
The Mondex Case Study
Verifying a Java Implementation

Peter H. Schmitt, Isabel Tonin

Institute for Theoretical Computer Science
Department of Computer Science

Universität Karlsruhe (TH)

KeY Symposium, June, 2007

The Mondex Case Study 1

Verified Software Grand Challenge

a concerted effort of the global scientific community to deliver

1. A comprehensive theory of programming
covering all features needed to built practical and reliable
programs

2. A coherent tool set
automating the theory and scaling up to large code

3. A repository of verified programs.
Contains at this time mostly contributions to the Mondex
Case Study.

You can’t say any more it can’t be done.
Here, we’ve done it!

The Mondex Case Study 2

Verified Software Grand Challenge

a concerted effort of the global scientific community to deliver

1. A comprehensive theory of programming

covering all features needed to built practical and reliable
programs

2. A coherent tool set
automating the theory and scaling up to large code

3. A repository of verified programs.
Contains at this time mostly contributions to the Mondex
Case Study.

You can’t say any more it can’t be done.
Here, we’ve done it!

The Mondex Case Study 2

Verified Software Grand Challenge

a concerted effort of the global scientific community to deliver

1. A comprehensive theory of programming

covering all features needed to built practical and reliable
programs

2. A coherent tool set
automating the theory and scaling up to large code

3. A repository of verified programs.
Contains at this time mostly contributions to the Mondex
Case Study.

You can’t say any more it can’t be done.
Here, we’ve done it!

The Mondex Case Study 2

Verified Software Grand Challenge

a concerted effort of the global scientific community to deliver

1. A comprehensive theory of programming
covering all features needed to built practical and reliable
programs

2. A coherent tool set
automating the theory and scaling up to large code

3. A repository of verified programs.
Contains at this time mostly contributions to the Mondex
Case Study.

You can’t say any more it can’t be done.
Here, we’ve done it!

The Mondex Case Study 2

Verified Software Grand Challenge

a concerted effort of the global scientific community to deliver

1. A comprehensive theory of programming
covering all features needed to built practical and reliable
programs

2. A coherent tool set

automating the theory and scaling up to large code

3. A repository of verified programs.
Contains at this time mostly contributions to the Mondex
Case Study.

You can’t say any more it can’t be done.
Here, we’ve done it!

The Mondex Case Study 2

Verified Software Grand Challenge

a concerted effort of the global scientific community to deliver

1. A comprehensive theory of programming
covering all features needed to built practical and reliable
programs

2. A coherent tool set

automating the theory and scaling up to large code

3. A repository of verified programs.
Contains at this time mostly contributions to the Mondex
Case Study.

You can’t say any more it can’t be done.
Here, we’ve done it!

The Mondex Case Study 2

Verified Software Grand Challenge

a concerted effort of the global scientific community to deliver

1. A comprehensive theory of programming
covering all features needed to built practical and reliable
programs

2. A coherent tool set
automating the theory and scaling up to large code

3. A repository of verified programs.
Contains at this time mostly contributions to the Mondex
Case Study.

You can’t say any more it can’t be done.
Here, we’ve done it!

The Mondex Case Study 2

Verified Software Grand Challenge

a concerted effort of the global scientific community to deliver

1. A comprehensive theory of programming
covering all features needed to built practical and reliable
programs

2. A coherent tool set
automating the theory and scaling up to large code

3. A repository of verified programs.
Contains at this time mostly contributions to the Mondex
Case Study.

You can’t say any more it can’t be done.
Here, we’ve done it!

The Mondex Case Study 2

Verified Software Grand Challenge

a concerted effort of the global scientific community to deliver

1. A comprehensive theory of programming
covering all features needed to built practical and reliable
programs

2. A coherent tool set
automating the theory and scaling up to large code

3. A repository of verified programs.
Contains at this time mostly contributions to the Mondex
Case Study.

You can’t say any more it can’t be done.
Here, we’ve done it!

