KeY + Java 5 Enums Enhanced loops Generics

Software Verification for Java 5
KeY Symposium 2007

Mattias Ulbrich

June 14, 2007

KeY + Java 5 Enums Enhanced loops Generics

Content

KeY + Java 5

Typesafe Enumeration Datatypes

Enhanced For Loops

Generic Classes

KeY + Java 5 Enums Enhanced loops Generics

G
Why Kﬁy + %5?

1. Keep pace with the progress of the industrial standard
2. Examine KeY'’s flexibility and adaptibility
3. Do the new features support verification?

4. Do they need verification?

KeY + Java 5 Enums Enhanced loops Generics

Novelties in the language in Java 5

Typesafe enumeration types Covariant return types

Iteration loops Static imports

Auto-Boxing of primitive types e Annotations

Generic classes

Variable arguments

KeY + Java 5 Enums Enhanced loops Generics

Novelties in the language in Java 5

Typesafe enumeration types e Covari eturn types

X

Static rts

Iteration loops

Auto-Boxing of primitive types e Annot S

Variab uments

XX

Generic classes

No relevance for
verification

KeY + Java 5 Enums Enhanced loops Generics

Novelties in the language in Java 5

e Typesafe gnumeration types e Covari eturn types

X

Static rts

e |teration loops
° Auto—@(ng of primitive types e Annot S

-< Generic classes >

Variab uments

XX

No relevance for
verification

KeY + Java 5 Enums Enhanced loops Generics

Typesafe Enumeration Datatypes

Enums

Typesafe Enumeration Datatypes

enumE { e, e, ..., e, }

A new keyword to declare enumeration types: enum

followed by the name of the datatype

followed by the enum constants

enum declares reference types — not primitive types

the enum constants uniquely enumerate all (non-null)
instances

Example
enum Season { SPRING, SUMMER, AUTUMN, WINTER }

KeY + Java 5 Enums Enhanced loops Generics

Using the object repository

Enumerations are reference types (special classes in fact)

— Use the mechanisms available for reference types.

The object repository C::(get)() : Nat — C

For every exact instance o of a class C there is an index / € Nat
with o = C::(get) (/).

Enums

Using the object repository

Enumerations are reference types (special classes in fact)

— Use the mechanisms available for reference types.

The object repository C::(get)() : Nat — C

For every exact instance o of a class C there is an index / € Nat
with o = C::(get) (/).

Repository access for Enums:

E.ey = E:(get)(0)
E.eo = E:(get)(1)
E.ep : E::(get)(n—1)

E::(nextToCreate) = n

KeY + Java 5 Enums Enhanced loops Generics

Advantages

Using the standard object repository is good:
e Only few new rules in the calculus to handle enums
e Use established techniques

e Problems on enum instances are reduced to problems on their
indexes, thus natural numbers

e Scales well

Enhanced For Loops

Enhanced loops

Enhanced For Loops

Purpose

The enhanced for loop allows to iterate through a collection or an
array without having to create an explicit lterator or counter

variable.

Enhanced loops

Enhanced For Loops

Purpose

The enhanced for loop allows to iterate through a collection or an
array without having to create an explicit lterator or counter
variable.

Traditional Java

for(int i =0; i < array.length; i++) {
System.out. println (array [i]);

}

Enhanced loops

Enhanced For Loops

Purpose

The enhanced for loop allows to iterate through a collection or an
array without having to create an explicit lterator or counter
variable.

Traditional Java

for(int i =0; i < array.length; i++) {
System.out. println (array [i]);

}

Java b

for(int x : array) {
System.out. println (x);

}

Enhanced loops

Equivalent loops

for(int x : array)

{ /x body =/ }

int a[| = array;

for(int i =0; i < a.length; i++) {
int x = a[/];
/* body */

¥

Enhanced loops

Equivalent loops

for(int x : array)

{ /x body =/}

int a[| = array;

for(int i =0; i < a.length; i++) {
int x = a[/];
/* body */

¥

1. a and i are new variables not accessible from within body
2. a.length is constant in this context
3. The counter i is incremented in every iteration

—= There are finite many iterations

= The loop terminates if every iteration terminates.

Enhanced loops

Invariant rules with termination

Null Case

Base Case

Abnormal body termination
Invariant preserved

Use Case

enhForArraylnv

>

re Z/[for(tyx :se){ p }%

1. uses the (-)-modality

2. the sequents contain more formulae: the encoded extra
knowledge about the special loop.

Enhanced loops

“Enhanced For = Enhanced Performance”

Experimental results using this rule

Verification of the “maximum in an array” loop.

new rule | while rule
Nodes in the proof tree 374 1053
Branches in the proof tree 8 21
Additional manual instantiations 2 3

— Complexity reduced to roughly a third.

