built-in procedures?

Not Really Solvable ...

- External theorem provers?
- Computer algebra systems?
- Built-in procedures?
- Different algebra algorithms as sequent calculi
- Implemented as taclets and KeY proof strategy (≈ 110 taclets, part of JavaDL Strategy)
- All taclets are verified using the KeY lemma mechanism

Levels of Integer Theories in KeY

Actual machine operations: +, $-, *, /, \%,<, \&,==,<=$, etc (addJint, ...)

- Many operations with (broken) modulo semantics
- No reasoning on this level

Elementary mathematical operations: +, *, /, \%, =, <=, >=

- Polynomial arithmetic + division with remainder
- Normal mathematical semantics
- Simplification of expressions on this level

Pure polynomial arithmetic: +, *, =, <=, >=

- Real reasoning is done here

Simplification of Terms and Formulas

Expansion of Polynomials

Polynomials are fully expanded, terms are sorted:

$$
\begin{aligned}
& (a+b) *(c-d+1) \\
& =a+b+c^{*} a+c^{*} b+d^{*} a^{*}-1+d^{*} b *-1
\end{aligned}
$$

Used orderings:

- Lexicographic path ordering on terms
- Graded lexicographic ordering on monomials

Simplify Fractions and Modulo-Expressions

Basically polynomial division:

$$
\begin{aligned}
& (a * 3) / 2=a+a / 2 \\
& (a \% 10+b+8) \% 5=(a+b-2) \% 5 \\
& \text { addJint (mulJint }(a, b), c) \\
& \quad=\ldots=\operatorname{addJint}(a * b, c)
\end{aligned}
$$

\Rightarrow Simple, but extremely useful to handle machine integers

Simplify Equations and Inequalities

- Only the relations <=, =, >= are used
- All inequalities are moved to antecedent
- Greatest monomial in each formula is moved to left side:

$$
\begin{aligned}
& (\mathrm{a}+\mathrm{b}) \star(\mathrm{c}-\mathrm{d}+1)>=0 \\
& <=> \\
& d^{\star} \mathrm{b}>=\mathrm{a}+\mathrm{b}+\mathrm{c}^{\star} \mathrm{a}+\mathrm{c}^{\star} \mathrm{b}+\mathrm{d}^{\star} \mathrm{a} \star-1
\end{aligned}
$$

- Common factors are eliminated, rounding appropriately:

$$
\begin{aligned}
10 * \mathrm{~b} & =15 * \mathrm{a} & <=> & 2 * \mathrm{~b}=3 * \mathrm{a} \\
2 * \mathrm{a} & =3 & <=> & \text { false } \\
7 * \mathrm{a} & >=3 & & <=>
\end{aligned}
$$

Linear Integer Arithmetic

Sequent Calculus for Linear Arithmetic

Linear Equations	Linear Inequalities
Gaussian Elimination	Fourier-Motzkin Elimination
+	+
Euclidian Algorithm	Case Analysis

- Complete for linear integer arithmetic
- Complete for producing counterexamples

Examples

Solves systems of equations:

$$
\begin{aligned}
& -5 * x 1-2 * x 2+x 3-x 4+x 5=0 \& \\
& 9 * x 1+62 * x 2-5 * x 3-3 * x 4+101 * x 5=0 \& \\
& 56 * x 1-34 * x 2-11 * x 3+67 * x 4-98 * x 5=0
\end{aligned}
$$

Solutions are:

$$
\begin{aligned}
& \mathrm{x} 1=1 _4 *-74+l_{_} 3 * 72 \text {, } \\
& x 2=l_{-} 4 *-133+l_{-} 3 * 94 \text {, } \\
& \mathrm{x} 3=1 _4 *-740+l_{_} 3 * 623 \text {, } \\
& x 4=1 _4 *-54+l_{_} 3 * 43 \text {, } \\
& x 5=1 _4 * 50+l_{_} 3 *-32
\end{aligned}
$$