The Mondex Case Study 2

Verified Software Grand Challenge

a concerted effort of the global scientific community to deliver

1. A comprehensive theory of programming
covering all features needed to built practical and reliable
programs

2. A coherent tool set
automating the theory and scaling up to large code

3. A repository of verified programs.
Contains at this time mostly contributions to the Mondex
Case Study.

You can’t say any more it can’t be done.
Here, we’ve done it!

The Mondex Case Study 2

The Mondex Card

I Smart card for electronic financial transactions

I Issued by Natwest in 1996

I First product certified to ITSEC Level E6

I Sanitised documentation publicly available

The Mondex Case Study 3

The Mondex Card

I Smart card for electronic financial transactions

I Issued by Natwest in 1996

I First product certified to ITSEC Level E6

I Sanitised documentation publicly available

The Mondex Case Study 3

The Mondex Card

I Smart card for electronic financial transactions

I Issued by Natwest in 1996

I First product certified to ITSEC Level E6

I Sanitised documentation publicly available

The Mondex Case Study 3

The Mondex Card

I Smart card for electronic financial transactions

I Issued by Natwest in 1996

I First product certified to ITSEC Level E6

I Sanitised documentation publicly available

The Mondex Case Study 3

A model

B model

C model

Java code

refinement

refinement

implementation

Previous
Work
using

Z, ASM,
RSL, Alloy

Our
Contribution
using JML

The Mondex Case Study 4

Our Contribution

I Reference Implementation in Java Card

I Specification using Design by Contract paradigm

I Annotation using Java Modeling Language (JML)

I Full verification using the KeY prover

The Mondex Case Study 5

Our Contribution

I Reference Implementation in Java Card

I Specification using Design by Contract paradigm

I Annotation using Java Modeling Language (JML)

I Full verification using the KeY prover

The Mondex Case Study 5

Our Contribution

I Reference Implementation in Java Card

I Specification using Design by Contract paradigm

I Annotation using Java Modeling Language (JML)

I Full verification using the KeY prover

The Mondex Case Study 5

Our Contribution

I Reference Implementation in Java Card

I Specification using Design by Contract paradigm

I Annotation using Java Modeling Language (JML)

I Full verification using the KeY prover

The Mondex Case Study 5

The Principal Classes of Mondex Card

public class ConPurseJC extends Applet
{ private short name;

private short balance;
private byte status;
private PayDetails transaction;
private short nextSeq;
private PayDetails [] exLog;
private byte logIdx;

... }

public class PayDetails
{ short fromName;

short toName;
short value;
short fromSeq;
short toSeq;

... }

The Mondex Case Study 6

Mondex Protocol
Automata View

ToPurse FromPurse

idle

Epv

Endt

StartTo

Val

idle

Epr

Epa

Endf

StartFrom

Req

Ack

The Mondex Case Study 7

The Protocol (Modified)

central authority

req

val

ack

StartFrom StartTo

Req

Val

balance =
balance −value

balance =
balance +value

Ack

From Purse To Purse

Endf Endt

Epa

Epr

Idle

Epv

Idle

The Mondex Case Study 8

Architecture of a Java Card Application

R
es

po
ns

e A
P

D
U

s

C
om

m
and

Vendor or

Extensions
Industry specific

Java Card Framework
and APIs

Card OS

Java Card VM Runtime
Environment

Java Card

Application

Host

APDUs

C
om

m
andR

es
po

ns
e

Card

Device
Acceptance APDUs

Command

Response

System(s)

Back−End
Application

and

Applet Applet Applet

Reader Side Card Side

The Mondex Case Study 9

Z Specification of the Val Operation

ValPurseOkay

∆ConPurse

m?,m! : Message

AuthenticValMessage

status = epv

ΞConPurseVal

balance ′ = balance + pdAuth.value

status ′ = esTo

m! = ackpdAuth

The Mondex Case Study 10

ASM Specification of the Val Operation

VAL#

if msg = val(pdAuth(receiver)) ∧ ¬ fail?
then balance(receiver) :=

balance(receiver) + pdAuth(receicer).value
state(receiver) := idle
outmsg := ack(pdAuth(receiver))

else outmsg :=⊥

The Mondex Case Study 11

JML Specification of the Val Operation

/*@ public behavior
1 @ requires apdu != null;
2 @ assignable balance , status;

@ ensures
3 @ (balance == \old(balance)

@ + transaction.value) &&
@ (\old(status) == Epv) && (status == Endt);
@ signals only ISOException;
@ signals (ISOException e)

4 @ ((balance == \old(balance))
@ && (status == \old(status)));
@*/
private void val_operation(APDU apdu)

throws ISOException

JML keyword in red.

