
How banks can
maintain stability

Carlo A. Furia

Chalmers University of Technology

bugcounting.net

http://bugcounting.net/

Class-invariant based
reasoning with

semantic collaboration

Reasoning about OO

I’ll present a framework for reasoning
about the functional correctness

of object-oriented programs
based on class (object) invariants.

Reasoning about OO

Methodology: semantic collaboration

– includes an ownership scheme

Implementation: AutoProof verifier

– for simplicity, I will also use “AutoProof” to refer
to the methodology

Reference language: Eiffel

– but practically everything applicable to Java/JML
and similar OO languages

Main features of the framework

• Targets idiomatic OO structures (OO patterns)

• Flexible (semantic)

• Reasonably concise (defaults)

• Applicable to realistic implementations
(data structure library)

• Sequential programs only

AutoProof in a nutshell

AutoProof is an auto-active verifier for Eiffel

• Prover for functional properties

• All-out support of object-oriented idiomatic
structures (e.g. patterns)

– Based on class invariants

6
Julian TschannenNadia Polikarpova Bertrand Meyer

Auto-active user/tool interaction

1. Code + Annotations 2. Push button

3. Verification outcome

4. Correct/Revise

7

Sound program verifiers compared

8

more
complex
properties

more
automation

static analysis

interactive (KIV)

ESC/Java2

OpenJML

Spec#
VCC

Chalice

Dafny

KeY VeriFast

How AutoProof works

Program
+

specification
+

annotations

Boogie
program

Verification
conditions

Proof

AutoProof

pre-/postconditions
loop invariants
intermediate assertions
class invariants
frame specification
object dependencies

Failed
proof

obligation

SMTBoogie

procedures
axioms
specification functions
memory model
background theory
triggers

Reasoning with class invariants

Class invariants are a natural way to reason
about object-oriented programs:

invariant = consistency of objects

10

ACCOUNT

invariant
balance >= 0

Demo: AutoProof warmup

AutoProof verifies a basic version of the bank
ACCOUNT class

deposit (amount: INTEGER)

withdraw (amount: INTEGER)

11

Follow this demo at:
http://comcom.csail.mit.edu/e4pubs/#demo-key

(Tab account_warmup.e)

http://comcom.csail.mit.edu/e4pubs/#demo-key

Stability of invariant reasoning

Invariant-based reasoning should ensure stability:

stability = an operation can affect
an object’s invariant only if
it modifies the object explicitly

With stability, no one can invalidate an object
behind its back!

12

internal representation

OK

Stability and encapsulation

Invariant-based reasoning with stability:

• enforces encapsulation/information hiding

• simplifies client reasoning

• retains flexibility

13

internal representation

OK

make effects explicit

LIST

ACCOUNT

Multi-object structures

Object-oriented programs involve multiple
objects (duh!), whose consistency is often
mutually dependent

14

invariant
balance >= 0

balance = sum (transactions)

transactions

AUDITOR

LIST

ACCOUNT

Consistency of multi-object structures

Mutually dependent object structures require
extra care to enforce, and reason about,
consistency (cmp. encapsulation)

15

invariant
balance >= 0

balance = sum (transactions)

transactions

AUDITOR

LIST

ACCOUNT

Consistency of multi-object structures

Mutually dependent object structures require
extra care to enforce, and reason about,
consistency (cmp. encapsulation)

16

invariant
balance >= 0

balance = sum (transactions)

transactions

Open and closed objects

When (at which program points) must class
invariants hold? To provide flexibility, objects in
AutoProof can be open or closed

17

CLOSED OPEN

Object: consistent inconsistent

State: stable transient

Invariant: holds may not hold

LIST

ACCOUNT

Ownership

For hierarchical object structures, AutoProof
offers an ownership protocol

18

invariant
balance >= 0
owns = [transactions]
balance = sum (transactions)

transactions

AUDITOR

owns

add_node

LIST

ACCOUNT

Ownership

For hierarchical object structures, AutoProof
offers an ownership protocol

19

transactions

AUDITOR

owns
invariant

balance >= 0
owns = [transactions]
balance = sum (transactions)