Examples

Solves systems of equations:

$$
\begin{array}{rl}
-5 * x 1-2 * x 2+r & x 3-r 4+r \\
9 * x 1+62 * x 2-5 * x 3-3 * x 4+101 * x 5 & =0 \\
56 * x 1-34 * x 2-11 * x 3+67 * x 4-98 * x 5 & =0
\end{array}
$$

Counterexamples are:

$$
\begin{aligned}
& \mathrm{x} 1=1 _4 *-74+l_{_} 3 * 72 \text {, } \\
& x 2=l_{-} 4 *-133+l_{-} 3 * 94 \text {, } \\
& x 3=1 _4 *-740+l_{1} 3 * 623 \text {, } \\
& x 4=1 _4 *-54+l_{_} 3 * 43 \text {, } \\
& \times 5=1 _4 * 50+l_{_} 3 *-32
\end{aligned}
$$

Examples (2)

Proves that inequalities are contradictory:

$$
\begin{aligned}
& \mathrm{a}+\mathrm{b}<=5 \& \mathrm{a}>=0 \& \mathrm{a}-2 \star \mathrm{~b}<=-20 \\
& -> \\
& \text { false }
\end{aligned}
$$

Examples (3)

Proves the following formula:
(with machine integers)

```
    inInt(start) & inInt(end)
->
```

```
\< middle = ( start + end ) / 2; \>
    ( start <= middle & middle <= end
    | end <= middle & middle <= start )
```


Examples (3)

Produces counterexamples for the following formula: (with machine integers)

```
    inInt(start) & inInt(end)
->
```

```
\(\backslash<\) middle \(=(\) start + end \() / 2 ; \quad \backslash>\)
    ( start \(<=\) middle \& middle <= end
    | end \(<=\) middle \& middle \(<=\) start )
```


Examples (3)

Produces counterexamples for the following formula: (with machine integers)

```
    inInt(start) & inInt(end)
->
```

```
\< middle = ( start + end ) / 2; \>
    ( start <= middle & middle <= end
    | end <= middle & middle <= start )
```

```
start = 2147483647, end = 1
start = 2147483647, end = 2147483646
start = -2147483648, end = -3
```


Gemplus Example

```
public void add(short e, short f) {
    intPart += e;
    if ( intPart > 0 && decPart < 0 ) {
        intPart--;
        decPart = (short)( decPart + PRECISION );
    } else if ( intPart < 0 && decPart > 0 ) {
        intPart++;
        decPart = (short) ( decPart - PRECISION );
}
    decPart += f;
    if ( intPart > 0 && decPart < 0 ) {
        intPart--;
        decPart = (short)( decPart + PRECISION );
    } else if ( intPart < 0 && decPart > 0 ) {
        intPart++;
        decPart = (short) ( decPart - PRECISION );
    } else {
        short retenue = 0;
        short signe = 1;
        if ( decPart < 0 ) {
            signe = -1;
            decPart = (short)( -decPart );
        }
        retenue = (short) ( decPart / PRECISION );
        decPart = (short) ( decPart % PRECISION );
        retenue *= signe;
        decPart *= signe;
        intPart += retenue;
    } }
- Addition in fixed-point arithmetic
- Automatically verified with machine integers
- Originally: verified with Loop by Cees-Bart Breunesse
```


Case Splits are Disabled by Default

$$
\frac{\Gamma, s<t \vdash \Delta \Gamma, s=t \vdash \Delta}{\Gamma, s \leq t \vdash \Delta} \text { stRENGTHEN }
$$

- Proof splitting is unpopular
- Rule destroys termination
- Incompleteness is not an issue in practice
- But: case splits allow to construct counterexamples
\Rightarrow Can be switched on with option "Model search"

Nonlinear Integer Arithmetic

Nonlinear Equations	Nonlinear Inequalities
Gröbner Bases	Cross-Multiplication + Case Analysis

