
KeY + Java 5 Enums Enhanced loops Generics

Software Verification for Java 5
KeY Symposium 2007

Mattias Ulbrich

June 14, 2007

KeY + Java 5 Enums Enhanced loops Generics

Content

KeY + Java 5

Typesafe Enumeration Datatypes

Enhanced For Loops

Generic Classes

KeY + Java 5 Enums Enhanced loops Generics

1. Keep pace with the progress of the industrial standard

2. Examine KeY’s flexibility and adaptibility

3. Do the new features support verification?

4. Do they need verification?

KeY + Java 5 Enums Enhanced loops Generics

Novelties in the language in Java 5

• Typesafe enumeration types

• Iteration loops

• Auto-Boxing of primitive types

• Generic classes

• Covariant return types

• Static imports

• Annotations

• Variable arguments

No relevance for
verification

KeY + Java 5 Enums Enhanced loops Generics

Novelties in the language in Java 5

• Typesafe enumeration types

• Iteration loops

• Auto-Boxing of primitive types

• Generic classes

• Covariant return types

• Static imports

• Annotations

• Variable arguments

No relevance for
verification

KeY + Java 5 Enums Enhanced loops Generics

Novelties in the language in Java 5

• Typesafe enumeration types

• Iteration loops

• Auto-Boxing of primitive types

• Generic classes

• Covariant return types

• Static imports

• Annotations

• Variable arguments

No relevance for
verification

KeY + Java 5 Enums Enhanced loops Generics

Typesafe Enumeration Datatypes

KeY + Java 5 Enums Enhanced loops Generics

Typesafe Enumeration Datatypes

enum E { e1, e2, . . . , en }

• A new keyword to declare enumeration types: enum

• followed by the name of the datatype

• followed by the enum constants

• enum declares reference types – not primitive types

• the enum constants uniquely enumerate all (non-null)
instances

Example

enum Season { SPRING, SUMMER, AUTUMN, WINTER }

KeY + Java 5 Enums Enhanced loops Generics

Using the object repository

Enumerations are reference types (special classes in fact)

=⇒ Use the mechanisms available for reference types.

The object repository C::〈get〉() : Nat �→ C

For every exact instance o of a class C there is an index i ∈ Nat
with o

·
= C::〈get〉(i).

Repository access for Enums:

E .e1
·
= E::〈get〉(0)

E .e2
·
= E::〈get〉(1)
. . .

E .en
·
= E::〈get〉(n − 1)

E::〈nextToCreate〉 ·
= n

KeY + Java 5 Enums Enhanced loops Generics

Using the object repository

Enumerations are reference types (special classes in fact)

=⇒ Use the mechanisms available for reference types.

The object repository C::〈get〉() : Nat �→ C

For every exact instance o of a class C there is an index i ∈ Nat
with o

·
= C::〈get〉(i).

Repository access for Enums:

E .e1
·
= E::〈get〉(0)

E .e2
·
= E::〈get〉(1)
. . .

E .en
·
= E::〈get〉(n − 1)

E::〈nextToCreate〉 ·
= n

KeY + Java 5 Enums Enhanced loops Generics

Advantages

Using the standard object repository is good:

• Only few new rules in the calculus to handle enums

• Use established techniques

• Problems on enum instances are reduced to problems on their
indexes, thus natural numbers

• Scales well

KeY + Java 5 Enums Enhanced loops Generics

Enhanced For Loops

KeY + Java 5 Enums Enhanced loops Generics

Enhanced For Loops

Purpose

The enhanced for loop allows to iterate through a collection or an
array without having to create an explicit Iterator or counter
variable.

Traditional Java

for(int i = 0; i < array. length ; i++) {
System.out. println (array [i]);

}

Java 5

for(int x : array) {
System.out. println (x);

}

KeY + Java 5 Enums Enhanced loops Generics

Enhanced For Loops

Purpose

The enhanced for loop allows to iterate through a collection or an
array without having to create an explicit Iterator or counter
variable.