The Mondex Case Study 12

Top Level ASM Specification

BOP#

choose msg, fail?, rec with msg ∈ ether ∧ auth(rec) in
if isStartTo(msg) ∧ state(rec) = idle then STARTO#
else if isStartFrom(msg) ∧ state(rec) = idle

then STARTFROM#
else if isreq(msg) ∧ state(rec) = epr then REQ#
else if isval(msg) ∧ state(rec) = epv then V AL#
else if isack(msg) ∧ state(rec) = epa then ACK#
else ABORT#
seq ether := ether + +outmsg

The Mondex Case Study 13

Top Level ASM Specification

BOP#

choose msg, fail?, rec with msg ∈ ether ∧ auth(rec) in
if isStartTo(msg) ∧ state(rec) = idle then STARTO#
else if isStartFrom(msg) ∧ state(rec) = idle

then STARTFROM#
else if isreq(msg) ∧ state(rec) = epr then REQ#
else if isval(msg) ∧ state(rec) = epv then V AL#
else if isack(msg) ∧ state(rec) = epa then ACK#
else ABORT#
seq ether := ether + +outmsg

The Mondex Case Study 13

Top Level JML Specification
First Installment

/*@ public behavior
@ requires apdu != null;
@ assignable ...
@ ensures
@ ((\old(logIdx) != logIdx) ==>
@ ((logIdx ==0) &&
@ (status ==Idle) &&
@ (\old(status)== Idle)))
@ &&
@ ((\old(status)== status) ==>
@ (\old(balance)== balance) &&
@ (\old(nextSeq)== nextSeq))
@ &&

The Mondex Case Study 14

Top Level JML Specification
Second Installment

&&
@ ((\old(status)!= status) ==>
@
@ \old(apdu._buffer[I.OFFSET_INS])
@ == apdu._buffer[I.OFFSET_INS]

@ && (\old(status)==Epa ==>
@ (status ==Endf &&
@ apdu._buffer[I.OFFSET_INS]==Ack
@ && balance ==\old(balance)))
@ &&

The Mondex Case Study 15

Top Level JML Specification
Third Installment

@ signals_only ISOException;
@ signals (ISOException e) (
@ \old(balance)== balance &&
@ \old(status)== status &&
@ \old(logIdx)== logIdx &&
@ \old(nextSeq) == nextSeq);
@*/
public void process(APDU apdu)

The Mondex Case Study 16

Top Level Z Specification

Security Property 1 No value creation: no value may be
created in the system. The sum of all purses’ balance
does not increase.

Security Property 2.1 All value accounted: all values must be
accounted in the system. The sum of all purses’
balance and lost components does not change.

Security Property 2.2 Exception Logging: if a purse aborts a
transfer at a point where value could be lost, then
the purse logs the details.

Security Property 3 Authentic purses: a transfer can only
occur between authentic purses.

Security Property 4 Sufficient Funds: a transfer can occur only
if there are sufficient funds in the from purse.

The Mondex Case Study 17

Top Level Z Specification

Security Property 1 No value creation: no value may be
created in the system. The sum of all purses’ balance
does not increase.

Security Property 2.1 All value accounted: all values must be
accounted in the system. The sum of all purses’
balance and lost components does not change.

Security Property 2.2 Exception Logging: if a purse aborts a
transfer at a point where value could be lost, then
the purse logs the details.

Security Property 3 Authentic purses: a transfer can only
occur between authentic purses.

Security Property 4 Sufficient Funds: a transfer can occur only
if there are sufficient funds in the from purse.