add_node

LIST

ACCOUNT

Ownership

For hierarchical object structures, AutoProof
offers an ownership protocol

20

transactions

AUDITOR

owns
invariant

balance >= 0
owns = [transactions]
balance = sum (transactions)

add_node

LIST

ACCOUNT

Ownership

For hierarchical object structures, AutoProof
offers an ownership protocol

21

transactions

AUDITOR

owns
invariant

balance >= 0
owns = [transactions]
balance = sum (transactions)

add_node

LIST

ACCOUNT

Ownership

For hierarchical object structures, AutoProof
offers an ownership protocol

22

transactions

AUDITOR

owns

update_balance

invariant
balance >= 0
owns = [transactions]
balance = sum (transactions)

LIST

ACCOUNT

Ownership

For hierarchical object structures, AutoProof
offers an ownership protocol

23

invariant
balance >= 0
owns = [transactions]
balance = sum (transactions)

transactions

AUDITOR

owns

Demo: ownership in AutoProof

AutoProof verifies deposit and withdraw in
ACCOUNT with an owned list of transactions

transactions: SIMPLE_LIST [INTEGER]

-- History of transactions:

-- positive integer = deposited amount

-- negative integer = withdrawn amount

-- latest transactions in back of list

24

Follow this demo at:
http://comcom.csail.mit.edu/e4pubs/#demo-key

(Tab account_ownership.e)

http://comcom.csail.mit.edu/e4pubs/#demo-key

Wrapping and unwrapping

25

WRAPPED UNWRAPPED

Invariant: holds may not hold

Clients: any object within owner

Modifications: modify after
unwrapping

wrap after
modifying

Combination on ownership and invariants:

Wrapped object = closed and not owned

Unwrapped object = open (or owned)

add_node

LIST

ACCOUNT

Wrapping and unwrapping

Typical modification pattern:
unwrap, modify, wrap (check consistency)

26

transactions

owns
invariant

balance >= 0
owns = [transactions]
balance = sum (transactions)

add_node: unwrap

LIST

ACCOUNT

Wrapping and unwrapping

Typical modification pattern:
unwrap, modify, wrap (check consistency)

27

transactions

owns
invariant

balance >= 0
owns = [transactions]
balance = sum (transactions)

add_node: unwrap; modify

LIST

ACCOUNT

Wrapping and unwrapping

Typical modification pattern:
unwrap, modify, wrap (check consistency)

28

transactions

owns
invariant

balance >= 0
owns = [transactions]
balance = sum (transactions)

add_node: unwrap; modify; wrap (check)

LIST

ACCOUNT

Wrapping and unwrapping

Typical modification pattern:
unwrap, modify, wrap (check consistency)

29

transactions

owns
invariant

balance >= 0
owns = [transactions]
balance = sum (transactions)

add_node: unwrap; modify; wrap (check)

LIST

ACCOUNT

Wrapping and unwrapping

Typical modification pattern:
unwrap, modify, wrap (check consistency)

30

transactions

owns
invariant

balance >= 0
owns = [transactions]
balance = sum (transactions)

Demo: ownership preserves stability

Ownership achieves stability when leaking
references to the internal transactions list
in ACCOUNT

leak_transactions: SIMPLE_LIST [INTEGER]

leak_transactions_unsafe: SIMPLE_LIST [INTEGER]

31

Follow this demo at:
http://comcom.csail.mit.edu/e4pubs/#demo-key

(Tabs account_ownership.e and auditor.e)

http://comcom.csail.mit.edu/e4pubs/#demo-key

ACCOUNT

Semantic collaboration

For collaborative object structures, AutoProof
offers a novel protocol: semantic collaboration

32

invariant

interest_rate = bank.rate

BANK

bank

bank

bank

ACCOUNT

Semantic collaboration

For collaborative object structures, AutoProof
offers a novel protocol: semantic collaboration

33

invariant

interest_rate = bank.rate

BANK

bank

subjects

observers

Semantic collaboration

• Subjects = objects my consistency depends on

• Observers = objects whose consistency depends
on me

34

invariant
subjects = [bank]
Current in bank.observers

-- Implicit in AutoProof

interest_rate = bank.ratebank

bank

ACCOUNTBANK

bank

subjects

observers

Semantic collaboration

The bank changes the rate (and notifies accounts)