- Incomplete method for proving validity
- Complete for producing counterexamples
- Cross-Multiplication, case analysis disabled by default
- Procedures have so far mainly been useful to verify rules

Examples

Proves formulas like:

$$
\begin{aligned}
& \mathrm{a}^{*} \mathrm{~b}=1<->\quad(\mathrm{a}=\mathrm{b} \&(\mathrm{a}=1 \mid \mathrm{a}=-1)) \\
& \mathrm{a}^{\wedge} 11>=1000 \quad<->\mathrm{a}>1 \\
& \mathrm{c}>0 \& \mathrm{~b}!=0 \quad->\mathrm{a} /\left(\mathrm{b}^{*} \mathrm{c}\right)=(\mathrm{a} / \mathrm{c}) / \mathrm{b}
\end{aligned}
$$

Examples (2)

Also proves the following formula:
(with machine integers)

$$
\begin{aligned}
& \text { a ! = null \& a.length }>=100 \text { \& } \\
& x>=0 \& x<=9 \\
& \text {-> } \\
& \backslash<y=a\left[x^{*} x\right] ; \quad \backslash>\text { true }
\end{aligned}
$$

Examples (3)

Produces counterexample for the following formula: (with machine integers)

$$
\begin{aligned}
& \text { a ! }=\text { null \& a.length }>=100 \& \\
& x \quad>=0 \& x<=10 \\
& -> \\
& \quad \backslash<y=a\left[x^{*} x\right] ; \quad \backslash>\text { true }
\end{aligned}
$$

The (only) counterexample is:

$$
\begin{aligned}
& \text { a.length }=100, \\
& \mathrm{x}=10
\end{aligned}
$$

Calculus for Nonlinear Inequalities

Cross-multiplication (linear approximations of nonlinear terms) :

$$
\frac{\Gamma, s \leq t, s^{\prime} \leq t^{\prime}, 0 \leq(t-s) \cdot\left(t^{\prime}-s^{\prime}\right) \vdash \Delta}{\Gamma, s \leq t, s^{\prime} \leq t^{\prime} \vdash \Delta} \text { CROSS-MULT }
$$

Case splits:

$$
\begin{gathered}
\Gamma, x<0 \vdash \Delta \Gamma, x=0 \vdash \Delta\ulcorner, x>0 \vdash \Delta \\
\Gamma \vdash \Delta \\
\frac{\Gamma, s<t \vdash \Delta \Gamma \text { SIGN-CASES }}{\Gamma, s \leq t \vdash \Delta}, \\
\text { STRENGTHEN }
\end{gathered}
$$

\Rightarrow With many further lemmas and heuristics
\Rightarrow Similar method is implemented in ACL2

Evaluation...

Usefulness of the Methods

Gaussian Elimination + Euclidian Algorithm:

- Essential, quite useful to handle machine integers
- Performance is more than sufficient

Fourier-Motzkin Elimination:

- Essential
- Performance is mostly sufficient

Gröbner Bases:

- Still searching for an application

Cross-Multiplication + Case Analysis:

- Important for meta-reasoning, "mathematical" programs
- But: does not scale very well

Back to the Wish List

Automated+interactive proving, readable proof goals, etc:

- Much better than 1 year ago
- Proofs are too long, too many irrelevant steps are shown

Construct counterexamples for invalid formulas:

- Works for many interesting cases, but could scale better
- Often requires user guidance

Efficiently handle different integer semantics:

- Mostly solved; remaining show-stoppers are elsewhere

Verify nontrivial programs+specifications:

- Quite good handling of many arithmetic operations
- Bitwise operations are basically not supported
- Quantifier handling got better, but not good enough

Support for metavariables:

- Happens to work quite well, but to be investigated in detail
- Add quantifier handling with metavariables and constraints (Goal: complete calculus for Presburger arithmetic)
- Standalone implementation of the calculus
\Rightarrow External search with proof generation
(based on DPLL(T) framework?)
- Bitwise operations