The Mondex Case Study 17

Top Level Z Specification

Security Property 1 No value creation: no value may be
created in the system. The sum of all purses’ balance
does not increase.

Security Property 2.1 All value accounted: all values must be
accounted in the system. The sum of all purses’
balance and lost components does not change.

Security Property 2.2 Exception Logging: if a purse aborts a
transfer at a point where value could be lost, then
the purse logs the details.

Security Property 3 Authentic purses: a transfer can only
occur between authentic purses.

Security Property 4 Sufficient Funds: a transfer can occur only
if there are sufficient funds in the from purse.

The Mondex Case Study 17

Top Level Z Specification

Security Property 1 No value creation: no value may be
created in the system. The sum of all purses’ balance
does not increase.

Security Property 2.1 All value accounted: all values must be
accounted in the system. The sum of all purses’
balance and lost components does not change.

Security Property 2.2 Exception Logging: if a purse aborts a
transfer at a point where value could be lost, then
the purse logs the details.

Security Property 3 Authentic purses: a transfer can only
occur between authentic purses.

Security Property 4 Sufficient Funds: a transfer can occur only
if there are sufficient funds in the from purse.

The Mondex Case Study 17

Top Level Z Specification

Security Property 1 No value creation: no value may be
created in the system. The sum of all purses’ balance
does not increase.

Security Property 2.1 All value accounted: all values must be
accounted in the system. The sum of all purses’
balance and lost components does not change.

Security Property 2.2 Exception Logging: if a purse aborts a
transfer at a point where value could be lost, then
the purse logs the details.

Security Property 3 Authentic purses: a transfer can only
occur between authentic purses.

Security Property 4 Sufficient Funds: a transfer can occur only
if there are sufficient funds in the from purse.

The Mondex Case Study 17

JML Invariants
ensuring the sufficient funds property

public class ConPurseJC extends Applet
{/*@ public invariant

@ (exLog != null) && (exLog.length >0)
@ && ...
@ (balance >=0) && (balance <= ShortMaxValue)
@ && ...
@ ((status == Epr) ==>
@ (transaction.value <= balance)) &&
@ ((status ==Epv) ==>
@ (transaction.value <=
@ (ShortMaxValue - balance))) &&
@ (\ forall byte i;i>=0 && i<exLog.length;
@ exLog[i] != null);
@*/

... }

The Mondex Case Study 18

Relationship between Purse and Counterpurse
Purse o, Counterpurse x

Rel(o,x):
(o.transaction == x.transaction
&& o.name != x.name)
&& ((o.status == Endf) ==>
(x.status == Endt))

&& ((o.status == Endt) ==>
((x.status == Epa) || (x.status == Endf)))

&& ((status == Epa) ==>
((x.status == Epv) || (x.status == Endt)))

&& ((o.status == Epv) ==>
((x.status == Idle) || (x.status == Epr) ||
(x.status == Epa)))

&& ((o.status == Epr) ==>
((x.status == Idle) || (x.status == Epv)))

The Mondex Case Study 19

Helper Functions

o.bookedV alue() =



−o.transaction.value if
(o.status == Epa) or
(o.status == Endf)

+o.transaction.value if
o.status == Endt

0 otherwise

o.loss() =



o.transaction.value if
(o.status == Epa) or

(o.status == Endf)
and
(x.status == Epa) or

(x.status == Endf)
0 otherwise

The Mondex Case Study 20

Constraint on bookedValue()

ConPurseJC:

/*@ public constraint
@ ((\old(balance) != balance) ==>
@ ((balance -\old(balance))
@ == bookedValue ()));
@*/

The Mondex Case Study 21

All Values Accounted Property

We need to show for every purse o and its ounterpurse x

Rel(o,x)
==>
o.bookedValue() + x.bookedValue() + o.loss = 0

whenever the process method terminates, normally or abruptly.

The Mondex Case Study 22

All Values Accounted Property

We need to show for every purse o and its ounterpurse x

Rel(o,x)
==>
o.bookedValue() + x.bookedValue() + o.loss = 0

whenever the process method terminates, normally or abruptly.

