
HOW PRINCESS
TEACHES YOU TO

THINK
Thomas Baar

KeY-Workshop Summer 2016, Giersch-Chalet, France

Results of my Sabbatical in Russia
(including outcome of discussions at PSI 2015 in Kazan)

In Memoriam

Helmut Veith (February 5, 1971 -- March 12, 2016)

Talk‘s Topic: The Value of PRINCESS-
Integration into a DSL - Toolset
◦ Definition of DSLs with Xtext

◦ A concrete DSL: SMINV

◦ Grammar

◦ Checking Syntactic Well-Formedness Rules

◦ Checking Semantic Well-Formedness Rules using PRINCESS

◦ Application of SMINV for Student Quizes

◦ Analyzing Control-Flow-graphs

◦ Analyzing Petri-Nets

◦ Developing a Front-end language for SMINV

◦ Future Work

Defining and Using DSLs with

DSL Definition DSL Usage

Yakindu - A valuable Tool to Teach
State Machines

◦ Yakindu (by Itemis)

◦ Graphical editor for State Machines

◦ Simulator to execute modeled State Machine

◦ debugging (only !) concrete traces

◦ Code generator for Java, C++, ...

◦ Basically enables Graphical Programming !!!!

◦ However: No support for

◦ adding invariants on certain states

◦ checking consistency of invariants

SMINV – A textual DSL for State
Machines With Invariants

Textual Encoding of Yakindu‘s State Machine

Declarations

Transition

Pre-State Post-State Action (Var-Update)

GuardEvent

SMINV – Grammar is straight-forward

Semantics of Update as in KeY:

- when executing the transition,

change the value of the

variable (LHS) to the value of

the given term (RHS) and

does not change anything else !

SMINV – Integrating Invariants into
the language

New language-construct

„invariant of a state“

Term

- represents arithmetic expression

language over variables

- is imported and adapted from

different project

Validator – Check Conditions on AST

◦ Validator

◦ Check condition on the parsed AST

◦ implemented in Java-dialect Xtend

Validator

Grammar

Transparent walking through AST

strictly adhering to the grammar

DSL Definition DSL Usage

Integration of PRINCESS for
„semantic validation“

Semantic Validator „Transition
Preserves Post-State Invariants“

Implemented As

Example: Simple Update

No Error – every

transition obeys invariants

Error – feedback

in which situation

invariant is broken

Example: Simple Loop

Example: Simple Loop (Solution)

Additional

invariants are

semantic

arguments for

original claim

Encoding of Petri-Nets within SMINV

Encoding:

- place -> variable

- transition -> event

- the semantics of

PN-transitions is

encoded by guard/action

- -> one global state ‚s‘

- initialization -> updates ‚start‘ – ‚s‘

DSL_PN DSL_SMINV
Encoding by Code-Generator

Proving Safety-Props for Petri-Nets

Reason: Encoding ‘p1‘ -> ‘p1 == 1‘ is rather

strict and only justified for nets with at most one

token per place

Not Provable !!!To be read as:

Always (in all reachable

states), there is a token

on p1 or p2

Proving Safety-Props for Petri-Nets

Provable (explicit statement that

number of tokens is always 0 or 1)

Example: Elevator specified by as Petri-Net

Not Provable !!!

Example: Elevator as Petri-Net

Provable !!!

Summary
◦ Starting Point: Yakindu

◦ Xtext-Grammar for State-Machines is folklore

◦ Adding invariants to language

◦ easy to realize but increases dramatically expressive power

◦ PRINCESS has been integrated to discard proof obligations

◦ very fast -> instant feedback to the user !!!

◦ SMINV can simulate Petri-nets

◦ Lightweight analysis of Petri-nets now possible

◦ Target audience of tool: students doing state modelling

Everything is available on GitHub

https://github.com/thomasbaar/simplesma.git

Future Work

◦ Graphical editor for Xtext languages

◦ currently, a Bachelor-thesis works on this

◦ Better support for „front-end“ languages

◦ errors should be shown directly in Petri-Net editor (not only in encoded SMINV-file)