Traditional Java

for(int i = 0; i < array. length ; i++) {
System.out. println (array [i]);

}

Java 5

for(int x : array) {
System.out. println (x);

}

KeY + Java 5 Enums Enhanced loops Generics

Enhanced For Loops

Purpose

The enhanced for loop allows to iterate through a collection or an
array without having to create an explicit Iterator or counter
variable.

Traditional Java

for(int i = 0; i < array. length ; i++) {
System.out. println (array [i]);

}

Java 5

for(int x : array) {
System.out. println (x);

}

KeY + Java 5 Enums Enhanced loops Generics

Equivalent loops

int a[] = array;
for(int i = 0; i < a.length ; i++) {

int x = a[i];
/∗ body ∗/

}

1. a and i are new variables not accessible from within body

2. a.length is constant in this context

3. The counter i is incremented in every iteration

=⇒ There are finite many iterations

=⇒ The loop terminates if every iteration terminates.

for(int x : array)
{ /∗ body ∗/ }

KeY + Java 5 Enums Enhanced loops Generics

Equivalent loops

int a[] = array;
for(int i = 0; i < a.length ; i++) {

int x = a[i];
/∗ body ∗/

}

1. a and i are new variables not accessible from within body

2. a.length is constant in this context

3. The counter i is incremented in every iteration

=⇒ There are finite many iterations

=⇒ The loop terminates if every iteration terminates.

for(int x : array)
{ /∗ body ∗/ }

KeY + Java 5 Enums Enhanced loops Generics

Invariant rules with termination

enhForArrayInv

Null Case
Base Case
Abnormal body termination
Invariant preserved
Use Case

Γ ` U 〈 for(ty x : se){ p } 〉 ϕ, ∆

1. uses the 〈·〉-modality

2. the sequents contain more formulae: the encoded extra
knowledge about the special loop.

KeY + Java 5 Enums Enhanced loops Generics

“Enhanced For = Enhanced Performance”

Experimental results using this rule

Verification of the “maximum in an array” loop.

new rule while rule
Nodes in the proof tree 374 1053
Branches in the proof tree 8 21
Additional manual instantiations 2 3

=⇒ Complexity reduced to roughly a third.

A syntactical entity that is specialised allows to retrieve more
information and thereby shorten proofs.

KeY + Java 5 Enums Enhanced loops Generics

Generic Classes

= Parametric Polymorphism

KeY + Java 5 Enums Enhanced loops Generics

Generics∗ improve static typing and type safety

Traditional Java

Vector v = new Vector();

v.add(”String”);
String s = (String)v.get (0);

• Type checking performed at
run-time

• failure must be taken into
account by verifier

Java 5

Vector<String> v =
new Vector<String>();

v.add(”String”);
String s = v.get (0);

• Type checking performed at
compile-time

• no possible exception that
must be taken into account
by verifier

∗ if they were well-implemented

KeY + Java 5 Enums Enhanced loops Generics

Generics∗ improve static typing and type safety

Traditional Java

Vector v = new Vector();

v.add(”String”);
String s = (String)v.get (0);

• Type checking performed at
run-time

• failure must be taken into
account by verifier

Java 5

Vector<String> v =
new Vector<String>();

v.add(”String”);
String s = v.get (0);

• Type checking performed at
compile-time

• no possible exception that
must be taken into account
by verifier

∗ if they were well-implemented

KeY + Java 5 Enums Enhanced loops Generics

Generics∗ improve static typing and type safety

Traditional Java

Vector v = new Vector();

v.add(”String”);
String s = (String)v.get (0);

• Type checking performed at
run-time

• failure must be taken into
account by verifier

Java 5

Vector<String> v =
new Vector<String>();

v.add(”String”);
String s = v.get (0);

• Type checking performed at
compile-time

• no possible exception that
must be taken into account
by verifier

∗ if they were well-implemented

KeY + Java 5 Enums Enhanced loops Generics

Polymorphic functions

Attributes induce functions

class Chain {
Chain tail ;
Object head; head : Chain → Object

}

Polymorphic attributes induce polymorphic functions

class Chain<T> {
Chain<T> tail;
T head; head : ∀T .Chain〈T 〉 → T

}

This is a well-known concept in type-theory, but not in
many-sorted logics.