A syntactical entity that is specialised allows to retrieve more

information and thereby shorten proofs.

KeY + Java 5 Enums Enhanced loops Generics

Generic Classes

= Parametric Polymorphism

KeY + Java 5 Enums Enhanced loops Generics

Generics® improve static typing and type safety

* if they were well-implemented

KeY + Java 5 Enums Enhanced loops Generics

Generics® improve static typing and type safety

Traditional Java Java b
Vector v = new Vector(); Vector<String> v =
new Vector<String>();
v.add(" String"); v.add(" String");
String s = (String)v.get (0); String s = v.get(0);

* if they were well-implemented

Generics

Generics® improve static typing and type safety

Traditional Java Java b
Vector v = new Vector(); Vector<String> v =
new Vector<String>();
v.add(" String"); v.add(" String");
String s = (String)v.get (0); String s = v.get(0);
e Type checking performed at e Type checking performed at
run-time compile-time
e failure must be taken into e no possible exception that
account by verifier must be taken into account
by verifier

* if they were well-implemented

KeY + Java 5 Enums Enhanced loops

Polymorphic functions

Attributes induce functions

class Chain {
Chain tail ;
Object head; head : Chain — Object

}

Generics

Generics

Polymorphic functions

Attributes induce functions

class Chain {
Chain tail ;
Object head; head : Chain — Object

}

Polymorphic attributes induce polymorphic functions

class Chain<T> {
Chain<T> tail;
T head; head : ¥YT.Chain(T) — T

}

This is a well-known concept in type-theory, but not in
many-sorted logics.

KeY + Java 5 Enums Enhanced loops Generics

Infinite type system
“Parametric recursion”

String

is a valid type that can show up at run-time.

KeY + Java 5 Enums Enhanced loops Generics

Infinite type system
“Parametric recursion”

Vector<String>

is a valid type that can show up at run-time.

KeY + Java 5 Enums Enhanced loops Generics

Infinite type system
“Parametric recursion”

Vector<Vector<String>>

is a valid type that can show up at run-time.

KeY + Java 5 Enums Enhanced loops Generics

Infinite type system
“Parametric recursion”

Vector<Vector<Vector<String>>>

is a valid type that can show up at run-time.

KeY + Java 5 Enums Enhanced loops Generics

Infinite type system
“Parametric recursion”

Vector<...Vector<Vector<Vector<String>>>...>

is a valid type that can show up at run-time.

Generics
Infinite type system
“Parametric recursion”
Vector<...Vector<Vector<Vector<String>>>...>
is a valid type that can show up at run-time.

Problem

Some rules need a finite type system to enumerate types
(method dispatch, dynamic subtypes, . ..)

Generics

Infinite type system
“Parametric recursion”

Vector<...Vector<Vector<Vector<String>>>...>

is a valid type that can show up at run-time.

Problem

Some rules need a finite type system to enumerate types
(method dispatch, dynamic subtypes, . ..)

Handle this in JavaDL ...

. with existentially quantified type variables

3X. object E; Vector(X)

KeY + Java 5 Enums Enhanced loops Generics

Type Meta-types

e Add the “type of reference types” J to the type hierarchy.
e Add the reference types as new objects to the domain
e Add appropriate function symbols to the signature

= Allow quantification over types class

KeY + Java 5 Enums Enhanced loops Generics

Generic contracts

Method contracts

Given a pre-condition pre prior to a method call 0.m(), a
post-condition post holds afterwards:

pre — (o.m() ;)post

Generics

Generic contracts

Method contracts

Given a pre-condition pre prior to a method call 0.m(), a
post-condition post holds afterwards:

pre — (o.m() ;)post

Generic method contracts

Contracts for methods in generic classes are implicitly universally
quantified over all types T : J:

VT:J. pre(T) — (0.m(Q) ;) post(T)

Generics and JavaDL

Adapt ideas from type theory to JavaDL.
“Lift" types to the object level as type J.
Allow quantification over types ...

. and instantiations

generic attributes lead to polymorphic functions in the logic.

Generics

KeY + Java 5 Enums Enhanced loops Generics

Generics and JavaDL

Adapt ideas from type theory to JavaDL.

“Lift" types to the object level as type J.

Allow quantification over types ...

e ... and instantiations

generic attributes lead to polymorphic functions in the logic.

= Severe changes in some fundamental concepts of the logic.

Summary

KeY + Java 5

Remember: Goals to examine
1. How the new features support / need verification
2. KeY'’s flexibility and adaptibility

KeY + Java 5

Remember: Goals to examine

1. How the new features support / need verification
2. KeY'’s flexibility and adaptibility

To sum it up ...