35

bank

bank

ACCOUNTBANK

bank
invariant

subjects = [bank]
Current in bank.observers
interest_rate = bank.rate

update

subjects

observers

Semantic collaboration

The bank changes the rate (and notifies accounts)

36

bank

bank

ACCOUNTBANK

bank
invariant

subjects = [bank]
Current in bank.observers
interest_rate = bank.rate

update: open bank, observers

subjects

observers

Semantic collaboration

The bank changes the rate (and notifies accounts)

37

bank

bank

ACCOUNTBANK

bank
invariant

subjects = [bank]
Current in bank.observers
interest_rate = bank.rate

update: set rate

subjects

observers

Semantic collaboration

The bank changes the rate (and notifies accounts)

38

bank

bank

ACCOUNTBANK

bank
invariant

subjects = [bank]
Current in bank.observers
interest_rate = bank.rate

update: set rate, notify all accounts

update

subjects

observers

Semantic collaboration

The bank changes the rate (and notifies accounts)

39

bank

bank

ACCOUNTBANK

bank
invariant

subjects = [bank]
Current in bank.observers
interest_rate = bank.rate

update: set rate, notify all accounts

update

subjects

observers

Semantic collaboration

The bank changes the rate (and notifies accounts)

40

bank

bank

ACCOUNTBANK

bank
invariant

subjects = [bank]
Current in bank.observers
interest_rate = bank.rate

update: set rate, notify all accounts

update

update

update

subjects

observers

Semantic collaboration

The bank changes the rate (and notifies accounts)

41

bank

bank

ACCOUNTBANK

bank

update: wrap bank, all observers (check)

invariant
subjects = [bank]
Current in bank.observers
interest_rate = bank.rate

subjects

observers

Semantic collaboration

The bank changes the rate (and notifies accounts)

42

bank

bank

ACCOUNTBANK

bank

update: open, modify, wrap (check)

invariant
subjects = [bank]
Current in bank.observers
interest_rate = bank.rate

Demo: collaboration in AutoProof

AutoProof verifies update_rate in ACCOUNT and
change_master_rate in BANK based on
semantic collaboration features

subjects_definition: subjects = [bank]

consistent_rate: interest_rate = bank.master_rate

43

Follow this demo at:
http://comcom.csail.mit.edu/e4pubs/#demo-key

(Tabs account_collaboration.e and bank.e)

http://comcom.csail.mit.edu/e4pubs/#demo-key

Wrapping and unwrapping

44

In hierarchical structures there is one typical
modification pattern:

unwrap, modify, wrap (check consistency)

In collaborative structures, there is more flexibility:

• unwrap, modify, wrap

• unwrap, modify, leave open (invalidate)

• share responsibility for restoring consistency
between subjects and observers

Data structures

The features of semantic collaboration work
well to reason about data structure
implementations.

45

Data structures: doubly-linked list

As an example, let’s outline node insertion in a
doubly-linked list:

• A singly linked list is hierarchical: the head
controls access to the whole list.

• A (circular) doubly-linked list is collaborative:
every node depends on its neighbors, and
they depend on it

46

var r := right

wrap Current, r, n

n.right := r

n.left := Current

r.left := n

right := n

n.subjects, n.observers := [r, Current]

subjects, observers := [left, n]

r.subjects, r.observers := [n, r.right]

unwrap Current, r, n

Insert node n to right of Current

47

rightleft

n

Current

Insert node n to right of Current

48

rightleft

n

Currentvar r := right

wrap Current, r, n

n.right := r

n.left := Current

r.left := n

right := n

n.subjects, n.observers := [r, Current]

subjects, observers := [left, n]

r.subjects, r.observers := [n, r.right]

unwrap Current, r, n

r

var r := right

unwrap Current, r, n

n.right := r

n.left := Current

r.left := n

right := n

n.subjects, n.observers := [r, Current]

subjects, observers := [left, n]

r.subjects, r.observers := [n, r.right]

wrap Current, r, n

Insert node n to right of Current

49

rightleft

n

Current r

Insert node n to right of Current

50

rightleft

n

Current rvar r := right

unwrap Current, r, n

n.right := r

n.left := Current

r.left := n

right := n

n.subjects, n.observers := [r, Current]

