
Handling Integer Arithmetic in KeY

Philipp Rümmer
Chalmers University of Technology, Gothenburg

philipp@chalmers.se

14th June 2007

1 / 26

Context, Outline

This is about methods for ground problems in integer arithmetic
built into KeY:

Simplification heuristics

Linear arithmetic

Nonlinear polynomial arithmetic

Short history:

Development started in the end of 2005
⇒ Support for induction proofs

Before that: Simplify and ICS to handle arithmetic
(+ purely interactive reasoning)

Everything is implemented and on main branch

“A Sequent Calculus for Integer Arithmetic with
Counterexample Generation,” Verify 2007

2 / 26

Wish List for Integer Arithmetic Support

Integrate automated and interactive proving:

Readable (history of) proof goals

Terminating automated methods (that don’t cause splitting)

Construct counterexamples for invalid formulas:

Important e.g. for induction/invariant proofs

Efficiently handle different integer semantics for Java:

Idealised, mathematical integers

Machine integers (modulo arithmetic)

Mathematical integers + overflow checks

Nontrivial programs + specifications:

(Nonlinear) arithmetic, bitwise operations, quantifiers

Support for metavariables:

Quantifier handling, model construction, disproving
3 / 26

Not Really Solvable . . .

External theorem provers?

Computer algebra systems?

Built-in procedures?

Different algebra algorithms as sequent calculi

Implemented as taclets and KeY proof strategy
(≈ 110 taclets, part of JavaDL Strategy)

All taclets are verified using the KeY lemma mechanism

4 / 26

Not Really Solvable . . .

External theorem provers?

Computer algebra systems?

Built-in procedures?

Different algebra algorithms as sequent calculi

Implemented as taclets and KeY proof strategy
(≈ 110 taclets, part of JavaDL Strategy)

All taclets are verified using the KeY lemma mechanism

4 / 26

Levels of Integer Theories in KeY

Actual machine operations: +, - , * , / , %, «, &, ==, <=, etc
(addJint , . . .)

Many operations with (broken) modulo semantics

No reasoning on this level

Elementary mathematical operations: +, * , / , %, =, <=, >=

Polynomial arithmetic + division with remainder

Normal mathematical semantics

Simplification of expressions on this level

Pure polynomial arithmetic: +, * , =, <=, >=

Real reasoning is done here

5 / 26

Simplification of Terms and Formulas

Expansion of Polynomials

Polynomials are fully expanded, terms are sorted:

(a + b) * (c - d + 1)
= a + b + c*a + c*b + d*a*-1 + d*b*-1

Used orderings:

Lexicographic path ordering on terms

Graded lexicographic ordering on monomials

7 / 26

Simplify Fractions and Modulo-Expressions

Basically polynomial division:

(a*3)/2 = a + a/2

(a%10 + b + 8) % 5 = (a + b - 2) % 5

addJint(mulJint(a, b), c)
= ... = addJint(a*b, c)

⇒ Simple, but extremely useful to handle machine integers

8 / 26

Simplify Equations and Inequalities

Only the relations <=, =, >= are used

All inequalities are moved to antecedent

Greatest monomial in each formula is moved to left side:

(a + b) * (c - d + 1) >= 0
<=>
d*b >= a + b + c*a + c*b + d*a*-1

Common factors are eliminated, rounding appropriately:

10*b = 15*a <=> 2*b = 3*a
2*a = 3 <=> false
7*a >= 3 <=> a >= 1

9 / 26

Linear Integer Arithmetic

Sequent Calculus for Linear Arithmetic

Linear Equations Linear Inequalities

Gaussian Elimination Fourier-Motzkin Elimination
+ +

Euclidian Algorithm Case Analysis

Complete for linear integer arithmetic

Complete for producing counterexamples

11 / 26

Examples

Solves systems of equations:

-5*x1 - 2*x2 + x3 - x4 + x5 = 0 &
9*x1 + 62*x2 - 5*x3 - 3*x4 + 101*x5 = 0 &

56*x1 - 34*x2 - 11*x3 + 67*x4 - 98*x5 = 0

Solutions are:

x1 = l_4 * -74 + l_3 * 72,
x2 = l_4 * -133 + l_3 * 94,
x3 = l_4 * -740 + l_3 * 623,
x4 = l_4 * -54 + l_3 * 43,
x5 = l_4 * 50 + l_3 * -32

12 / 26

Examples

Solves systems of equations:

-5*x1 - 2*x2 + x3 - x4 + x5 = 0 &
9*x1 + 62*x2 - 5*x3 - 3*x4 + 101*x5 = 0 &

56*x1 - 34*x2 - 11*x3 + 67*x4 - 98*x5 = 0
-> false

Counterexamples are:

x1 = l_4 * -74 + l_3 * 72,
x2 = l_4 * -133 + l_3 * 94,
x3 = l_4 * -740 + l_3 * 623,
x4 = l_4 * -54 + l_3 * 43,
x5 = l_4 * 50 + l_3 * -32

12 / 26

Examples (2)

Proves that inequalities are contradictory:

a + b <= 5 & a >= 0 & a - 2 * b <= -20
->
false

13 / 26

Examples (3)

Proves the following formula:
(with machine integers)

inInt(start) & inInt(end)
->

\< middle = (start + end) / 2; \>
(start <= middle & middle <= end

| end <= middle & middle <= start)

start = 2147483647, end = 1
start = 2147483647, end = 2147483646
start = -2147483648, end = -3
...