Feature | Needs Verif. | Supports Verif. | Fits
Enums
Enh. For
Boxing NO NO
Generics NO* NO

ThanK e You !

Enhanced For

Non-termination if iterating a collection

Nicht uebertragbar

Results for arrays quite promising — but cannot be transferred to
the iterator case as well.

Consider a singly-chained list that is iterated and appended to at
the same time: The iteration process will not terminate.

iterator

Enhanced For

Non-termination if iterating a collection

Nicht uebertragbar

Results for arrays quite promising — but cannot be transferred to
the iterator case as well.

Consider a singly-chained list that is iterated and appended to at
the same time: The iteration process will not terminate.

iterator

Enhanced For Boxing/Unboxing Generic Classes

Non-termination if iterating a collection

Nicht uebertragbar

Results for arrays quite promising — but cannot be transferred to
the iterator case as well.

Consider a singly-chained list that is iterated and appended to at
the same time: The iteration process will not terminate.

iterator

Enhanced For

Non-termination if iterating a collection

Nicht uebertragbar

Results for arrays quite promising — but cannot be transferred to
the iterator case as well.

Consider a singly-chained list that is iterated and appended to at
the same time: The iteration process will not terminate.

iterator

—

Enhanced For

Non-termination if iterating a collection

Nicht uebertragbar

Results for arrays quite promising — but cannot be transferred to
the iterator case as well.

Consider a singly-chained list that is iterated and appended to at
the same time: The iteration process will not terminate.

iterator

Enhanced For

Non-termination if iterating a collection

Nicht uebertragbar

Results for arrays quite promising — but cannot be transferred to
the iterator case as well.

Consider a singly-chained list that is iterated and appended to at
the same time: The iteration process will not terminate.

iterator

Enhanced For

Non-termination if iterating a collection

Nicht uebertragbar

Results for arrays quite promising — but cannot be transferred to
the iterator case as well.

Consider a singly-chained list that is iterated and appended to at
the same time: The iteration process will not terminate.

iterator

Enhanced For

Non-termination if iterating a collection

Nicht uebertragbar

Results for arrays quite promising — but cannot be transferred to
the iterator case as well.

Consider a singly-chained list that is iterated and appended to at
the same time: The iteration process will not terminate.

iterator

Enhanced For

Non-termination if iterating a collection

Nicht uebertragbar

Results for arrays quite promising — but cannot be transferred to
the iterator case as well.

Consider a singly-chained list that is iterated and appended to at
the same time: The iteration process will not terminate.

iterator

Boxing/Unboxing

Auto-Boxing and Unboxing

Idea

Bring primitive datatypes and reference types closer together and
make them more interoperable.

Primitive types:

int
double
boolean

Boxing

_——

Reference types:

Integer
Double
Boolean

Unboxing

Enhanced For Boxing/Unboxing Generic Classes

Auto-Boxing and Unboxing

Bring primitive datatypes and reference types closer together

Manual boxing in traditional Java
Integer intObj = new Integer(3);
int intvalue = intObj.intValue();
Auto-boxing in Java 5

Integer intObj = 3;
int intvalue = intObj;

Boxing/Unboxing

Auto-Boxing and Unboxing

Bring primitive datatypes and reference types closer together

Manual boxing in traditional Java

Integer intObj = new Integer(3);
int intvalue = intObj.intValue();

Auto-boxing in Java 5
Integer intObj = 3;
int intvalue = intObj;
Important:
e parts of the behaviour left open by the specification

e Can give rise to unexpected NullPointerExceptions

Enhanced For Boxing/Unboxing

Divide into 2 steps

1. Identify the boxing and unboxing
locations in the source code

2. Handle them

Generic Classes

Enhanced For Boxing/Unboxing

Divide into 2 steps

1. Identify boxing and unboxing
locatigfs | e source code

2. Handle them

Generic Classes

Enhanced For Boxing/Unboxing Generic Classes

Divide into 2 steps

1. Identify boxing and unboxing

. ; The assignment rule is
locatigfs | e source code

too generous.

Can be described pretty

2. Handlg thiem accurately by taclets.

Enhanced For Boxing/Unboxing

Borrowing from type theory

Quantified types

In type theory there exist existential and universal types:

int list <: (Ja.a list)
(Va.ao —) <: int —int

Generic Classes

Generic Classes

Borrowing from type theory

Quantified types

In type theory there exist existential and universal types:

int list <: (Ja.a list)
(Va.ao —) <: int —int

Similar ideas in JavaDL

Allow the creation of type variables and quantification over them.

X .object E Vector(X)

	KeY + Java 5
	Typesafe Enumeration Datatypes
	Enhanced For Loops
	Generic Classes
	Enhanced For
	Boxing/Unboxing
	Generic Classes