subjects, observers := [left, n]

r.subjects, r.observers := [n, r.right]

wrap Current, r, n

right

Insert node n to right of Current

51

rightleft

n

Current r

right

var r := right

unwrap Current, r, n

n.right := r

n.left := Current

r.left := n

right := n

n.subjects, n.observers := [r, Current]

subjects, observers := [left, n]

r.subjects, r.observers := [n, r.right]

wrap Current, r, n

left

Insert node n to right of Current

52

rightleft

n

Current r

right
left

var r := right

unwrap Current, r, n

n.right := r

n.left := Current

r.left := n

right := n

n.subjects, n.observers := [r, Current]

subjects, observers := [left, n]

r.subjects, r.observers := [n, r.right]

wrap Current, r, n

Insert node n to right of Current

53

right
left

n

Current r

right
left

var r := right

unwrap Current, r, n

n.right := r

n.left := Current

r.left := n

right := n

n.subjects, n.observers := [r, Current]

subjects, observers := [left, n]

r.subjects, r.observers := [n, r.right]

wrap Current, r, n

Insert node n to right of Current

54

right
left

n

Current r

right
left

var r := right

unwrap Current, r, n

n.right := r

n.left := Current

r.left := n

right := n

n.subjects, n.observers := [r, Current]

subjects, observers := [left, n]

r.subjects, r.observers := [n, r.right]

wrap Current, r, n

Insert node n to right of Current

55

var r := right

unwrap Current, r, n

n.right := r

n.left := Current

r.left := n

right := n

n.subjects, n.observers := [r, Current]

subjects, observers := [left, n]

r.subjects, r.observers := [n, r.right]

wrap Current, r, n

right
left

n

Current r

right
left

Insert node n to right of Current

56

var r := right

unwrap Current, r, n

n.right := r

n.left := Current

r.left := n

right := n

n.subjects, n.observers := [r, Current]

subjects, observers := [left, n]

r.subjects, r.observers := [n, r.right]

wrap Current, r, n

rightleft

Current rn

Attribute update guards

Who’s responsible for checking that an update
to an attribute satisfies the invariant?

• every observer o of Current that satisfies the
guard g is responsible for checking that
updating Current’s attribute a to the value
a’ does not violate the invariant of o

57

a: A guard: g(a’, o)

Update guards in doubly-linked list

When changing the value of attribute right:

• the left node checks that its invariant is not violated
by changing right in the current node

– the left node’s invariant does not depend on
Current.right (it remains wrapped)

• the current node checks that right’s invariant is not
violated by changing Current.right

– the right node is open when changing Current.right
(invariant vacuously holds)

– actual check performed when wrapping right 58

right: NODE guard: o /= right

Demo: doubly-linked list

AutoProof verifies class NODE, representing the
generic node of a doubly-linked list

insert_right (n: NODE)

-- Insert n to the right of Current.

59

Follow this demo at:
http://comcom.csail.mit.edu/e4pubs/#demo-key

(Tab node.e)

http://comcom.csail.mit.edu/e4pubs/#demo-key

Proving realistic implementations

Semantic collaboration is part of a verification
framework with features suitable to reason about
realistic implementations:

• model-based specifications
– completeness

• extensible specification types and MML library

• (abstract) framing with inheritance

• modular verification with inheritance
– nonvariant, covariant methods

• finely-tuned encoding in AutoProof
60

AutoProof on realistic software

Verification benchmarks:

EiffelBase2 – a realistic container library:

programs LOC SPEC/CODE Verification time

25 4400 Lines: 1.0
Tokens: 1.9

Total: 3.4 min
Longest method: 12 sec
Average method: < 1 sec

classes LOC SPEC/CODE Verification time

46 8400 Lines: 1.4
Tokens: 2.7

Total: 7.2 min
Longest method: 12 sec
Average method: < 1 sec

Class-invariant based reasoning
with semantic collaboration

subjects

observers

owns

[VSTTE ‘13, FM ‘14, TACAS ‘15, FM ‘15, STTT ‘16]