KeY + Java 5 Enums Enhanced loops Generics

Polymorphic functions

Attributes induce functions

class Chain {
Chain tail ;
Object head; head : Chain → Object

}

Polymorphic attributes induce polymorphic functions

class Chain<T> {
Chain<T> tail;
T head; head : ∀T .Chain〈T 〉 → T

}

This is a well-known concept in type-theory, but not in
many-sorted logics.

KeY + Java 5 Enums Enhanced loops Generics

Infinite type system

“Parametric recursion”

String

is a valid type that can show up at run-time.

Problem

Some rules need a finite type system to enumerate types
(method dispatch, dynamic subtypes, . . .)

Handle this in JavaDL ...

... with existentially quantified type variables

∃X . object 1 Vector〈X 〉

KeY + Java 5 Enums Enhanced loops Generics

Infinite type system

“Parametric recursion”

Vector<String>

is a valid type that can show up at run-time.

Problem

Some rules need a finite type system to enumerate types
(method dispatch, dynamic subtypes, . . .)

Handle this in JavaDL ...

... with existentially quantified type variables

∃X . object 1 Vector〈X 〉

KeY + Java 5 Enums Enhanced loops Generics

Infinite type system

“Parametric recursion”

Vector<Vector<String>>

is a valid type that can show up at run-time.

Problem

Some rules need a finite type system to enumerate types
(method dispatch, dynamic subtypes, . . .)

Handle this in JavaDL ...

... with existentially quantified type variables

∃X . object 1 Vector〈X 〉

KeY + Java 5 Enums Enhanced loops Generics

Infinite type system

“Parametric recursion”

Vector<Vector<Vector<String>>>

is a valid type that can show up at run-time.

Problem

Some rules need a finite type system to enumerate types
(method dispatch, dynamic subtypes, . . .)

Handle this in JavaDL ...

... with existentially quantified type variables

∃X . object 1 Vector〈X 〉

KeY + Java 5 Enums Enhanced loops Generics

Infinite type system

“Parametric recursion”

Vector<...Vector<Vector<Vector<String>>>...>

is a valid type that can show up at run-time.

Problem

Some rules need a finite type system to enumerate types
(method dispatch, dynamic subtypes, . . .)

Handle this in JavaDL ...

... with existentially quantified type variables

∃X . object 1 Vector〈X 〉

KeY + Java 5 Enums Enhanced loops Generics

Infinite type system

“Parametric recursion”

Vector<...Vector<Vector<Vector<String>>>...>

is a valid type that can show up at run-time.

Problem

Some rules need a finite type system to enumerate types
(method dispatch, dynamic subtypes, . . .)

Handle this in JavaDL ...

... with existentially quantified type variables

∃X . object 1 Vector〈X 〉

KeY + Java 5 Enums Enhanced loops Generics

Infinite type system

“Parametric recursion”

Vector<...Vector<Vector<Vector<String>>>...>

is a valid type that can show up at run-time.

Problem

Some rules need a finite type system to enumerate types
(method dispatch, dynamic subtypes, . . .)

Handle this in JavaDL ...

... with existentially quantified type variables

∃X . object 1 Vector〈X 〉

KeY + Java 5 Enums Enhanced loops Generics

Type Meta-types

������
������
������
������
������
������

������
������
������
������
������
������

integers

>

Object
Jboolean

DJ

• Add the “type of reference types” J to the type hierarchy.

