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Verified Software Grand Challenge

a concerted effort of the global scientific community to deliver

1. A comprehensive theory of programming
covering all features needed to built practical and reliable
programs

2. A coherent tool set
automating the theory and scaling up to large code

3. A repository of verified programs.
Contains at this time mostly contributions to the Mondex
Case Study.

You can’t say any more it can’t be done.
Here, we’ve done it!
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The Mondex Card

I Smart card for electronic financial transactions

I Issued by Natwest in 1996

I First product certified to ITSEC Level E6

I Sanitised documentation publicly available
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A model

B model

C model

Java code

refinement

refinement

implementation

Previous
Work
using

Z, ASM,
RSL, Alloy

Our
Contribution
using JML
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Our Contribution

I Reference Implementation in Java Card

I Specification using Design by Contract paradigm

I Annotation using Java Modeling Language (JML)

I Full verification using the KeY prover
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The Principal Classes of Mondex Card

public class ConPurseJC extends Applet
{ private short name;

private short balance;
private byte status;
private PayDetails transaction;
private short nextSeq;
private PayDetails [] exLog;
private byte logIdx;

... }

public class PayDetails
{ short fromName;

short toName;
short value;
short fromSeq;
short toSeq;

... }
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Mondex Protocol
Automata View

ToPurse FromPurse
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Endt
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The Protocol (Modified)
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Architecture of a Java Card Application
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Z Specification of the Val Operation

ValPurseOkay

∆ConPurse

m?,m! : Message

AuthenticValMessage

status = epv

ΞConPurseVal

balance ′ = balance + pdAuth.value

status ′ = esTo

m! = ackpdAuth
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ASM Specification of the Val Operation

VAL#

if msg = val(pdAuth(receiver)) ∧ ¬ fail?
then balance(receiver) :=

balance(receiver) + pdAuth(receicer).value
state(receiver) := idle
outmsg := ack(pdAuth(receiver))

else outmsg :=⊥
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JML Specification of the Val Operation

/*@ public behavior
1 @ requires apdu != null;
2 @ assignable balance , status;

@ ensures
3 @ (balance == \old(balance)

@ + transaction.value) &&
@ (\old(status) == Epv) && (status == Endt);
@ signals only ISOException;
@ signals (ISOException e)

4 @ (( balance == \old(balance ))
@ && (status == \old(status )));
@*/
private void val_operation(APDU apdu)

throws ISOException

JML keyword in red.
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Top Level ASM Specification

BOP#

choose msg, fail?, rec with msg ∈ ether ∧ auth(rec) in
if isStartTo(msg) ∧ state(rec) = idle then STARTO#
else if isStartFrom(msg) ∧ state(rec) = idle

then STARTFROM#
else if isreq(msg) ∧ state(rec) = epr then REQ#
else if isval(msg) ∧ state(rec) = epv then V AL#
else if isack(msg) ∧ state(rec) = epa then ACK#
else ABORT#
seq ether := ether + +outmsg
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Top Level JML Specification
First Installment

/*@ public behavior
@ requires apdu != null;
@ assignable ...
@ ensures
@ ((\old(logIdx) != logIdx) ==>
@ (( logIdx ==0) &&
@ (status ==Idle) &&
@ (\old(status )== Idle )))
@ &&
@ ((\old(status )== status) ==>
@ (\old(balance )== balance) &&
@ (\old(nextSeq )== nextSeq ))
@ &&
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Top Level JML Specification
Second Installment

&&
@ ((\old(status )!= status) ==>
@
@ \old(apdu._buffer[I.OFFSET_INS ])
@ == apdu._buffer[I.OFFSET_INS]

@ && (\old(status )==Epa ==>
@ (status ==Endf &&
@ apdu._buffer[I.OFFSET_INS ]==Ack
@ && balance ==\old(balance )))
@ &&
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Top Level JML Specification
Third Installment

@ signals_only ISOException;
@ signals (ISOException e) (
@ \old(balance )== balance &&
@ \old(status )== status &&
@ \old(logIdx )== logIdx &&
@ \old(nextSeq) == nextSeq );
@*/
public void process(APDU apdu)
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Top Level Z Specification

Security Property 1 No value creation: no value may be
created in the system. The sum of all purses’ balance
does not increase.

Security Property 2.1 All value accounted: all values must be
accounted in the system. The sum of all purses’
balance and lost components does not change.

Security Property 2.2 Exception Logging: if a purse aborts a
transfer at a point where value could be lost, then
the purse logs the details.

Security Property 3 Authentic purses: a transfer can only
occur between authentic purses.

Security Property 4 Sufficient Funds: a transfer can occur only
if there are sufficient funds in the from purse.

The Mondex Case Study 17



Top Level Z Specification

Security Property 1 No value creation: no value may be
created in the system. The sum of all purses’ balance
does not increase.

Security Property 2.1 All value accounted: all values must be
accounted in the system. The sum of all purses’
balance and lost components does not change.

Security Property 2.2 Exception Logging: if a purse aborts a
transfer at a point where value could be lost, then
the purse logs the details.

Security Property 3 Authentic purses: a transfer can only
occur between authentic purses.

Security Property 4 Sufficient Funds: a transfer can occur only
if there are sufficient funds in the from purse.

The Mondex Case Study 17



Top Level Z Specification

Security Property 1 No value creation: no value may be
created in the system. The sum of all purses’ balance
does not increase.

Security Property 2.1 All value accounted: all values must be
accounted in the system. The sum of all purses’
balance and lost components does not change.

Security Property 2.2 Exception Logging: if a purse aborts a
transfer at a point where value could be lost, then
the purse logs the details.