The Mondex Case Study 22

All Values Accounted Property

We need to show for every purse o and its ounterpurse x

Rel(o,x)
==>
o.bookedValue() + x.bookedValue() + o.loss = 0

whenever the process method terminates, normally or abruptly.

The Mondex Case Study 22

Proof Statistics

Method Nodes Branches Time (min)
Using Contracts

process 4,731 54 10

showProperties 6,565 50 10

Using Implementation

startFrom 3,818 102 5

startTo 3,975 105 5

req 3,482 95 5

val 3,525 91 5

ack 2,370 69 5

clear ex log 1,352 37 5

read ex log 28,292 490 35

abort if necessary 2,427 57 5

The Mondex Case Study 23

Proof Statistics
Continued

Method Nodes Branches Time (min)
Strong Invariant

startFrom 19,084 44 10

startTo 19,015 40 10

req 23,165 64 15

val 18,689 51 15

ack 14,199 32 10

clear ex log 7,588 18 5

abort if necessary 8,761 33 5

The Mondex Case Study 24

Further Statistics

I 63 pages of relevant Z specification

I 327 lines of Java Card code

I 2 classes
I 19 methods
I not counting API classes and methods

I 185 lines of JML specification

The Mondex Case Study 25

Further Statistics

I 63 pages of relevant Z specification
I 327 lines of Java Card code

I 2 classes
I 19 methods
I not counting API classes and methods

I 185 lines of JML specification

The Mondex Case Study 25

Further Statistics

I 63 pages of relevant Z specification
I 327 lines of Java Card code

I 2 classes

I 19 methods
I not counting API classes and methods

I 185 lines of JML specification

The Mondex Case Study 25

Further Statistics

I 63 pages of relevant Z specification
I 327 lines of Java Card code

I 2 classes
I 19 methods

I not counting API classes and methods

I 185 lines of JML specification

The Mondex Case Study 25

Further Statistics

I 63 pages of relevant Z specification
I 327 lines of Java Card code

I 2 classes
I 19 methods
I not counting API classes and methods

I 185 lines of JML specification

The Mondex Case Study 25

Further Statistics

I 63 pages of relevant Z specification
I 327 lines of Java Card code

I 2 classes
I 19 methods
I not counting API classes and methods

I 185 lines of JML specification

The Mondex Case Study 25

Quote on Z

Z is mainly used at the specification level. Some data
and operation refinement towards an implementation is
possible in Z, but at some point a jump to code must be
made, typically informally.

by Jonathan Bowen,
in Software Specification Methods, Chapter 1
H.Habri and M.Frappier (eds), ISTE 2006.

The Mondex Case Study 26

Critical Issues
during jump to code

I one operation on the model level (e.g., exeception logging)
might have to be realised as the combined effect of several
operations of the implementation,

I deployment of the implemented system on different platforms
has heavy influence on the verification conditions,

I replacing abstract data structures by programing language
data types is not a refinement step,

I issues that require a lot of verification effort at the model level
may no have a counter part in the implementation.

I JML (and other OO specification languages) lack support for
system invariants.

The Mondex Case Study 27

Critical Issues
during jump to code

I one operation on the model level (e.g., exeception logging)
might have to be realised as the combined effect of several
operations of the implementation,

I deployment of the implemented system on different platforms
has heavy influence on the verification conditions,

I replacing abstract data structures by programing language
data types is not a refinement step,

I issues that require a lot of verification effort at the model level
may no have a counter part in the implementation.

I JML (and other OO specification languages) lack support for
system invariants.

The Mondex Case Study 27

Critical Issues
during jump to code

I one operation on the model level (e.g., exeception logging)
might have to be realised as the combined effect of several
operations of the implementation,

I deployment of the implemented system on different platforms
has heavy influence on the verification conditions,

I replacing abstract data structures by programing language
data types is not a refinement step,

I issues that require a lot of verification effort at the model level
may no have a counter part in the implementation.