14 / 26

Examples (3)

Produces counterexamples for the following formula:
(with machine integers)

inInt(start) & inInt(end)
->

\< middle = (start + end) / 2; \>
(start <= middle & middle <= end

| end <= middle & middle <= start)

start = 2147483647, end = 1
start = 2147483647, end = 2147483646
start = -2147483648, end = -3
...

14 / 26

Examples (3)

Produces counterexamples for the following formula:
(with machine integers)

inInt(start) & inInt(end)
->

\< middle = (start + end) / 2; \>
(start <= middle & middle <= end

| end <= middle & middle <= start)

start = 2147483647, end = 1
start = 2147483647, end = 2147483646
start = -2147483648, end = -3
...

14 / 26

Gemplus Example

public void add(short e, short f) {
intPart += e;

if (intPart > 0 && decPart < 0) {
intPart--;
decPart = (short)(decPart + PRECISION);

} else if (intPart < 0 && decPart > 0) {
intPart++;
decPart = (short)(decPart - PRECISION);

}

decPart += f;
if (intPart > 0 && decPart < 0) {

intPart--;
decPart = (short)(decPart + PRECISION);

} else if (intPart < 0 && decPart > 0) {
intPart++;
decPart = (short)(decPart - PRECISION);

} else {
short retenue = 0;
short signe = 1;
if (decPart < 0) {

signe = -1;
decPart = (short)(-decPart);

}
retenue = (short)(decPart / PRECISION);
decPart = (short)(decPart % PRECISION);
retenue *= signe;
decPart *= signe;
intPart += retenue;

} }

Addition in
fixed-point arithmetic

Automatically
verified with
machine integers

Originally: verified
with Loop by
Cees-Bart
Breunesse

15 / 26

Case Splits are Disabled by Default

Γ, s < t ` ∆ Γ, s = t ` ∆

Γ, s ≤ t ` ∆
STRENGTHEN

Proof splitting is unpopular

Rule destroys termination

Incompleteness is not an issue in practice

But: case splits allow to construct counterexamples

⇒ Can be switched on with option “Model search”

16 / 26

Nonlinear Integer Arithmetic

Sequent Calculus for Nonlinear Arithmetic

Nonlinear Equations Nonlinear Inequalities

Cross-Multiplication
Gröbner Bases +

Case Analysis

Incomplete method for proving validity

Complete for producing counterexamples

Cross-Multiplication, case analysis disabled by default

Procedures have so far mainly been useful to verify rules

18 / 26

Examples

Proves formulas like:

a*b = 1 <-> (a = b & (a = 1 | a = -1))

a^11 >= 1000 <-> a > 1

c > 0 & b != 0 -> a/(b*c) = (a/c)/b

19 / 26

Examples (2)

Also proves the following formula:
(with machine integers)

a != null & a.length >= 100 &
x >= 0 & x <= 9

->
\< y = a[x*x]; \> true

20 / 26

Examples (3)

Produces counterexample for the following formula:
(with machine integers)

a != null & a.length >= 100 &
x >= 0 & x <= 10

->
\< y = a[x*x]; \> true

The (only) counterexample is:

a.length = 100,
x = 10

21 / 26

Calculus for Nonlinear Inequalities

Cross-multiplication (linear approximations of nonlinear terms) :

Γ, s ≤ t , s′ ≤ t ′, 0 ≤ (t − s) · (t ′ − s′) ` ∆

Γ, s ≤ t , s′ ≤ t ′ ` ∆
CROSS-MULT

Case splits:

Γ, x < 0 ` ∆ Γ, x = 0 ` ∆ Γ, x > 0 ` ∆

Γ ` ∆
SIGN-CASES

Γ, s < t ` ∆ Γ, s = t ` ∆

Γ, s ≤ t ` ∆
STRENGTHEN

⇒ With many further lemmas and heuristics

⇒ Similar method is implemented in ACL2

22 / 26

Evaluation . . .

Usefulness of the Methods

Gaussian Elimination + Euclidian Algorithm:

Essential, quite useful to handle machine integers

Performance is more than sufficient

Fourier-Motzkin Elimination:

Essential

Performance is mostly sufficient

Gröbner Bases:

Still searching for an application

Cross-Multiplication + Case Analysis:

Important for meta-reasoning, “mathematical” programs

But: does not scale very well

24 / 26

Back to the Wish List

Automated+interactive proving, readable proof goals, etc:
Much better than 1 year ago
Proofs are too long, too many irrelevant steps are shown

Construct counterexamples for invalid formulas:
Works for many interesting cases, but could scale better
Often requires user guidance

Efficiently handle different integer semantics:
Mostly solved; remaining show-stoppers are elsewhere

Verify nontrivial programs+specifications:
Quite good handling of many arithmetic operations
Bitwise operations are basically not supported
Quantifier handling got better, but not good enough

Support for metavariables:
Happens to work quite well, but to be investigated in detail

25 / 26

Future Work

Add quantifier handling with metavariables and constraints
(Goal: complete calculus for Presburger arithmetic)

Standalone implementation of the calculus
⇒ External search with proof generation
(based on DPLL(T) framework?)

Bitwise operations

26 / 26