Security Property 3 Authentic purses: a transfer can only
occur between authentic purses.

Security Property 4 Sufficient Funds: a transfer can occur only
if there are sufficient funds in the from purse.

The Mondex Case Study 17



Top Level Z Specification

Security Property 1 No value creation: no value may be
created in the system. The sum of all purses’ balance
does not increase.

Security Property 2.1 All value accounted: all values must be
accounted in the system. The sum of all purses’
balance and lost components does not change.

Security Property 2.2 Exception Logging: if a purse aborts a
transfer at a point where value could be lost, then
the purse logs the details.

Security Property 3 Authentic purses: a transfer can only
occur between authentic purses.

Security Property 4 Sufficient Funds: a transfer can occur only
if there are sufficient funds in the from purse.

The Mondex Case Study 17



Top Level Z Specification

Security Property 1 No value creation: no value may be
created in the system. The sum of all purses’ balance
does not increase.

Security Property 2.1 All value accounted: all values must be
accounted in the system. The sum of all purses’
balance and lost components does not change.

Security Property 2.2 Exception Logging: if a purse aborts a
transfer at a point where value could be lost, then
the purse logs the details.

Security Property 3 Authentic purses: a transfer can only
occur between authentic purses.

Security Property 4 Sufficient Funds: a transfer can occur only
if there are sufficient funds in the from purse.

The Mondex Case Study 17



JML Invariants
ensuring the sufficient funds property

public class ConPurseJC extends Applet
{/*@ public invariant

@ (exLog != null) && (exLog.length >0)
@ && ...
@ (balance >=0) && (balance <= ShortMaxValue)
@ && ...
@ ((status == Epr) ==>
@ (transaction.value <= balance)) &&
@ (( status ==Epv) ==>
@ (transaction.value <=
@ (ShortMaxValue - balance ))) &&
@ (\ forall byte i;i>=0 && i<exLog.length;
@ exLog[i] != null);
@*/

... }
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Relationship between Purse and Counterpurse
Purse o, Counterpurse x

Rel(o,x):
(o.transaction == x.transaction
&& o.name != x.name)
&& ((o.status == Endf) ==>
(x.status == Endt))

&& ((o.status == Endt) ==>
((x.status == Epa) || (x.status == Endf )))

&& (( status == Epa) ==>
((x.status == Epv) || (x.status == Endt )))

&& ((o.status == Epv) ==>
((x.status == Idle) || (x.status == Epr) ||
(x.status == Epa)))

&& ((o.status == Epr) ==>
((x.status == Idle) || (x.status == Epv )))
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Helper Functions

o.bookedV alue() =



−o.transaction.value if
(o.status == Epa) or
(o.status == Endf)

+o.transaction.value if
o.status == Endt

0 otherwise

o.loss() =



o.transaction.value if
(o.status == Epa) or

(o.status == Endf)
and
(x.status == Epa) or

(x.status == Endf)
0 otherwise
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Constraint on bookedValue()

ConPurseJC:

/*@ public constraint
@ ((\old(balance) != balance) ==>
@ (( balance -\old(balance ))
@ == bookedValue ()));
@*/
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All Values Accounted Property

We need to show for every purse o and its ounterpurse x

Rel(o,x)
==>
o.bookedValue() + x.bookedValue() + o.loss = 0

whenever the process method terminates, normally or abruptly.
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Proof Statistics

Method Nodes Branches Time (min)
Using Contracts

process 4,731 54 10

showProperties 6,565 50 10

Using Implementation

startFrom 3,818 102 5

startTo 3,975 105 5

req 3,482 95 5

val 3,525 91 5

ack 2,370 69 5

clear ex log 1,352 37 5

read ex log 28,292 490 35

abort if necessary 2,427 57 5
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Proof Statistics
Continued

Method Nodes Branches Time (min)
Strong Invariant

startFrom 19,084 44 10

startTo 19,015 40 10

req 23,165 64 15

val 18,689 51 15

ack 14,199 32 10

clear ex log 7,588 18 5

abort if necessary 8,761 33 5
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Further Statistics

I 63 pages of relevant Z specification

I 327 lines of Java Card code

I 2 classes
I 19 methods
I not counting API classes and methods

I 185 lines of JML specification
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Quote on Z

Z is mainly used at the specification level. Some data
and operation refinement towards an implementation is
possible in Z, but at some point a jump to code must be
made, typically informally.

by Jonathan Bowen,
in Software Specification Methods, Chapter 1
H.Habri and M.Frappier (eds), ISTE 2006.
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Critical Issues
during jump to code

I one operation on the model level (e.g., exeception logging)
might have to be realised as the combined effect of several
operations of the implementation,

I deployment of the implemented system on different platforms
has heavy influence on the verification conditions,

I replacing abstract data structures by programing language
data types is not a refinement step,

I issues that require a lot of verification effort at the model level
may no have a counter part in the implementation.

I JML ( and other OO specification languages) lack support for
system invariants.
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THE END
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The Mondex Case Study
Previous contributions to the Grand Challenge repository
I Specification using Z,

refinement proofs by hand and using Z/Eves.

S. Stepney, D. Cooper, and J. Woodcock.
Oxford University Computing Laboratory, 2000.

I Specification using ASM (Abstract State Machines),
refinement verification with KIV

G. Schellhorn, H. Grundy, D. Haneberg, W.Reif.
Universität Augsburg, 2006.

I Specification using Alloy, verification with Alloy model finder

T. Ramananandro. École Normale Supérieure, Paris, 2006.

I Specification using RSL (Raise Specification Language),
refinement verification with PVS and SAL

C. George, A. E. Haxthausen.
United Nations University, Macau, 2007.
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