• Add the reference types as new objects to the domain

• Add appropriate function symbols to the signature

=⇒ Allow quantification over types class

KeY + Java 5 Enums Enhanced loops Generics

Generic contracts

Method contracts

Given a pre-condition pre prior to a method call o.m(), a
post-condition post holds afterwards:

pre → 〈o.m();〉post

Generic method contracts

Contracts for methods in generic classes are implicitly universally
quantified over all types T : J:

∀T :J. pre(T) → 〈o.m();〉post(T)

KeY + Java 5 Enums Enhanced loops Generics

Generic contracts

Method contracts

Given a pre-condition pre prior to a method call o.m(), a
post-condition post holds afterwards:

pre → 〈o.m();〉post

Generic method contracts

Contracts for methods in generic classes are implicitly universally
quantified over all types T : J:

∀T :J. pre(T) → 〈o.m();〉post(T)

KeY + Java 5 Enums Enhanced loops Generics

Generics and JavaDL

• Adapt ideas from type theory to JavaDL.

• “Lift” types to the object level as type J.

• Allow quantification over types ...

• ... and instantiations

• generic attributes lead to polymorphic functions in the logic.

=⇒ Severe changes in some fundamental concepts of the logic.

KeY + Java 5 Enums Enhanced loops Generics

Generics and JavaDL

• Adapt ideas from type theory to JavaDL.

• “Lift” types to the object level as type J.

• Allow quantification over types ...

• ... and instantiations

• generic attributes lead to polymorphic functions in the logic.

=⇒ Severe changes in some fundamental concepts of the logic.

Summary

KeY + Java 5

Remember: Goals to examine

1. How the new features support / need verification

2. KeY’s flexibility and adaptibility

To sum it up ...

Feature Needs Verif. Supports Verif. Fits

Enums YES YES YES

Enh. For YES YES YES

Boxing YES NO NO

Generics NO∗ YES NO

KeY + Java 5

Remember: Goals to examine

1. How the new features support / need verification

2. KeY’s flexibility and adaptibility

To sum it up ...

Feature Needs Verif. Supports Verif. Fits

Enums YES YES YES

Enh. For YES YES YES

Boxing YES NO NO

Generics NO∗ YES NO

ThanK e You !

Enhanced For Boxing/Unboxing Generic Classes

Non-termination if iterating a collection

Nicht uebertragbar

Results for arrays quite promising – but cannot be transferred to
the iterator case as well.

Consider a singly-chained list that is iterated and appended to at
the same time: The iteration process will not terminate.

��
HH

iterator
⇓

��
HH

Enhanced For Boxing/Unboxing Generic Classes

Non-termination if iterating a collection

Nicht uebertragbar

Results for arrays quite promising – but cannot be transferred to
the iterator case as well.

Consider a singly-chained list that is iterated and appended to at
the same time: The iteration process will not terminate.

��
HH

��
HH

iterator
⇓

Enhanced For Boxing/Unboxing Generic Classes

Non-termination if iterating a collection

Nicht uebertragbar

Results for arrays quite promising – but cannot be transferred to
the iterator case as well.

Consider a singly-chained list that is iterated and appended to at
the same time: The iteration process will not terminate.

��
HH

��
HH

iterator
⇓

��
HH

Enhanced For Boxing/Unboxing Generic Classes

Non-termination if iterating a collection

Nicht uebertragbar

Results for arrays quite promising – but cannot be transferred to
the iterator case as well.

Consider a singly-chained list that is iterated and appended to at
the same time: The iteration process will not terminate.

��
HH

��
HH ��

HH

iterator
⇓

Enhanced For Boxing/Unboxing Generic Classes

Non-termination if iterating a collection

Nicht uebertragbar

Results for arrays quite promising – but cannot be transferred to
the iterator case as well.

Consider a singly-chained list that is iterated and appended to at
the same time: The iteration process will not terminate.

��
HH

��
HH ��

HH

iterator
⇓

��
HH

Enhanced For Boxing/Unboxing Generic Classes

Non-termination if iterating a collection

Nicht uebertragbar

Results for arrays quite promising – but cannot be transferred to
the iterator case as well.