I JML (and other OO specification languages) lack support for
system invariants.

The Mondex Case Study 27

Critical Issues
during jump to code

I one operation on the model level (e.g., exeception logging)
might have to be realised as the combined effect of several
operations of the implementation,

I deployment of the implemented system on different platforms
has heavy influence on the verification conditions,

I replacing abstract data structures by programing language
data types is not a refinement step,

I issues that require a lot of verification effort at the model level
may no have a counter part in the implementation.

I JML (and other OO specification languages) lack support for
system invariants.

The Mondex Case Study 27

Critical Issues
during jump to code

I one operation on the model level (e.g., exeception logging)
might have to be realised as the combined effect of several
operations of the implementation,

I deployment of the implemented system on different platforms
has heavy influence on the verification conditions,

I replacing abstract data structures by programing language
data types is not a refinement step,

I issues that require a lot of verification effort at the model level
may no have a counter part in the implementation.

I JML (and other OO specification languages) lack support for
system invariants.

The Mondex Case Study 27

THE END

The Mondex Case Study 28

The Mondex Case Study
Previous contributions to the Grand Challenge repository
I Specification using Z,

refinement proofs by hand and using Z/Eves.

S. Stepney, D. Cooper, and J. Woodcock.
Oxford University Computing Laboratory, 2000.

I Specification using ASM (Abstract State Machines),
refinement verification with KIV

G. Schellhorn, H. Grundy, D. Haneberg, W.Reif.
Universität Augsburg, 2006.

I Specification using Alloy, verification with Alloy model finder

T. Ramananandro. École Normale Supérieure, Paris, 2006.

I Specification using RSL (Raise Specification Language),
refinement verification with PVS and SAL

C. George, A. E. Haxthausen.
United Nations University, Macau, 2007.

The Mondex Case Study 29

The Mondex Case Study
Previous contributions to the Grand Challenge repository
I Specification using Z,

refinement proofs by hand and using Z/Eves.

S. Stepney, D. Cooper, and J. Woodcock.
Oxford University Computing Laboratory, 2000.

I Specification using ASM (Abstract State Machines),
refinement verification with KIV

G. Schellhorn, H. Grundy, D. Haneberg, W.Reif.
Universität Augsburg, 2006.

I Specification using Alloy, verification with Alloy model finder

T. Ramananandro. École Normale Supérieure, Paris, 2006.

I Specification using RSL (Raise Specification Language),
refinement verification with PVS and SAL

C. George, A. E. Haxthausen.
United Nations University, Macau, 2007.

The Mondex Case Study 29

The Mondex Case Study
Previous contributions to the Grand Challenge repository
I Specification using Z,

refinement proofs by hand and using Z/Eves.

S. Stepney, D. Cooper, and J. Woodcock.
Oxford University Computing Laboratory, 2000.

I Specification using ASM (Abstract State Machines),
refinement verification with KIV

G. Schellhorn, H. Grundy, D. Haneberg, W.Reif.
Universität Augsburg, 2006.

I Specification using Alloy, verification with Alloy model finder

T. Ramananandro. École Normale Supérieure, Paris, 2006.

I Specification using RSL (Raise Specification Language),
refinement verification with PVS and SAL

C. George, A. E. Haxthausen.
United Nations University, Macau, 2007.

The Mondex Case Study 29

The Mondex Case Study
Previous contributions to the Grand Challenge repository
I Specification using Z,

refinement proofs by hand and using Z/Eves.

S. Stepney, D. Cooper, and J. Woodcock.
Oxford University Computing Laboratory, 2000.

I Specification using ASM (Abstract State Machines),
refinement verification with KIV

G. Schellhorn, H. Grundy, D. Haneberg, W.Reif.
Universität Augsburg, 2006.

I Specification using Alloy, verification with Alloy model finder

T. Ramananandro. École Normale Supérieure, Paris, 2006.

I Specification using RSL (Raise Specification Language),
refinement verification with PVS and SAL

C. George, A. E. Haxthausen.
United Nations University, Macau, 2007.

The Mondex Case Study 29