Consider a singly-chained list that is iterated and appended to at
the same time: The iteration process will not terminate.

��
HH

��
HH ��

HH ��
HH

iterator
⇓

Enhanced For Boxing/Unboxing Generic Classes

Non-termination if iterating a collection

Nicht uebertragbar

Results for arrays quite promising – but cannot be transferred to
the iterator case as well.

Consider a singly-chained list that is iterated and appended to at
the same time: The iteration process will not terminate.

��
HH

��
HH ��

HH ��
HH

iterator
⇓

��
HH

Enhanced For Boxing/Unboxing Generic Classes

Non-termination if iterating a collection

Nicht uebertragbar

Results for arrays quite promising – but cannot be transferred to
the iterator case as well.

Consider a singly-chained list that is iterated and appended to at
the same time: The iteration process will not terminate.

��
HH

��
HH ��

HH ��
HH ��

HH

iterator
⇓

Enhanced For Boxing/Unboxing Generic Classes

Non-termination if iterating a collection

Nicht uebertragbar

Results for arrays quite promising – but cannot be transferred to
the iterator case as well.

Consider a singly-chained list that is iterated and appended to at
the same time: The iteration process will not terminate.

��
HH

��
HH ��

HH ��
HH ��

HH

iterator
⇓

. . .

Enhanced For Boxing/Unboxing Generic Classes

Auto-Boxing and Unboxing

Idea

Bring primitive datatypes and reference types closer together and
make them more interoperable.

int
double

Integer
Double

boolean
...

Boolean
...

Primitive types: Reference types:

Unboxing

Boxing

Enhanced For Boxing/Unboxing Generic Classes

Auto-Boxing and Unboxing

Bring primitive datatypes and reference types closer together

Manual boxing in traditional Java

Integer intObj = new Integer(3);
int intvalue = intObj.intValue();

Auto-boxing in Java 5

Integer intObj = 3;
int intvalue = intObj;

Important:

• parts of the behaviour left open by the specification

• Can give rise to unexpected NullPointerExceptions

Enhanced For Boxing/Unboxing Generic Classes

Auto-Boxing and Unboxing

Bring primitive datatypes and reference types closer together

Manual boxing in traditional Java

Integer intObj = new Integer(3);
int intvalue = intObj.intValue();

Auto-boxing in Java 5

Integer intObj = 3;
int intvalue = intObj;

Important:

• parts of the behaviour left open by the specification

• Can give rise to unexpected NullPointerExceptions

Enhanced For Boxing/Unboxing Generic Classes

Divide into 2 steps

1. Identify the boxing and unboxing
locations in the source code

2. Handle them

Enhanced For Boxing/Unboxing Generic Classes

Divide into 2 steps

1. Identify the boxing and unboxing
locations in the source code

2. Handle them

Enhanced For Boxing/Unboxing Generic Classes

Divide into 2 steps

1. Identify the boxing and unboxing
locations in the source code

2. Handle them
Can be described pretty
accurately by taclets.

The assignment rule is
too generous.

Enhanced For Boxing/Unboxing Generic Classes

Borrowing from type theory

Quantified types

In type theory there exist existential and universal types:

int list <: (∃α.α list)
(∀α.α → α) <: int → int

Similar ideas in JavaDL

Allow the creation of type variables and quantification over them.

∃X .object Vector〈X 〉

Enhanced For Boxing/Unboxing Generic Classes

Borrowing from type theory

Quantified types

In type theory there exist existential and universal types:

int list <: (∃α.α list)
(∀α.α → α) <: int → int

Similar ideas in JavaDL

Allow the creation of type variables and quantification over them.

∃X .object Vector〈X 〉

	KeY + Java 5
	Typesafe Enumeration Datatypes
	Enhanced For Loops
	Generic Classes
	Enhanced For
	Boxing/Unboxing
	Generic Classes

